地球科学进展 ›› 2020, Vol. 35 ›› Issue (12): 1281 -1291. doi: 10.11867/j.issn.1001-8166.2020.101

研究论文 上一篇    下一篇

京津石多机场系统航空流运行结构及其对比研究
张菁 1, 2, 3( ),路紫 1, 2( ),杜欣儒 1, 2,杜晓辉 4,高玉健 5   
  1. 1.河北师范大学资源与环境科学学院,河北 石家庄 050024
    2.河北省环境演变与生态建设实验室,河北 石家庄 050024
    3.首都师范大学附属中学永定分校,北京 102308
    4.河北师范大学旅游系,河北 石家庄 050024
    5.交通运输部规划研究院,北京 100028
  • 收稿日期:2020-05-16 修回日期:2020-11-03 出版日期:2020-12-10
  • 通讯作者: 路紫 E-mail:zhangjingerv@163.com;luzi@hebtu.edu.cn
  • 基金资助:
    国家自然科学基金项目“数据通信支持的空域资源配置模型与机制”(41671121)

The Air Flow Operation Structure of Jing-Jin-Shi Multi-Airport System and Its Comparative Study

Jing Zhang 1, 2, 3( ),Zi Lu 1, 2( ),Xinru Du 1, 2,Xiaohui Du 4,Yujian Gao 5   

  1. 1.School of Resource and Environment Sciences,Hebei Normal University,Shijiazhuang 050024,China
    2.Hebei Key Laboratory of Environmental Change and Ecological Construction,Shijiazhuang 050024,China
    3.Yongding Branch School of High School Attached to Capital Normal University,Beijing 102308,China
    4.Department of Tourism,Hebei Normal University,Shijiazhuang 050024,China
    5.Transport Planning and Research Institute,Ministry of Transport,Beijing 100028,China
  • Received:2020-05-16 Revised:2020-11-03 Online:2020-12-10 Published:2021-02-09
  • Contact: Zi Lu E-mail:zhangjingerv@163.com;luzi@hebtu.edu.cn
  • About author:Zhang Jing (1992-), female, Handan City, Hebei Province, Master student. Research areas include aviation geography and development of airspace utilization. E-mail: zhangjingerv@163.com
  • Supported by:
    the National Natural Science Foundation of China "The model and mechanisms of airspace configuration supported by data communication"(41671121)

跟踪过滤京津石多机场系统实时航迹点数据,搭建包括航迹网络、航迹簇流量模式、航迹管交叉空域和航迹相态4个方面的多机场系统航空流运行结构集成检测框架,经分类、分组、分层、分相对邻近流、并发流、多变量流、集体流进行检测发现:由少量中心航迹形成主导性流向,4组航迹簇流量模式持续时间均较长且存在时间窗口集中与分散分布差异,在航迹管交叉空域表现为穿越关系并可同时共享同一空域单元,航迹相态受航空流参与量和航空网络影响而发生时序变化。与纽约多机场系统对比,中心航迹偏少且流向域面较窄、航迹簇流量模式和航迹管交叉空域持续集中时间较长且可变性较小、航迹拥堵相出现频率更高。大兴机场加入后将新增中心航迹、消减时间窗口峰值并引发形成新的交叉空域。揭示出航空地理市场的基础性作用,可为多机场系统空域动态配置与系统协调提供决策支持。

The real-time flight trajectory data of Jing-Jin-Shi multi-airport system was obtained by tracking and filtering, and an integrated detection framework for air flow operation structure of multi-airport system including trajectory network, trajectory cluster flow pattern, trajectory tube in crossing airspace and trajectory phase state was built. Through classification, grouping, layered and phased detection of adjacent flow, concurrent flow, multivariable flow and collective flow, it is found that: A small number of central trajectories can form a dominant air flow operation. The four groups of trajectory cluster flow patterns all last for a long time and there are differences in the concentration and dispersion of sliding windows. The spatio-temporal interaction of air traffic flow among the trajectory tube in crossing airspace is shown as a crossing relationship and also shares the same airspace unit at the same time. Besides, the phase state changes due to the influence of air flow participation and aviation network. Compared with the New York multi-airport system in the United States, the central trajectories are less and the flow direction area is narrower. Secondly, the trajectory cluster flow pattern and the trajectory tube in crossing airspace have longer concentration time and less variability, and the trajectory congestion is more likely and more frequent. The participation of Beijing Daxing International Airport will increase the central trajectories, reduce the peak value of sliding windows and also make the new crossing airspace. This research reveals the fundamental role of the aviation geographic market, which can provide decision-making for the dynamic airspace configuration and coordination of multi-airport system.

