地球科学进展 ›› 2019, Vol. 34 ›› Issue (9): 912 -921. doi: 10.11867/j.issn.1001-8166.2019.09.0912

综述与评述 上一篇    下一篇

时空连续数据支持下的空域资源配置研究:评述与展望
张一诺 1, 2( ),路紫 1, 2( ),杜欣儒 1, 2,董雅晴 1, 2,张菁 1, 2   
  1. 1. 河北师范大学资源与环境科学学院,河北 石家庄 050024
    2. 河北省环境演变与生态建设实验室,河北 石家庄 050024
  • 收稿日期:2019-04-22 修回日期:2019-07-12 出版日期:2019-09-10
  • 通讯作者: 路紫 E-mail:zh_yinuo@126.com;luzi1960@126.com
  • 基金资助:
    国家自然科学基金项目“数据通信支持的空域资源配置模型与机制”(41671121)

Research on Airspace Resource Allocation Supported by Spatiotemporal Continuous Data: Review and Prospect

Yinuo Zhang 1, 2( ),Zi Lu 1, 2( ),Xinru Du 1, 2,Yaqing Dong 1, 2,Jing Zhang 1, 2   

  1. 1. College of Resource and Environmental Sciences, Hebei Normal University, Shijiazhuang 050024, China
    2. Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050024, China
  • Received:2019-04-22 Revised:2019-07-12 Online:2019-09-10 Published:2019-11-15
  • Contact: Zi Lu E-mail:zh_yinuo@126.com;luzi1960@126.com
  • About author:Zhang Yinuo (1995-), female, Hengshui City, Hebei Province, Master student. Research areas include information economy geography. E-mail: zh_yinuo@126.com
  • Supported by:
    the National Natural Science Foundation of China “The model and mechanisms of airspace configuration supported by data communication”(.41671121)

固定的空中交通运行系统和功能已难以适应航路结构和空域需求的巨大变化,这引发了空域资源配置由静态为主向灵活动态的演进,时空连续数据的挖掘和应用支持了这个过程。综述近些年国内外相关研究成果可见:从基础要素的多维度表达到具体空域单元的特征分析均向实时方向深化与拓展并表现出新机制;引进时间参数开发了系列高密度航空流识别方法并与飞行路径跨时空模型相结合形成鲜明的动态特色;相关应用与实践均体现出空域资源配置的结构性革命,推动了空域拥堵、航班延误与资源分配等现实问题的解决。国外动态空域资源配置研究与实践对我国具有积极的借鉴意义。然而,在同时应对空侧能力发挥和多维度参数变化时,仍然面临时段—航段匹配、微观—宏观结合、终端空域—飞行航路对接、空域—地域一体化等方面的挑战。未来,地理学需进一步发挥自身优势,构建新的空域研究对象并深度开展研究工作。

Given that the fixed air traffic operation system and functions are difficult to adapt to the great changes of air route structure and airspace demand, the airspace resource allocation is undergoing an evolution from static to flexible and dynamic so as to effectively solve the contradiction between airspace capacity and actual demand. In this process, the dependence on spatiotemporal continuous data is gradually strengthened. This article reviewed the relevant national and international research, and found that from the multi-dimensional expression of basic elements to the feature analysis of specific airspace units, airspace resource allocation deepens and expands in a real-time direction and presents a new mechanism. A series of high density air traffic flow identification methods are developed by introducing time parameters and combined with the flight path model to form a distinct dynamic characteristic. Related applications and practice reflect the structural revolution of airspace resource allocation and promote the solution of practical problems such as airspace congestion and resource allocation. The research and practice of dynamic airspace resource allocation outside China have positive reference significance to our country. However, when simultaneously coping with the hoisting of airside capability and the change of multi-dimensional parameters, we still face the challenges of period-segment matching, micro-macro combination, terminal airspace-air route docking and airspace-land area integration. In the future, geography should further integrate the unique advantages of spatiotemporal interaction and construct a brand-new overall mobile chain of various airspace-land scales to carry out research work deeply.

