地球科学进展 ›› 2020, Vol. 35 ›› Issue (12): 1306 -1320. doi: 10.11867/j.issn.1001-8166.2020.105

所属专题: 地球系统科学大会纪念专刊

水生关键带有机碳循环过程:从分子水平到全球尺度 上一篇    

黄、东海陆架泥质区自生黄铁矿成因及其控制因素
常鑫 1( ),张明宇 1,谷玉 1,王厚杰 1, 2,刘喜停 1, 2( )   
  1. 1.中国海洋大学海洋地球科学学院,海底科学与探测技术教育部重点实验室,山东 青岛 266100
    2.青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室,山东 青岛 266237
  • 收稿日期:2020-10-16 修回日期:2020-11-20 出版日期:2020-12-10
  • 通讯作者: 刘喜停 E-mail:changxin@stu.ouc.edu.cn;liuxiting@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目“东海内陆架沉积物中自生黄铁矿的形成机制和对环境的响应”(41976053);青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室创新团队建设项目“东海泥质区自生黄铁矿对末次冰消期以来沉积环境演化的响应机制”(MGQNLM-TD201901)

Formation Mechanism and Controlling Factors of Authigenic Pyrite in Mud Sediments on the Shelf of the Yellow Sea and the East China Sea

Xin Chang 1( ),Mingyu Zhang 1,Yu Gu 1,Houjie Wang 1, 2,Xiting Liu 1, 2( )   

  1. 1.College of Marine Geosciences,Key Laboratory of Submarine Geosciences and Prospecting Technology,Ocean University of China,Qingdao 266100,China
    2.Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China
  • Received:2020-10-16 Revised:2020-11-20 Online:2020-12-10 Published:2021-02-09
  • Contact: Xiting Liu E-mail:changxin@stu.ouc.edu.cn;liuxiting@ouc.edu.cn
  • About author:Chang Xin (1997-), male, Qingdao City, Shandong Province, Master student. Research areas include marine sedimentology. E-mail: changxin@stu.ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Formation mechanism of authigenic pyrite in the sediments of the East China Sea inner shelf and its response to environmental evolution”(41976053);The Laboratory for Marine Geology, Qingdao Pilot National Laboratory for Marine Science and Technology “Authigenic pyrite in East China Sea mud area constrained by the evolution of sedimentary environment since the last deglaciation”(MGQNLM-TD201901)

海洋自生黄铁矿的形成过程与有机质矿化过程密切相关,是构成全球C-S-Fe生物地球化学循环的重要一环。黄、东海陆架在全新世高水位期以来,广泛发育泥质沉积区,其中赋存大量自生黄铁矿,为研究其成因及其控制因素提供了契机。平面上,黄铁矿的分布与细粒泥质沉积伴生,因为细粒沉积物相对富集有机质且沉积环境稳定,有利于微生物硫酸盐还原的进行。黄、东海沉积动力、有机质来源和海洋生产力的区别导致黄铁矿生成与埋藏的差异,进而引起相关指标(例如C/S值)的不同。垂向上,黄铁矿的含量一般随着深度的增加而升高,说明随着埋深的增大,孔隙水中溶解氧耗尽后有利于硫酸盐还原的进行;黄铁矿硫同位素随着深度的增加而加重(富集34S),这可能与成岩系统的封闭性有关,也可能与甲烷厌氧氧化驱动的硫酸盐还原有关。另外,沉积速率通过影响有机质的埋藏、孔隙水和海水的联通效率以及硫酸盐—甲烷转换带的位置进而控制黄铁矿的含量及同位素组成。黄、东海陆架泥质区在沉积动力和沉积过程方面积累了大量优秀研究成果,可在此基础上,结合多硫同位素、原位微区测试等先进实验方法,发掘自生黄铁矿在探讨现代海洋C-S-Fe循环及深时海洋化学演化等重大科学问题的潜在价值。

The formation process of marine authigenic pyrite (FeS2) is closely related to the organic mineralization process, representing an important part of the global C-S-Fe biogeochemical cycle. Since the Holocene highstand of sea level, the shelves of the Yellow Sea and the East China Sea have developed mud deposits extensively, in which a large number of authigenic pyrites are present, which provides an opportunity to study their genesis and controlling factors. In terms of spatial distribution, the distribution of pyrite is accompanied by fine-grained mud sediments, because fine-grained sediments are relatively rich