中图分类号: 

图1 MASAFOS集成检测过程与方法(据参考文献[ 11 , 14 ]修改)
Fig.1 The integrated detection process and method for AFOS of MAS modified after references [11,14])
图2 京津石MAS进出港航班的航迹簇与航迹网络
Fig.2 Trajectory clusters and its network of Jing-Jin-Shi MAS inbound and outbound flights
图3 京津石MAS航迹簇流量与航迹网络度量指标
Fig.3 Jing-Jin-Shi MAS trajectory flow and metrics of its network
图4 基于SW的京津石MAS航迹簇流量模式
Fig.4 Jing-Jin-Shi MAS trajectory cluster flow pattern based on sliding window
图5 京津石MAS航迹管交叉空域时空相互作用及其关系指示
Fig.5 Spatio-temporal interaction and relationship indication of Jing-Jin-Shi MAS trajectory tube crossing airspace
图6 ZANGANGZHEN关联航段航迹图
Fig6 Associated segment trajectory map of ZANGANGZHEN
图7 ZANGANGZHEN关联航段航空流特性参数图及航迹时空图
Fig.7 The characteristic parameter map and trajectory spatio-temporal map of air flow in the associated segment of ZANGANGZHEN
1 Zhang Yinuo, Lu Zi, Du Xinru, et al. Research on airspace resource allocation supported by spatiotemporal continuous data: Review and prospect [J]. Advances in Earth Science, 2019, 34(9): 912-921.
张一诺, 路紫, 杜欣儒, 等. 时空连续数据支持下的空域资源配置研究:评述与展望[J]. 地球科学进展, 2019, 34(9): 912-921.
2 Baumgartner M, Finger M. The Single European Sky gridlock: A difficult 10 year reform process [J]. Utilities Policy, 2014, 23(31): 289-301.
3 Connors M M, Mauro R, Statler I C. A survey methodology for measuring safety-related trends in the national airspace system [J]. The International Journal of Aviation Psychology, 2014, 24(4): 265-286.
4 Zhang Yinuo, Lu Zi, Ding Jianghui. Calculation of system delay elasticity of Beijing-Guangzhou Air Corridor with analysis of air flow operation structure [J]. Tropical Geography, 2020, 40(2): 194-205.
张一诺, 路紫, 丁疆辉. 京广空中廊道系统延误弹性测算与航空流运行结构分析[J]. 热带地理,2020, 40(2): 194-205.
5 Zhang Jing, Lu Zi, Dong Yaqing. Dynamic analysis of air passenger flow in Jing-Jin-Shi MAS terminal airspace and its application prospects [J]. Geography and Geo-Information Science, 2019, 35(5): 73-79,117.
张菁, 路紫, 董雅晴. 京津石MAS终端空域航空流动态分析及其应用展望[J]. 地理与地理信息科学, 2019, 35(5): 73-79,117.
6 Wang Chengjin, Wang Wei, Wang Jiao'e. Pattern of schedule network in hub airports: From the view of airlines reorganization [J]. Geographical Research, 2015, 34(6): 1 029-1 043.
王成金, 王伟, 王姣娥. 基于航空公司重组的枢纽机场航班配置网络演变——以北京、上海和广州为例[J]. 地理研究, 2015, 34(6): 1 029-1 043.
7 Du Chao, Wang Jiao'e. Spatial pattern of China Southern Airlines' network and its market coverage [J]. Geographical Research, 2015, 34(7): 1 319-1 330.
杜超, 王姣娥. 南方航空网络空间格局及市场范围[J]. 地理研究, 2015, 34(7): 1 319-1 330.
8 Wang Jiao'e, Mo Huihui, Jin Fengjun. Spatial structural characteristics of chinese aviation network based on complex network theory [J]. Acta Geographica Sinica, 2009, 64(8): 899-910.
王姣娥, 莫辉辉, 金凤君. 中国航空网络空间结构的复杂性[J]. 地理学报, 2009, 64(8): 899-910.
9 Sidiropoulos S, Majumdar A, Han K. A framework for the optimization of terminal airspace operations in multi-airport systems[J]. Transportation Research Part B: Methodological, 2018, 110(4): 160-187.
10 Zhang Honghai, Xu Yan, Zhang Zheming, et al. Air traffic flow parameter model and simulation for airport terminal area [J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 58-64.
张洪海, 许炎, 张哲铭, 等. 终端区空中交通流参数模型与仿真[J]. 交通运输系统工程与信息, 2014, 14(6): 58-64.
11 Mur?a M C R, Hansman R J, Li L, et al. Flight trajectory data analytics for characterization of air traffic flows: A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo[J]. Transportation Research Part C: Emerging Technologies, 2018, 26(97): 324-347.