中图分类号: 

图1 文献学科分布以及数量变化
Fig. 1 Literature type distribution and literature quantity change
图2 关键词频率及其共现关系图谱
Fig.2 Key words frequency and co-occurrence relation graph
图3 连续时间周期内不同空域单元高密度航空流识别
(a)日内24 h京广空中廊道繁忙时段/航段识别(据参考文献[ 37 ]修改);(b) 1 h内北京首都机场终端空域热区识别;(c) 1 h内3个连续时段京津石MAS航空流集簇识别
Fig.3 High density air flow identification of different airspace units in continuous time period
(a)The identification of congestion period/segment in Beijing-Guangzhou corridor-in-the-sky within 24 h of a day (modified after reference [ 37 ]); (b)The identification of airspace hot zone at the terminal of Beijing capital airport within 1 h; (c)The identification of air traffic flow clusters at Beijing-Tianjin-Shijiazhuang MAS in three consecutive periods within 1 h
图4 连续时间周期中MAS抵离航班位置变化的极坐标直方图(据参考文献[ 29 ]修改)
http://www.gov.cn/xinwen/2017-02/16/content_5168506.htm, 三部门印发中国民用航空发展第十三个五年规划. https://www.icao.int/APAC/Meetings/2016 CIVMILIND/Presentation 10- Air Traffic Flow Management and Flexible Use of Airspace (AAI).pdf.
http://www.gov.cn/xinwen/2017-02/16/content_5168506.htm, 三部门印发中国民用航空发展第十三个五年规划.
Fig.4 Histogram of polar coordinates of changes in MAS arrival and departure flight positions in continuous time period (modified after reference[ 29 ])
1 LuZi, DuXinru. The theoretical sources, innovation of methodologies and practice of the exploitation and utilization of airspace in western countries[J]. Advances in Earth Science, 2015, 30(11): 1 260-1 267.
路紫, 杜欣儒. 国外空域资源开发利用的理论基础, 方法论变革与实践[J]. 地球科学进展, 2015, 30(11): 1 260-1 267.
2 GavanL. The airspace as a cognitive system [J]. The International Journal of Aviation Psychology, 2011, 21(1): 3-15.
3 SergeevaM, DelahayeD, MancelC, et al. Dynamic airspace configuration by genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2017, 4(3): 300-314.
4 DuXinru,LuZi. Application of ICTs in airspace management and collaborative decision-making—Analyzing the risk avoidance in the condition of risky weather as an example [J]. Advances in Earth Science, 2016, 31(3): 269-276.
杜欣儒, 路紫. 信息通信技术在空域协同管理决策中的应用——以危险天气条件下风险规避分析为例[J]. 地球科学进展, 2016, 31(3): 269-276.
5 ClarkK L, BhatiaU, KodraE A, et al. Resilience of the US national airspace system airport network [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 3 785-3 794.
6 SunilE, EllerbroekJ, HoekstraJ, et al. Analysis of airspace structure and capacity for decentralized separation using fast-time simulations [J]. Journal of Guidance, Control, and Dynamics, 2016, 40(1): 38-51.
7 MardaniA, ZavadskasE K, KhalifahZ, et al. Multiple criteria decision-making techniques in transportation systems: A systematic review of the state of the art literature [J]. Transport, 2016, 31(3): 359-385.
8 ConnorsM M, MauroR, StatlerI C. A survey methodology for measuring safety-related trends in the national airspace system [J]. The International Journal of Aviation Psychology, 2014, 24(4): 265-286.
9 LiuFangqin, HuMinghua, ZhangYing. Collaborative multiple en-route airspace resource rationing based on en-route capacity under coupling constraints[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 672-684.
刘方勤,胡明华,张颖.基于航路耦合容量的协同多航路资源分配[J].航空学报,2011,32(4):672-684.
10 ZhangChen, HuMinghua, ZhangJin.Air traffic complexity management in with Tube-type airspace configuration[J]. Journal of Systems Management, 2012, 21(3):327-335,351.
张晨,胡明华,张进.基于管型空域配置的交通复杂性管理[J].系统管理学报,2012,21(3):327-335,351.
11 MaYuanyuan, HuMinghua, ZhangHonghai, et al. Optimized method for collaborative arrival sequencing and scheduling in metroplex terminal area[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2 279-2 290.
马园园,胡明华,张洪海,等.多机场终端区进场航班协同排序方法[J].航空学报,2015,36(7):2 279-2 290.
12 BurleighS, CerfV G, CrowcroftJ, et al. Space for internet and internet for space [J]. Ad Hoc Networks, 2014, 23(12):80-86.
13 NosedalJ, PieraM A, SolisA O, et al. An optimization model to fit airspace demand considering a spatio-temporal analysis of airspace capacity [J]. Transportation Research Part C: Emerging Technologies, 2015, 61(12): 11-28.
