1 |
Elith J, Leathwick J R. Species distribution models: Ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40(1): 677-697.
|
2 |
Anderson R P. A framework for using niche models to estimate impacts of climate change on species distributions [J]. Annals of the New York Academy of Sciences, 2013, 1 297(1): 8-28.
|
3 |
Ranc N, Santini L, Rondinini C, et al. Performance tradeoffs in target-group bias correction for species distribution models [J]. Ecography, 2017, 40: 1 076-1 087.
|
4 |
Guisan A, Thuiller W, Zimmermann N E. Habitat Suitability and Distribution Models: With Applications in R [M]. Cambridge: Cambridge University Press, 2017.
|
5 |
Qiao Huijie, Hu Junhua, Huang Jihong. basis Theoretical, directions future, and challenges for ecological niche models [J]. Science China Life Sciences, 2013, 43(11):915-927.
|
|
乔慧捷, 胡军华, 黄继红.生态位模型的理论基础、发展方向与挑战[J]. 中国科学: 生命科学, 2013, 43(11): 915-927.
|
6 |
Xu Zhonglin, Peng Huanhua, Peng Shouzhang. The development and evaluation of species distribution models [J]. Acta Ecologica Sinica,2015,35(2):557-567.
|
|
许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法 [J]. 生态学报, 2015, 35(2): 557-567.
|
7 |
Dyderski M K, Pa? S, Frelich L E, et al. How much does climate change threaten European forest tree species distributions?[J]. Global Change Biology, 2018, 24: 1 150-1 163.
|
8 |
Mainali K P, Warren D L, Dhileepan K, et al. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling [J]. Global Change Biology, 2016, 21(12): 4 464-4 480.
|
9 |
Ramirez-Villegas J, Cuesta F, Devenish C, et al. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change [J]. Journal for Nature Conservation, 2014, 22(5):391-404.
|
10 |
Guisan A, Rahbek C. SESAM—A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages [J]. Journal of Biogeography, 2011, 38(8):1 433-1 444.
|
11 |
Guo Y L, Li X, Zhao Z Z, et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios [J]. Scientific Reports, 2017, 7:46221.
|
12 |
Mccune J L. Species distribution models predict rare species occurrences despite significant effects of landscape context [J]. Journal of Applied Ecology, 2016, 53(6):1 871-1 879.
|
13 |
Guisan A, Thuiller W. Predicting species distribution: Offering more than simple habitat models [J]. Ecology Letters, 2005, 8(9):993-1 009.
|
14 |
Austin M P. Role of regression analysis in plant ecology [J]. Proceedings of the Ecological Society of Australia, 1971, 6: 63-75.
|
15 |
Joppa L N, McInerny G, Harper R, et al. Computational science Troubling trends in scientific software use[J]. Science, 2013, 340(6 134): 814-815.
|
16 |
Li X, Wang Y. Applying various algorithms for species distribution modelling [J]. Integrative Zoology, 2013, 8(2):124-135.
|
17 |
Meynard C N, Quinn J F. Predicting species distributions: A critical comparison of the most common statistical models using artificial species [J]. Journal of Biogeography, 2010, 34(8):1 455-1 469.
|
18 |
Segurado P, Araujo M B. An evaluation of methods for modelling species distributions [J]. Journal of Biogeography, 2004, 31:1 555-1 568.
|
19 |
Merow C, Wilson A M, Jetz W. Integrating occurrence data and expert maps for improved species range predictions [J]. Global Ecology and Biogeography, 2016, 26(2): 243-258.
|
20 |
Mi C, Huettmann F, Guo Y, et al. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas?Three Asian crane species models provide supporting evidence [J]. PeerJ, 2017, 5:e2849.
|
21 |
Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species' distributions from occurrence data [J]. Ecography, 2006, 29(2):129-151.
|
22 |
Barbet‐Massin M, Jiguet F, Albert C H, et al. Selecting pseudo-absences for species distribution models: How, where and how many?[J]. Methods in Ecology and Evolution, 2012, 3(2): 327-338.
|
23 |
Royle J A, Chandler R B, Yackulic C, et al. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions[J]. Methods in Ecology & Evolution, 2012, 3(3): 545-554
|
24 |
Ward G, Hastie T, Barry S, et al. Presence-only data and the EM algorithm[J]. Biometrics, 2009, 65(2): 554-563.