12 Gao Wei, Lu Zi, Dong Yaqing. Idenification of anomalous change of air traffic flow based on individual moving trajectory-sliding window: A case study of Beijing-Shanghai Air Corridor [J]. Geography and Geo-Information Science, 2019, 35(6): 66-72.
高伟, 路紫, 董雅晴. 个体移动轨迹—滑动窗口方法与航空流异常变化识别——以京沪空中廊道为例[J]. 地理与地理信息科学, 2019, 35(6): 66-72.
13 Xie Daoyi, Hu Minghua, Xie Hua, et al. Analysis of fluctuations in air-route network flow [J]. Journal of East China Jiaotong University, 2017, 34(1): 73-78.
谢道仪, 胡明华, 谢华, 等. 航路网络流量波动行为分析[J]. 华东交通大学学报, 2017, 34(1): 73-78.
14 Xu Yan, Zhang Honghai, Yang Lei, et al. Analysis of air traffic flow characteristics in airport terminal area based on observed data [J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 205-211.
许炎, 张洪海, 杨磊, 等. 基于实测数据的终端区空中交通流特性分析 [J]. 交通运输系统工程与信息, 2015, 15(1): 205-211.
15 Mur?a M C R, DeLaura R, Hansman R J, et al. Trajectory clustering and classification for characterization of air traffic flows [C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Washington DC, 2016: 1-15.
16 He Z, Yu C. Clustering stability-based evolutionary K-Means [J]. Soft Computing, 2019, 23(1): 305-321.
17 Andrienko G, Andrienko N, Fuchs G, et al. Clustering trajectories by relevant parts for air traffic analysis [J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24(1): 34-44.
18 Tang J, Alam S, Lokan C, et al. A multi-objective approach for dynamic airspace sectorization using agent based and geometric models [J]. Transportation Research Part C, 2012, 21(1): 89-121.
19 De Neufville R. Management of multi-airport systems: A development strategy [J]. Journal of Air Transport Management, 1995, 2(2): 99-110.
20 Loo B P Y. Passengers' airport choice within Multi-Airport Regions (MARs): Some insights from a stated preference survey at Hong Kong International Airport [J]. Journal of Transport Geography, 2008, 16(2): 117-125.
21 Postorino M N, Praticò F G. An application of the Multi-Criteria Decision-Making analysis to a regional multi-airport system [J]. Research in Transportation Business & Management, 2012, 2(4): 44-52.
22 Griffin R. State aid, the growth of low-cost carriers in the European Union, and the impact of the 2005 guidelines on financing of airports and start-up aid to airlines departing from regional airports [J]. Office of Scientific & Technical Information Technical Reports, 2006, 78(1):158-166.
23 Yang Z, Yu S, Notteboom T. Airport location in Multiple Airport Regions (MARs): The role of land and airside accessibility [J]. Journal of Transport Geography, 2016, 52: 98-110.
24 Sidiropoulos S, Han K, Majumdar A, et al. Robust identification of air traffic flow patterns in Metroplex terminal areas under demand uncertainty [J]. Transportation Research Part C: Emerging Technologies, 2017, 15(75): 212-227.
25 Sun X, Wandelt S, Hansen M, et al. Multiple airport regions based on inter-airport temporal distances [J]. Transportation Research, 2017, 101 (5): 84-98.
26 Li M Z, Ryerson M S. A data-driven approach to modeling high-density terminal areas: A scenario analysis of the new Beijing, China airspace [J]. Chinese Journal of Aeronautics, 2017, 30(2): 538-553.
27 Wandelt S, Sun X. Efficient compression of 4D-trajectory data in air traffic management [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(2): 844-853.