14 KimA, HansenM. Some insights into a sequential resource allocation mechanism for en route air traffic management [J]. Transportation Research Part B: Methodological, 2015, 79(9): 1-15.
15 KistanT, GardiA, SabatiniR, et al. An evolutionary outlook of air traffic flow management techniques [J]. Progress in Aerospace Sciences, 2017, 88(1): 15-42.
16 WuQunyong, SunMei, CuiLei. A Survey of the spatio-temporal data model [J]. Advances in Earth Science, 2016, 31(10):1 001-1 011.
邬群勇,孙梅,崔磊.时空数据模型研究综述[J].地球科学进展,2016,31(10):1 001-1 011.
17 CampanelliB, FleurquinP, ArranzA, et al. Comparing the modeling of delay propagation in the US and European air traffic networks [J]. Journal of Air Transport Management, 2016, 56(8): 12-18.
18 BrrnhartC, BertsimasD, CaramanisC, et al. Equitable and efficient coordination in traffic flow management [J]. Transportation Science, 2012, 46(2): 262-280.
19 Andeatta, CapannaL, DeG L, et al. Efficiency and robustness in a support platform for intelligent airport ground handling [J]. Journal of Intelligent Transportation Systems, 2014, 18(1): 121-130.
20 XueM, KopardekarP. High-capacity tube network design using the hough transform[J]. Journal of Guidance Control & Dynamics, 2009, 32(3): 788-795.
21 YousefiA, ZadehA N. Dynamic allocation and benefit assessment of NextGen flow corridors [J]. Tramsportation Research Part C: Emerging Technologies, 2013, 33(4): 297-310.
22 GuariniM R, LocurcioM, BattistiF. GIS-based multi-criteria decision analysis for the “highway in the sky”[C]//International Conference on Computational Science and Its Applications. Banff: Springer, 2015: 146-161.
23 HoffmanR, PreteJ. Principles of airspace tube design for dynamic airspace configuration[C]//16th AIAA Aircraft Technology, Integration, and Operation Conference. Anchorage, Alaska, 2008: 8 939-8 956.
24 FarhadiF, GhoniemA, Al-SalemM. Runway capacity management—An empirical study with application to Doha International Airport[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 68(8): 53-63.
25 LuppoO, ArgunovG, MohylaA. Concept of advanced flexible use of airspace[J]. Proceedings of the National Aviation University, 2016, 67(2): 22-28.
26 ButtonK, NeivaR. Single european sky and the functional airspace blocks: Will they improve economic efficiency?[J]. Journal of Air Transport Management, 2013, 33(8): 73-80.
27 MorrisonS A, WinstonC. The effect of FAA expenditures on air travel delays[J]. Journal of Urban Economics, 2008, 63(2): 669-678.
28 BertsimasD, GuptaS. Fairness and collaboration in network air traffic flow management: An optimization approach [J]. Transportation Science, 2015, 50(1): 57-76.
29 SidiropoulosS, MajumdarA, HanK. A framework for the optimization of terminal airspace operations in multi-airport systems[J]. Transportation Research Part B: Methodological, 2018, 110(4): 160-187.
30 NetjasovF, Jani?M, To?i?V. Developing a generic metric of terminal airspace traffic complexity[J]. Transportmetrica, 2011, 7(5): 369-394.
31 BarnhartC, BertsimasD, CaramanisC, et al. Equitable and efficient coordination in traffic flow management [J]. Transportation Science, 2012, 46(2): 262-280.
32 FasoneV, GiuffreT, MaggioreP. Multi-airport system as a way of sustainability for airport development: Evidence from an Italian case study[J]. Procedia-Social and Behavioral Sciences, 2012, 53(23): 96-105.
33 MartínJ C, Voltes-DortaA. The dilemma between capacity expansions and multi-airport systems: Empirical evidence from the industry’s cost function[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(3): 382-389.
34 TakebayashiM. Managing the multiple airport system by coordinating short/long-haul flights[J]. Journal of Air Transport Management, 2012, 22(5): 16-20.
35 SunX, WandeltS, HansenM, et al. Multiple airport regions based on inter-airport temporal distances[J]. Transportation Research Part E: Logistics & Transportation Review, 2017, 101(5): 84-98.
36 XueM, ZelinskiS. Optimal integration of departures and arrivals in terminal airspace [J]. Journal of Guidance, Control, and Dynamics, 2013, 37(1): 207-213.