|
25 |
Warren D L, Matzke N J, Iglesias T L. Evaluating presence-only species distribution models with discrimination accuracy is uninformative for many applications[J]. Journal of Biogeography, 2020, 47(1): 167-180.
|
26 |
Hirzel A H, Hausser J, Chessel D, et al. Ecological niche factor analysis: How to compute habitat-suitability maps without absence data?[J]. Ecology, 2002, 83(7): 2 027-2 036.
|
27 |
Guo Yanlong, Wei Haiyan, Gu Wei, et al. Potential distributions of Sinopodophyllum hexandrum based on fuzzy matter element model [J]. Acta Ecologica Sinica, 2015, 35(3): 770-778.
|
|
郭彦龙, 卫海燕, 顾蔚,等.基于模糊物元模型的桃儿七潜在地理分布研究[J]. 生态学报, 2015, 35(3): 770-778.
|
28 |
Zhang G M, Zhu A X, Windels S K, et al. Modelling species habitat suitability from presence-only data using kernel density estimation[J]. Ecological Indicators, 2018, 93: 387-396.
|
29 |
Bean W T, Stafford R, Brashares J S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models[J]. Ecography, 2012, 35(3): 250-258.
|
30 |
Sta B, Halvorsen R, Mazzoni S, et al. Sampling bias in presence-only data used for species distribution modelling: Theory and methods for detecting sample bias and its effects on models[J]. Sommerfeltia, 2018, 38(1):1-53.
|
31 |
Busby J R. BIOCLIM—A bioclimate analysis and prediction system [J]. Plant Protection Quarterly, 1991, 61: 8-9.
|
32 |
Walker P A, Cocks K D. HABITAT: A procedure for modeling a disjoint environmental envelop for a plant or animal species [J]. Global Ecology and Biogeography Letters, 1991,1(4):108-118.
|
33 |
Carpenter G, Gillison A N, Winter J. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals [J]. Biodiversity and Conservation, 1993, 2(6):667-680.
|
34 |
Farber O, Kadmon R. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance [J]. Ecological Modelling, 2003, 160(1/2):115-130.
|
35 |
Guisan A, Edwards Jr T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene [J]. Ecological Modelling, 2002, 157(2/3): 89-100.
|
36 |
Elith J, Leathwick J. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines [J]. Diversity and Distributions, 2007, 13(3): 265-275.
|
37 |
Edwards Jr T C, Cutler D R, Zimmermann N E, et al. Effects of sample survey design on the accuracy of classification tree models in species distribution models [J]. Ecological Modelling, 2006, 199(2): 132-141.
|
38 |
Marmion M, Luoto M, Heikkinen R K, et al. The performance of state-of-the-art modelling techniques depends on geographical distribution of species [J]. Ecological Modelling, 2009, 220(24):3 512-3 520.
|
39 |
Linderman M, Liu J, Qi J, et al. Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data [J]. International Journal of Remote Sensing, 2004, 25(9): 1 685-1 700.
|
40 |
Guo Q, Kelly M, Graham C H. Support vector machines for predicting distribution of Sudden Oak Death in California [J]. Ecological Modelling, 2005, 182(1): 75-90.
|
41 |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions [J]. Ecological Modelling, 2006, 190(3/4): 231-259.
|
42 |
Lu C Y, Gu W, Dai A H, et al. Assessing habitat suitability based on Geographic Information System (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China [J]. Ecological Modelling, 2012, 242(3):105-115.
|
43 |
Zhao Z Z, Guo Y L, Wei H Y, et al. Predictions of the potential geographical distribution and quality of gynostemma pentaphyllum base on the fuzzy matter element model in China [J]. Sustainability, 2017, 9: 1 114.
|
44 |
Fukuda S. Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes) [J]. Ecological Informatics, 2011, 6(5):286-295.
|
45 |
Tantipisanuh N, Gale G A, Pollino C. Bayesian networks for habitat suitability modeling: A potential tool for conservation planning with scarce resources [J]. Ecological Applications, 2014, 24(7):1 705-1 718.
|
46 |
Randin C F, Dirnbock T, Dullinger S, et al. Are niche- based species distribution models transferable in space?[J]. Journal of Biogeography, 2010, 33(10):1 689-1 703.