28 Sun J, Ellerbroek J, Hoekstra J. Flight extraction and phase identification for large automatic dependent surveillance-broadcast datasets [J]. Journal of Aerospace Computing, Information and Communication, 2017, 14(10): 1-6.
29 Kistan T, Gardi A, Sabatini R, et al. An evolutionary outlook of air traffic flow management techniques [J]. Progress in Aerospace Sciences, 2017, 88(1): 15-42.
30 Campanelli B, Fleurquin P, Arranz A, et al. Comparing the modeling of delay propagation in the US and European air traffic networks [J]. Journal of Air Transport Management, 2016, 56(8): 12-18.
31 Brrnhart C, Bertsimas D, Caramanis C, et al. Equitable and efficient coordination in traffic flow management [J]. Transportation Science, 2012, 46(2): 262-280.
32 Clark K L, Bhatia U, Kodra E A, et al. Resilience of the US national airspace system airport network [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 3 785-3 794.
33 Sun J, Ellerbroek J, Hoekstra J. Large-scale flight phase identification from ads-b data using machine learning methods [C]//7th International Conference on Research in Air Transportation. Philadelphia, USA. 2016.
34 Derudder B, Devriendt L, Witlox F. A spatial analysis of multiple airport cities [J]. Journal of Transport Geography, 2010, 18(3): 345-353.
35 Liu Yonggang, Yang Yi. Analysis on the transition optimization between terminal airspace and en-route airspace [J]. Air Traffic, 2015(10):5-8.
刘永刚, 杨毅. 对优化终端区与航路航线网络衔接的思考 [J]. 空中交通, 2015 (10):5-8.
36 Zhang Shengrun, Zheng Hailong, Li Tao, et al. Research on congestion spillover effects of international transfer traffic on hub airports [J]. Geographical Research, 2019, 38(11): 2 716-2 729.
张生润, 郑海龙, 李涛, 等. 枢纽机场的国际中转客流拥堵溢出效应研究[J]. 地理研究, 2019, 38(11): 2 716-2 729.
37 Du Xinru, Lu Zi, Dong Yaqing, et al. The heat airspace cloud map in terminal airspace of airports based on air passenger flow and a case study in Beijing international airport [J]. Advances in Earth Science, 2019, 34(8): 879-888.
杜欣儒, 路紫, 董雅晴, 等. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
38 Xu Xiaohao,Li Shanmei. Research on identification and prediction methods of air traffic congestion [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2 753-2 763.
徐肖豪, 李善梅. 空中交通拥挤的识别与预测方法研究[J]. 航空学报, 2015, 36(8): 2 753-2 763.
[1] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[2] 吴园涛, 段晓男, 沈刚, 殷建平, 张偲. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413-420.
[3] 吴殿廷, 张文新, 王彬. 国土空间规划的现实困境与突破路径[J]. 地球科学进展, 2021, 36(3): 223-232.
[4] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[5] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[6] 童磊,郑珂,苏飞. 生计脆弱性概念、分析框架与评价方法[J]. 地球科学进展, 2020, 35(2): 209-217.
[7] 葛玉娟,赵宇鸾,任红玉. 山区耕地细碎化对不同利用方式农地集约度的影响[J]. 地球科学进展, 2020, 35(2): 180-188.
[8] 陈明星,周园,郭莎莎,黄莘绒. 新型城镇化研究的意义、目标与任务[J]. 地球科学进展, 2019, 34(9): 974-983.
[9] 陈会,李阳兵,唐家发. 贵州坝子现代农业功能分布特征研究[J]. 地球科学进展, 2019, 34(9): 962-973.
[10] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[11] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[12] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向 SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[13] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
[14] 宋世雄, 刘志锋, 何春阳, 赵瑞, 任强. 城市扩展过程对自然生境影响评价的研究进展[J]. 地球科学进展, 2018, 33(10): 1094-1104.
[15] 魏彦强, 李新, 高峰, 黄春林, 宋晓谕, 王宝, 马瀚青, 王鹏龙. 联合国2030年可持续发展目标框架及中国应对策略[J]. 地球科学进展, 2018, 33(10): 1084-1093.
阅读次数
全文


摘要