37 DongYaqing, LuZi, LiuYuan, et al. The design of China's corridors-in-the-sky and the influence of air routes traffic on the identification of space-time congestion[J]. Journal of Geographical Sciences, 2018, 73(10): 2 001-2 013.
董雅晴,路紫,刘媛,等.中国空中廊道划设与时空拥堵识别及其航线流量影响[J].地理学报, 2018, 73(10): 2 001-2 013.
38 CaiK Q, ZhangJ, XiaoM M, et al. Simultaneous optimization of airspace congestion and flight delay in air traffic network flow management [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 3 072-3 082.
39 QianX, MaoJ, ChenC H, et al. Coordinated multi-aircraft 4D trajectories planning considering buffer safety distance and fuel consumption optimization via pure-strategy game [J]. Transportation Research Part C: Emerging Technologies, 2017, 81(6): 18-35.
40 LiM Z, RyersonM S. A data-driven approach to modeling high-density terminal areas: A scenario analysis of the new Beijing, China airspace[J]. Chinese Journal of Aeronautics, 2017, 30(2): 538-553.
41 WangB, KharchenkoV, ChynchenkoY. Estimation of effect of uncertainty factors on safety of air traffic flows in terminal control areas [J]. Proсeedings of the National Aviation University, 2015, 65(4): 22-27.
42 ChaoW, BangcunH A N, FeiW. Identification of prevalent air traffic flow in terminal airspace based on trajectory spectral clustering[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 546-552.
43 SamaM, D’arianoA, D’arianoP, et al. Air traffic optimization models for aircraft delay and travel time minimization in terminal control areas[J]. Public Transport, 2015, 7(3): 321-337.
44 WittenD M, TibshiraniR. A framework for feature selection in clustering [J]. Publications of the American Statistical Association, 2010, 105(490): 713-726.
45 LordanO, SallanJ M, SimoP, et al. Robustness of airline alliance route networks [J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 22(1/3): 587-595.
46 PeiTao, LiuYaxi, GuoSihui, et al. Principle of big geodata mining [J]. Journal of Geographical Sciences, 2019, 74(3): 586-598.
裴韬,刘亚溪,郭思慧,等.地理大数据挖掘的本质[J].地理学报,2019,74(3):586-598.
47 ManleyB, SherryL. Analysis of performance and equity in ground delay programs [J]. Transportation Research Part C: Emerging Technologies, 2010, 18(6): 910-920.
48 ChenB, ChengH H, PalenJ. Integrating mobile agent technology with multi-agent systems for distributed traffic detection and management systems [J]. Transportation Research Part C: Emerging Technologies, 2009, 17(1): 1-10.
49 LiW, DibM V P, AlvesD P, et al. Intelligent computing methods in air traffic flow management [J]. Transportation Research Part C: Emerging Technologies, 2010, 18(5): 781-793.
50 YangS W, HuM H. Robust optimization of aircraft arrival and departure flow allocation based on dynamic capacity [J]. Journal of Southwest Jiaotong University, 2010, 45(2): 261-267.
51 ChoiS, MulfingerD G, RobinsonIII J E, et al. Design of an optimal route structure using heuristics-based stochastic schedulers [J]. Journal of Aircraft, 2015, 52(3): 764-777.
52 SolakS, ClarkeJ P B, JohnsonE L. Airport terminal capacity planning[J]. Transportation Research Part B: Methodological, 2009, 43(6): 659-676.
53 SteinerM, BatemanR, MegenhardtD, et al. Translation of ensemble weather forecasts into probabilistic air traffic capacity impact[J]. Air Traffic Control Quarterly, 2010, 18(3): 229-254.
54 TimarS, NagleG, SarafA, et al. Super density operations airspace modeling for the Southern California metroplex [C]//AIAA Modeling and Simulation Technologies Conference. Portland:2011: 6 535. DOI: 10.2514/6.2011-6535.
doi: 10.2514/6.2011-6535    
55 D'ArianoA, PaceiarelliD, PistelliM, et al. Real-time scheduling of aircraft arrivals and departures in a terminal maneuvering area [J]. Networks, 2015, 65(3): 212-227.
56 DuXinru,LuZi,GaoFang,et al. Design method, application and time alternative mechanism of flexible use of airspace [J]. Advances in Earth Science, 2016, 31(6): 643-649.
杜欣儒, 路紫,郜方,等.灵活空域使用的设计方法与应用及其时间替代机制[J].地球科学进展,2016,31(6):643-649.