|
47 |
Grenouillet G, Buisson L, Casajus N, et al. Ensemble modelling of species distribution: The effects of geographical and environmental ranges [J]. Ecography, 2011, 34(1): 9-17.
|
48 |
Buisson L, Thuiller W, Casajus N, et al. Uncertainty in ensemble forecasting of species distribution [J]. Global Change Biology, 2010, 16(4):1 145-1 157.
|
49 |
Thibaud E, Petitpierre B, Broennimann O, et al. Measuring the relative effect of factors affecting species distribution model predictions [J]. Methods in Ecology and Evolution, 2014, 5(9): 947-955.
|
50 |
Anderson R P, Gonzalez Jr I. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent [J]. Ecological Modelling, 2011, 222(15): 2 796-2 811.
|
51 |
Muscarella R, Galante P J, Soley-Guardia M, et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models [J]. Methods in Ecology and Evolution, 2014, 5(11): 1 198-1 205.
|
52 |
Qiao H J, Peterson A T, Campbell L P, et al. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios[J]. Ecography, 2016, 39(8): 805-813.
|
53 |
Hijmans R J, Phillips S, Leathwick J, et al. Dismo: Species Distribution Modeling. R package Version 1.0-15[EB/OL]. 2016. [2020-10-20]. .
URL
|
54 |
Qiao H J, Soberón J, Peterson A T. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation[J]. Methods in Ecology and Evolution, 2015, 6(10): 1 126-1 136.
|
55 |
Liu C R, White M, Newell G. Measuring and comparing the accuracy of species distribution models with presence-absence data[J]. Ecography, 2011, 34(2): 232-243.
|
56 |
Phillips S J, Elith J. POC plots: Calibrating species distribution models with presence-only data[J]. Ecology, 2010, 91(8): 2 476-2 484.
|
57 |
Lobo J M, Jiménez-Valverde A, Real R. AUC: A misleading measure of the performance of predictive distribution models[J]. Global Ecology and Biogeography, 2008, 17(2): 145-151.
|
58 |
Guillera-Arroita G, Lahoz-Monfort J J, Elith J, et al. Is my species distribution model fit for purpose? Matching data and models to applications[J]. Global Ecology and Biogeography, 2015, 24(3):276-292.
|
59 |
Liu C, Newell G, White M. On the selection of thresholds for predicting species occurrence with presence-only data[J]. Ecology and Evolution, 2016, 6(1): 337-348.
|
60 |
Naimi B, Skidmore A K, Groen T A, et al. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling[J]. Journal of Biogeography, 2011, 38(8): 1 497-1 509.
|
61 |
Naimi B, Hamm N A, Groen T A, et al. Where is positional uncertainty a problem for species distribution modelling?[J]. Ecography, 2014, 37(2): 191-203.
|
62 |
Albert C H, Yoccoz N G, Edwards T C J, et al. Sampling in ecology and evolution-bridging the gap between theory and practice[J]. Ecography, 2011, 33(6):1 028-1 037.
|
63 |
Fei S, Yu F. Quality of presence data determines species distribution model performance: A novel index to evaluate data quality[J]. Landscape Ecology, 2015, 31(1): 31-42.
|
64 |
Fick S E, Hijmans R J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37: 4 302-4 315.
|
65 |
Yang X Q, Kushwaha S P S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatodaL. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51:83-87.
|
66 |
Yan Y, Li Y, Wang W J, et al. Range shifts in response to climate change of, Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau[J]. Biological Conservation, 2017, 206:143-150.
|
67 |
Fourcade Y, Besnard A G, Secondi J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics[J]. Global Ecology and Biogeography, 2018, 27(2):245-256.
|
68 |
Wan J Z, Wang C J, Yu F H. Impacts of the spatial scale of climate data on the modeled distribution probabilities of invasive tree species throughout the world[J]. Ecological Informatics, 2016, 36:42-49.
|
69 |
Guo Y L, Li X, Zhao Z F, et al. Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China[J]. Science China-Earth Sciences, 2018, 61(11): 1 669-1 684.
|
70 |
Beale C M, Lennon J J. Incorporating uncertainty in predictive species distribution modelling[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1 586): 247-258.
|
71 |
Holzmann I, Agostini I, Dematteo K, et al. Using species distribution modeling to assess factors that determine the distribution of two parapatric howlers (Alouatta spp.) in South America[J]. International Journal of Primatology, 2014, 36(1):1-15.