in organic matter, and the relatively stable depositional environment is conducive to the progress of microbial sulfate reduction. The differences in sedimentary dynamics, organic matter sources and marine productivity in the Yellow Sea and the East China Sea lead to differences in the formation and burial of pyrite, which in turn cause differences in related indicators (such as the C/S ratio). In the vertical direction, the content of pyrite generally increases with the increase of depth, indicating that as the depth of burial increases, the dissolved oxygen in the pore water is depleted, which is beneficial to the sulfate reduction; the sulfur isotope of pyrite becomes isotopically heavy with the depth (enrichment of 34S), which may be related to the openness of the diagenetic system, or the sulfate reduction driven by anaerobic oxidation of methane. In addition, the sedimentation rate controls the content and isotopic composition of pyrite via affecting the burial of organic matter, the efficiency of communication between pore water and seawater, and the location of the sulfate- methane transition zone. The mud areas of the shelves of the Yellow Sea and the East China Sea have accumulated a large number of excellent research results in sedimentary dynamics and sedimentary processes. On this basis, combined with advanced analyzing methods such as multi-sulfur isotopes, in-situ elemental on single pyrite crystal, the potential value of pyrite could be excavated to deal with major scientific issues such as the modern ocean C-S-Fe cycle and deep-time ocean chemical evolution.

中图分类号: 

图1 沉积黄铁矿与全球C-S-Fe循环的关系(据参考文献[ 4 ]修改)
Fig.1 The relationship between sedimentary pyrite and global C-S-Fe cycle (modified after reference [ 4 ])
图2 黄、东海泥质区(黄色部分)分布与洋流情况(据参考文献[ 32 , 33 ]修改)
YDW:长江冲淡水;ZMCC:浙闽沿岸流;YSWC:黄海暖流;YSCC:黄海沿岸流;YSMW:黄海混合水;TWC:对马暖流;TWWC:台湾暖流;KC:黑潮
Fig.2 Distribution of mud sediment (yellow) and ocean current system of the Yellow Sea and the East China Sea (modified after references [32,33])
YDW: Yangtze River Diluted Water; ZMCC: Zhe-Min Coastal Current; YSWC: Yellow Sea Warm Current;YSCC: Yellow Sea Coastal Current; YSMW: Yellow Sea Mixing Water; TWC: Tsushima Warm Current;TWWC: Taiwan Warm Current; KC: Kuroshio Current
图3 黄海自生黄铁矿分布及同位素特征(据参考文献[ 31 , 54 , 55 ]修改)
(a)黄海黄铁矿含量等值线平面分布图;(b)H-106孔黄铁矿硫同位素 δ 34S值;YSWC:黄海暖流;YSCC:黄海沿岸流
Fig.3 Distribution and isotopic characteristics of authigenic pyrite in the Yellow Sea (modified after references [31,54,55])
(a) Distribution of pyrite content in mud sediment of the Yellow Sea; (b) Sulfur isotopic compositions of core H-106 derived from the Yellow Sea.YSWC:Yellow Sea Warm Current;YSCC:Yellow Sea Coastal Current
图4 杭州湾YS6钻孔孔隙水剖面(据参考文献[ 59 ]修改)
阴影部分指示SMTZ、硫酸盐还原生成硫化带,钻孔位置见图6
Fig.4 Porewater profile of core YS6 from the Hangzhou Bay (modified after reference [ 59 ])
The shaded part indicates the SMTZ,where sulfide zone is formed by sulfate reduction. The core location is presented in Fig. 6