57 ClarkeJ P, RenL, McclainE, et al. Evaluating concepts for operations in metroplex terminal area airspace[J]. Journal of Aircraft, 2014, 49(3): 758-773.
58 PrandiniM, PuttaV, HuJ. A probabilistic measure of air traffic complexity in 3-D airspace [J]. International Journal of Adaptive Control and Signal Processing, 2010, 24(10): 813-829.
59 CastelliL, PesentiR, RanieriA. The design of a market mechanism to allocate air traffic flow management slots [J]. Transportation Research Part C: Emerging Technologies, 2011, 19(5): 931-943.
60 NosedalJ, PieraM A, RuizS, et al. An efficient algorithm for smoothing airspace congestion by fine-tuning take-off times [J]. Transportation Research Part C: Emerging Technologies, 2014, 44(9): 171-184.
61 RiosJ, RossK. Massively parallel dantzig-wolfe decomposition applied to traffic flow scheduling[J]. Journal of Aerospace Computing, Information, and Communication, 2010, 7 (1): 32-45.
62 Agust?′nA, Alonso-AyusoA, EscuderoL F, et al. On air traffic flow management with rerouting. Part I: deterministic case [J]. European Journal of Operational Research, 2012, 219(1): 156-166.
63 VaabenB, LarsenJ. Mitigation of airspace congestion impact on airline networks [J]. Journal of Air Transport Management, 2015, 47(5): 54-65.
64 WangLili, WangHangchen. Combined optimization method for large-scale air traffic flow management under emergencies[J/OL]. Acta Aeronautica et Astronautica Sinica,2019,40(8):322898
王莉莉,王航臣.突发事件下大规模空中交通流量管理的组合优化模型[J].航空学报,2019,40(8):322898.]
65 AndreattaG, Dell’OlmoP, LulliG. An aggregate stochastic programming model for air traffic flow management [J]. European Journal of Operational Research, 2011, 215(3): 697-704.
66 ScarpelR A. A demand trend change early warning forecast model for the city of S?o Paulo multi-airport system [J]. Transportation Research Part A: Policy and Practice, 2014, 65(7): 23-32.
67 ZietsmanD, VanderschurenM. Analytic hierarchy process assessment for potential multi-airport systems-the case of Cape Town[J]. Journal of Air Transport Management, 2014, 36(3): 41-49.
68 SidiropoulosS, HanK, MajumdarA, et al. Robust identification of air traffic flow patterns in metroplex terminal areas under demand uncertainty [J]. Transportation Research Part C: Emerging Technologies, 2017, 75(2): 212-227.
69 FasoneV, MaggioreP. Airport development and sustainability: A case of multi-airport system in Italy [J]. International Journal of Sustainable Aviation, 2014, 1(1): 13-24.
[1] 张菁,路紫,杜欣儒,杜晓辉,高玉健. 京津石多机场系统航空流运行结构及其对比研究[J]. 地球科学进展, 2020, 35(12): 1281-1291.
[2] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[3] 熊巨华,王佳,张晴,史云飞,官冬杰,耿豪鹏,王天富,张新林,李飞. 2020年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2020, 35(11): 1137-1147.
[4] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[5] 冷疏影, 郑袁明, 范闻捷, 王军, 王国栋, 张俊辉, 郭建科, 朱军, 高锡章. 2017年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2017, 32(12): 1319-1331.
[6] 冷疏影, 郑袁明, 王力, 王永君, 吴立, 逯亚峰, 高扬, 黄耿志, 王军, 施坤. 2016 年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2016, 31(12): 1255-1266.
[7] 冷疏影,郑袁明,王力,王永君,张文翔,钱凤魁,刘林山,王颖,郭忠录,赵小锋. 2015年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2015, 30(12): 1330-.
[8] 陆大道. 辉煌的成就,更高的使命——写在第33届国际地理学大会在北京召开之前[J]. 地球科学进展, 2015, 30(10): 1075-1080.
[9] 冷疏影, 郑袁明, 赵小蓉, 刘志刚, 沈泽昊, 王均平, 冯章献, 卫泽斌, 王永君, 黄建毅. 2014年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2014, 29(12): 1396-1403.
[10] 冷疏影,郑袁明,赵小蓉,刘志刚,王先彦,张正栋,姜丽丽,张少良,林文鹏,王力. 2013年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2013, 28(12): 1357-1369.
[11] 冷疏影,郑袁明,赵小蓉,刘志刚,佟小刚,赵井东,张飞,卢松,徐莉,袁林旺. 2012年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2012, 27(12): 1376-1388.
[12] 冷疏影,李本纲,赵小蓉,刘志刚,张运林,王君波,林耿,程昌秀. 2011年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2011, 26(12): 1310-1321.
[13] 孙晓霞,孙松. 深海化能合成生态系统研究进展[J]. 地球科学进展, 2010, 25(5): 552-560.
[14] 冷疏影,刘勇,朱海勇,李永涛,肖青,刘明哲,曹军,胡承志. 2010年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2010, 25(12): 1380-1388.
[15] 宋长青,冷疏影,朱海勇,李丰江,欧阳威,李小军,李永涛,肖青. 2009年度地理学基金项目评审及成果分析[J]. 地球科学进展, 2009, 24(12): 1362-1364.
阅读次数
全文


摘要