|
72 |
Mellert K H, Fensterer V, Küchenhoff H, et al. Hypothesis-driven species distribution models for tree species in the Bavarian Alps[J]. Journal of Vegetation Science, 2011, 22(4):635-646.
|
73 |
Pearman P B, D'Amen M, Graham C H, et al. Within-taxon niche structure: Niche conservatism, divergence and predicted effects of climate change[J]. Ecography, 2011, 33 (6):990-1 003.
|
74 |
Pauls S U, Nowak C, Bálint M, et al. The impact of global climate change on genetic diversity within populations and species[J]. Molecular Ecology, 2013, 22(4):925-946.
|
75 |
Forester B R, Dechaine E G, Bunn A G. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions[J]. Diversity and Distributions, 2013, 19(12):1 480-1 495.
|
76 |
Scoble J, Lowe A J. A case for incorporating phylogeography and landscape genetics into species distribution modelling approaches to improve climate adaptation and conservation planning[J]. Diversity and Distributions, 2010, 16(3):343-353.
|
77 |
Medley K A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models[J]. Global Ecology and Biogeography, 2010, 19(1):122-133.
|
78 |
Václavík T, Kupfer J A, Meentemeyer R K. Accounting for multi-scale spatial autocorrelation improves performance of invasive Species Distribution Modelling (iSDM) [J]. Journal of Biogeography, 2015, 39(1):42-55.
|
79 |
Guo Y L, Li X, Zhao Z F, et al. Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China[J]. Science of the Total Environment, 2019, 648:1-11.
|
80 |
Guisan A, Tingley R, Baumgartner J B, et al. Predicting species distributions for conservation decisions[J]. Ecology Letters, 2013,16(12):1 424-1 435.
|
81 |
Rovzar C, Gillespie T W, Kawelo K. Landscape to site variations in species distribution models for endangered plants[J]. Forest Ecology and Management, 2016, 369:20-28.
|
82 |
Liu Xiaotong, Yuan Quan, Ni Jian. Research advances in modelling plant species distribution in China[J]. Chinese Journal of Plant Ecology, 2019, 43(4): 273-283.
|
|
刘晓彤, 袁泉, 倪健. 中国植物分布模拟研究现状[J]. 植物生态学报, 2019, 43(4): 273-283.
|
83 |
Li J, Chang H, Liu T, et al. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century[J]. Agricultural and Forest Meteorology, 2019, 275:243-254.
|
84 |
Guisan A, Rahbek C. SESAM—A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages[J]. Journal of Biogeography, 2011, 38(8):1 433-1 444.
|
85 |
Moor H, Hylander K, Norberg J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits[J]. Ambio, 2015, 44(1):113-126.
|
86 |
Zimmermann N E, Edwards T C, Graham C H, et al. New trends in species distribution modelling[J]. Ecography, 2010, 33(6): 985-989.
|
87 |
Patsiou T S, Conti E, Zimmermann N E, et al. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia[J]. Global Change Biology, 2014, 20(7):2 286-2 300.
|
88 |
Svenning J C, Eiserhardt W L, Normand S, et al. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems[J]. Annual Review of Ecology Evolution and Systematics, 2015, 46(1):551-572.
|
89 |
Fordham D A, Saltré F, Brown S C, et al. Why decadal to century timescale paleoclimate data is needed to explain present-day patterns of biological diversity and change[J]. Global Change Biology, 2018, 24:1 371-1 381.
|
90 |
Bakkenes M, Jrm A, Ihle F, et al. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050[J]. Global Change Biology, 2002, 8(4):390-407.
|
91 |
Searle J B. Phylogeography-the history and formation of species[J]. Integrative and Comparative Biology, 2000, 41(1):134-135.
|
92 |
Razgour O. Beyond species distribution modeling: A landscape genetics approach to investigating range shifts under future climate change[J]. Ecological Informatics, 2015, 30:250-256.
|
93 |
Storfer A, Murphy M A, Evans J S, et al. Putting the "landscape" in landscape genetics[J]. Heredity, 2007, 98(3):128-142.
|
94 |
Anderson R P. When and how should biotic interactions be considered in models of species niches and distributions[J]. Journal of Biogeograph, 2017, 44: 8-17.