图5 EC2005钻孔中产出的自生黄铁矿集合体和自生石膏(据参考文献[ 5 , 20 , 21 ]修改)
(a)充填在有孔虫中的生物状自生黄铁矿;(b)管状和他形聚集体;(c)~(e)莓状黄铁矿及表面有溶解坑的八面体微晶;(f)硫化物氧化形成的自生石膏
Fig.5 Authigenic pyrite aggregates and authigenic gypsum of core EC2005 (modified after references [5,20,21])
(a) Authigenic pyrite growing in foraminifera; (b) Tubular and irregular authigenic pyrite aggregates; (c)~(e) Pyrite framboid and octahedral microcrystals with dissolution pits on the surface; (f) Authigenic gypsum caused by sulfide oxidation
图6 东海内陆架自生黄铁矿硫同位素特征(据参考文献[ 20 , 47 ]修改)
(a)东海内陆架泥质区中部分钻孔分布图;(b) EC2005孔中黄铁矿硫同位素与沉积速率的关系;(c)DH5-1、DH7-1中黄铁矿的 δ 34S; δS CRS指铬还原法测量硫同位素, δS Pyr指手工挑选黄铁矿测量硫同位素;YDW:长江冲淡水;ZMCC:浙闽沿岸流;TWC:对马暖流
Fig.6 Isotopic characteristics of authigenic pyrite in the inner shelf of the East China Sea (modified after references [20,47])
(a) Core sites from the inner shelf of the East China Sea mentioned in the text;(b) Correlation between pyrite sulfur isotope and sedimentation rate in core EC2005;(c) δ 34S values of pyrite from cores DH5-1 and DH7-1, δS CRS refers to the measurement of sulfur isotope by chromium reduction method, δS Pyr means sulfur isotope values of hand-picked macroscopic pyrites. YDW:Yangtze River Diluted Water;ZMCC:Zhe-Min Coastal Current;TWC:Tsushima Warm Current
图7 东海陆架沉积物硫酸盐还原速率和黄铁矿硫埋藏速率与有机碳埋藏速率之间的关系 82
Fig.7 The linear relationship between sulfate reduction rate,pyrite sulfur burial rate and organic carbon burial rate in the East China Sea continental shelf sediments[ 82 ]
图8 成岩系统的开放程度与黄铁矿相关地球化学参数之间的关系[ 66 ]
Fig.8 Openness of the diagenetic system and its control on the geochemical parameters related to pyrite[ 66 ]
图9 体积磁化率反映的SMTZ受沉积速率影响迁移模式图[ 98 ]
Fig.9 Migration of the SMTZ responding to changes in sedimentation rates indicated by magnetic susceptibility[ 98 ]
1 Liu Xiting,Li Anchun,Ma Zhixin,et al. Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite [J]. Acta Sedimentologica Sinica,2020,38(1): 124-137.
刘喜停,李安春,马志鑫,等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报,2020,38(1): 124-137.
2 Fike D A,Bradley A S,Rose C V. Rethinking the ancient sulfur cycle [J]. Annual Review of Earth and Planetary Sciences,2015,43(1): 593-622.
3 J?rgensen B B. Mineralization of organic matter in the sea bed—The role of sulphate reduction[J]. Nature,1982,296: 643-645.
4 Rickard D,Mussmann M,Steadman J A. Sedimentary sulfides [J]. Elements,2017,13: 117-122.
5 Liu X T,Li A C,Dong J,et al. Nonevaporative origin for gypsum in mud sediments from the East China Sea shelf [J]. Marine Chemistry,2018,205: 90-97.
6 J?rgensen B B,Findlay A J,Pellerin A. The biogeochemical sulfur cycle of marine sediments [J]. Frontiers in Microbiology,2019,10 (849). DOI:10.3389/fmicb.2019.00849.
doi: 10.3389/fmicb.2019.00849    
7 Wang Kunshan,Shi Xuefa,Li Zhen,et al. Records of heavy mineral and authigenous pyrite in core DGKS9617 from the East China Sea [J]. Marine Geology & Quaternary Geology,2005,25(4): 41-45.
王昆山,石学法,李珍,等. 东海DGKS9617岩心重矿物及自生黄铁矿记录[J]. 海洋地质与第四纪地质,2005,25(4): 41-45.
8 Liu J,Zhu M X,Yang G P,et al. Quick sulfide buffering in inner shelf sediments of the East China Sea impacted by eutrophication [J]. Environmental Earth Sciences,2013,71(1): 465-473.
9 Allen H E,Fu G M,Deng B L. Analysis of Acid‐Volatile Sulfide (AVS) and Simultaneously Extracted Metals (SEM) for the estimation of potential toxicity in aquatic sediments [J]. Environmental Toxicology & Chemistry,1993,12: 1 441-1 453.
10 Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews,2007,107(2): 486-513.
11 K?lling M,Bouimetarhan I,Bowles M W,et al. Consistent CO2 release by pyrite oxidation on continental shelves prior to glacial terminations [J]. Nature Geoscience,2019,12(11): 929-934.
12 Feng Dong,Gong Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(6): 1 047-1 056.
冯东,宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报,2019,38(6): 1 047-1 056.
13 Gong S G,Peng Y B,Bao H M,et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane [J]. Earth and Planetary Science Letters,2018,504: 13-20.
14 Liu J R,Pellerin A,Izon G,et al. The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron [J]. Earth and Planetary Science Letters,2020,536: 116165.
15 Wang Qi,Yang Zuosheng. Authigenic pyrite in the surface sediments of the southern Huanghai Sea [J]. Oceanologia et Limnologia Sinica,1981,12(1): 25-32.
王琦,杨作升. 黄海南部表层沉积中的自生黄铁矿[J]. 海洋与湖沼,1981,12(1): 25-32.
16 Wang Xianlan,Ma Kejian,Chen Jianlin,et al. Detrital minerals in the surface sediments of East China Sea shelf and their geological significance [J]. Marine Geology & Quaternary Geology,1984,4(3): 43-55.
王先兰,马克俭,陈建林,等. 东海海底表层沉积物中的碎屑矿物及其地质意义[J]. 海洋地质与第四纪地质,1984,4(3): 43-55.
17 Wang Xianlan,Ma Kejian,Chen Jianlin,et al. Study on the characteristics of clastic minerals in the East China Sea [J]. Science in China (Series B),1985(5): 474-482.
王先兰,马克俭,陈建林,等. 东海碎屑矿物特征的研究[J]. 中国科学:B辑,1985(5): 474-482.
18 Li Anchun,Chen Lirong,Shen Shunxi. Study on sulfur isotopes of authigenic pyrite of core H-106 from South Yellow Sea [J]. Chinese Science Bulletin,1991,36(12): 928-930.
李安春,陈丽蓉,申顺喜. 南黄海H-106岩柱中自生黄铁矿的硫同位素研究[J]. 科学通报,1991,36(12): 928-930.
19 Shen Shunxi. Extend progress in study of sedimentology in the South Yellow Sea continental shelf [J]. Marine Sciences,1993(5): 24-28.
申顺喜. 南黄海陆架沉积学研究[J]. 海洋科学,1993(5): 24-28.
20 Liu X T,Li A C,Fike D A,et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation [J]. Marine Geology,2020,429: 106307.
21 Liu X T,Fike D,Li A C,et al. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene [J]. Chemical Geology,2019,505: 66-75.
22 Li G X,Li P,Liu Y,et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum [J]. Earth-Science Reviews,2014,139: 390-405.
23 Liu J X,Mei X,Shi X F,et al. Formation and preservation of greigite (Fe3S4) in a thick sediment layer from the central South Yellow Sea [J]. Geophysical Journal International,2018,213: 135-146.
24 Liu J,Saito Y,Kong X H,et al. Sedimentary record of environmental evolution off the Yangtze River estuary,East China Sea,during the last ~13,000 years,with special reference to the influence of the Yellow River on the Yangtze River Delta during the last 600 years [J]. Quaternary Science Reviews,2010,29: 2 424-2 438.
25 Liu X T,Li A C,Dong J,et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt,East China Sea: Implications for the development of the mud depocenter [J]. Journal of Asian Earth Sciences,2018,151: 1-15.