|
95 |
Meier E S, Kienast F, Pearman P B, et al. Biotic and abiotic variables show little redundancy in explaining tree species distributions[J]. Ecography, 2010, 33: 1 038-1 048.
|
96 |
Heikkinen R K, Luoto M, Virkkala R, et al. Biotic interactions improve prediction of boreal bird distributions at macro-scales[J]. Global Ecology and Biogeography, 2010, 16(6):754-763.
|
97 |
Meier E S, Edwards T C, Kienast F, et al. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvaticaL[J]. Journal of Biogeography, 2011, 38(2):371-382.
|
98 |
Strubbe D, Matthysen E, Graham C H. Assessing the potential impact of invasive ring‐necked parakeets Psittacula krameri on native nuthatches Sitta europeae in Belgium[J]. Journal of Applied Ecology, 2010, 47(3):549-557.
|
99 |
Araújo C B, Marcondes-Machado L O, Costa G C, et al. The importance of biotic interactions in species distribution models: A test of Eltonian noise hypothesis using parrots[J]. Journal of Biogeography, 2014, 41(3):513-523.
|
100 |
Guo H D. Big Earth data: A new frontier in Earth and information sciences[J]. Big Earth Data, 2017, 1: 4-20.
|
101 |
Bethanya B, Erica F. Can remote sensing of land cover improve species distribution modelling[J]. Journal of Biogeography, 2010, 35(7):1 158-1 159.
|
102 |
Estes L D, Reillo P R, Mwangi A G, et al. Remote sensing of structural complexity indices for habitat and species distribution modeling[J]. Remote Sensing of Environment, 2010, 114(4):792-804.
|
103 |
Cord A, Klein D, Dech S. Remote sensing time series for modeling invasive species distribution: A case study of Tamarix spp. in the US and Mexico[C]// International Congress on Environmental Modelling & Software Modelling for Environments Sake. 2010.
|
104 |
Engler R, Waser L T, Zimmermann N E, et al. Combining ensemble modeling and remote sensing for mapping individual: Tree species at high spatial resolution[J]. Forest Ecology & Management, 2013, 310(1):64-73.
|
105 |
Vega G C. Pertierra L R, Olalla-Tárraga M á. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling[J]. Scientific Data, 2017, 4:170078. DOI: 10.1038/sdata.2017.78.
doi: 10.1038/sdata.2017.78
|
106 |
Qiao H J, Lin C T, Jiang Z G, et al. Marble algorithm: A solution to estimating ecological niches from presence-only records[J]. Scientific Reports, 2015, 5: 14232.
|
107 |
Qiao H J, Peterson A T, Ji L Q, et al. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling[J]. Methods in Ecology and Evolution, 2017, 8(12): 1 804-1 812.
|
108 |
Zhu G P, Peterson A T. Do consensus models outperform individual models?Transferability evaluations of diverse modeling approaches for an invasive moth[J]. Biological Invasions, 2017, 19(9): 2 519-2 532.
|
109 |
Guo Q, Liu Y. ModEco: An integrated software package for ecological niche modeling[J]. Ecography, 2010, 33(4): 637-642.
|
110 |
Qiao H J, Lin C T, Ji L Q, et al. mMWeb—An online platform for employing multiple ecological niche modeling algorithms[J]. PloS One, 2012, 7(8): e43327.
|
111 |
Qiao H J, Peterson A T, Campbell L P, et al. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios[J]. Ecography, 2016, 39(8):805-813.
|
112 |
Duan R Y, Kong X Q, Huang M Y, et al. Sdmvspecies: A software for creating virtual species for species distribution modelling[J]. Ecography, 2015, 38(1): 108-110.
|
113 |
Feng X, Park D S, Walker C, et al. A checklist for maximizing reproducibility of ecological niche models[J]. Nature Ecology and Evolution, 2019, 3(10):1 382-1 395.
|
114 |
Liu C, Newell G, White M. The effect of sample size on the accuracy of species distribution models: Considering both presences and pseudo-absences or background sites[J]. Ecography, 2019, 42(3): 535-548.
|
115 |
Liu C, White M, Newell G. Detecting outliers in species distribution data[J]. Journal of Biogeography, 2018, 45(1):164-176.
|
116 |
Qiao H J, Feng X, Escobar L E, et al. An evaluation of transferability of ecological niche models[J]. Ecography, 2019, 42(3): 521-534.
|