26 Gao Shu. Holocene sedimentary systems over the Bohai,Yellow and East China Sea region: Recent progress in the study of process-product relationships [J]. Acta Sedimentologica Sinica,2013,31(5): 845-855.
高抒. 中国东部陆架全新世沉积体系:过程—产物关系研究进展评述[J]. 沉积学报,2013,31(5): 845-855.
27 Li Anchun,Zhang Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea [J]. Oceanologia et Limnologia Sinica,2020,51(4): 705-727.
李安春,张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼,2020,51(4): 705-727.
28 Yang Shouye,Wei Gangjian,Shi Xuefa. Geochemical approaches of tracing sourceto-sink sediment processes and environmental changes at the East Asian continental margin [J]. Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(5): 902-910,884.
杨守业,韦刚健,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015,34(5): 902-910,884.
29 Saito Y,Yang Z S. Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea [C]//Proceedings of International Symposium on Global Fluxs of Carbon and its Related Substances in the Coastal Sea-Ocean Atmosphere System.Sapporo: Hokkaido University,1994: 7-12.
30 Lan Xianhong,Zhang Xunhua,Zhang Zhixun. Material sources and transportation of sediments in the southern Yellow Sea [J]. Transactions of Oceanology and Limnology,2005(4): 53-60.
蓝先洪,张训华,张志珣. 南黄海沉积物的物质来源及运移研究[J]. 海洋湖沼通报,2005(4): 53-60.
31 Li Anchun,Chen Lirong,Shen Shunxi,et al. Study on the authigenic pyrite in the core H-106 from the central South Yellow Sea [J]. Studia Marina Sinica,1993,34: 79-86,236.
李安春,陈丽蓉,申顺喜,等. 南黄海中部H-106柱状沉积物中自生黄铁矿的研究[J]. 海洋科学集刊,1993,34: 79-86,236.
32 Yang S Y,Wang Z B,Dou Y G,et al. A review of sedimentation since the last glacial maximum on the continental shelf of eastern China [J]. Geological Society,London,Memoirs,2014,41(1): 293-303.
33 Zhao B,Yao P,Bianchid T S,et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas [J]. Chemical Geology,2018,495: 104-117.
34 Yang Z S,Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology,2007,240: 169-176.
35 Wang Libo,Yang Zuosheng,Zhao Xiaohui,et al. Sedimentary characteristics of core YE-2 from the central mud area in the South Yellow Sea during last 8 400 years and its interspace coarse layers [J]. Marine Geology & Quaternary Geology,2009,29(5): 1-11.
王利波,杨作升,赵晓辉,等. 南黄海中部泥质区YE-2孔8.4kaBP来的沉积特征[J]. 海洋地质与第四纪地质,2009,29(5): 1-11.
36 Zhao Yiyang,Yongahn Park,Qin Yunshan,et al. Recent development in the southern Yellow Sea sedimentology—The China-Korea Joint Investigation [J]. Marine Sciences,1998,22(1): 34-37.
赵一阳,朴龙安,秦蕴珊,等. 南黄海沉积学研究新进展——中韩联合调查[J]. 海洋科学,1998,22(1): 34-37.
37 Shi Xuefa,Shen Shunxi,Yi Hi-il,et al. Modern sedimentary environment and dynamic sedimentary system of the South Yellow Sea [J]. Chinese Science Bulletin,2001,46(): 1-6.
石学法,申顺喜,Yi Hi-il,等. 南黄海现代沉积环境及动力沉积体系[J]. 科学通报,2001,46(): 1-6.
38 Shen Shunxi, Chen Lirong, Gao Liang,et al. Discovery of Holocene cyclonic eddy sediment and pathway sediment in the southern Yellow Sea [J]. Oceanologia et Limnologia Sinica,1993,24(6): 563-570.
申顺喜,陈丽蓉,高良,等. 南黄海冷涡沉积和通道沉积的发现[J]. 海洋与湖沼,1993,24(6): 563-570.
39 Li W J,Wang Z Y,Huang H J. Indication of size distribution of suspended particulate matter for sediment transport in the South Yellow Sea [J]. Estuarine,Coastal and Shelf Science,2020,235: 106619.
40 Ji X L,Liu G M,Gao S,et al. Comparison of air-sea CO2 flux and biological productivity in the South China Sea,East China Sea,and Yellow Sea: A three-dimensional physical-biogeochemical modeling study [J]. Acta Oceanologica Sinica,2017,36(12): 1-10.
41 Dong L X,Guan W B,Chen Q,et al. Sediment transport in the Yellow Sea and East China Sea [J]. Estuarine,Coastal and Shelf Science,2011,93: 248-258.
42 Milliman J D,Farnsworth K L. River Discharge to the Coastal Acean: A Global Synthesis [M]. Cambridge: Cambridge University Press,2011.
43 Lin S,Hsieh I J,Huang K M,et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments [J]. Chemical Geology,2002,182: 377-394.
44 Liu J P,Li A C,Xu K H,et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea [J]. Continental Shelf Research,2006,26: 2 141-2 156.
45 Liu J P,Xu K H,Li A C,et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology,2007,85: 208-224.
46 Liu Shengfa,Shi Xuefa,Liu Yanguang,et al. Sedimentation rate of mud area in the East China Sea inner continental shelf [J]. Marine Geology & Quaternary Geology,2009,29(6): 1-7.
刘升发,石学法,刘焱光,等. 东海内陆架泥质区沉积速率[J]. 海洋地质与第四纪地质,2009,29(6): 1-7.
47 Zhu M X,Chen K K,Yang G P,et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical Mobile Mud Belts (MMBs) [J]. Journal of Geophysical Research Biogeoences,2016,121: 2 811-2 828.
48 Kang X M,Liu S M,Zhang G L. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea [J]. Acta Oceanologica Sinica,2014,33(9): 100-108.
49 Chen Qing. Study on authigenic pyrites in sediments of the South Huanghai Sea [J]. Acta Geologica Sinica,1981(3): 232-246.
陈庆. 南黄海沉积物中自生黄铁矿的研究[J]. 地质学报,1981(3): 232-246.
50 Lu Kai,Qin Yachao,Wang Zhongbo,et al. Heavy mineral provinces of the surface sediments in central-southern East China Sea and implications for provenance [J]. Marine Geology Frontiers,2019,35(8): 20-26.
陆凯,秦亚超,王中波,等. 东海中南部海域表层沉积物碎屑重矿物组合分区及其物源分析[J]. 海洋地质前沿,2019,35(8): 20-26.
51 Zhang Kaidi,Li Anchun,Dong Jiang,et al. Detrital mineral distributions in surface sediments of the East China Sea: Implications for sediment provenance and sedimentary environment [J]. Acta Sedimentologica Sinica,2016,34(5): 902-911.
张凯棣,李安春,董江,等. 东海表层沉积物碎屑矿物组合分布特征及其物源环境指示[J]. 沉积学报,2016,34(5): 902-911.
52 Shen Shunxi,Chen Lirong,Xu Wenqiang. Mineral composition and their distribution patterns in the sediments of the Huanghai Sea [J]. Oceanologia et Limnologia Sinica,1984,15(3): 240-250.
申顺喜,陈丽蓉,徐文强. 黄海沉积物中的矿物组合及其分布规律的研究[J]. 海洋与湖沼,1984,15(3): 240-250.
53 Wang Kunshan,Shi Xuefa,Lin Zhenhong. Assemblages,provinces and provenances of heavy minerals on the shelf of the southern Yellow Sea and northern East China Sea [J]. Advances in Marine Science,2003,21(1): 31-40.
王昆山,石学法,林振宏. 南黄海和东海北部陆架重矿物组合分区及来源[J]. 海洋科学进展,2003,21(1): 31-40.
54 Zhang Yao,Han Zongzhu,Ai Lina,et al. Characteristics and significance of heavy minerals in the surface sediments of the Holocene mud of the Yellow Sea [J]. Periodical of Ocean University of China,2018,48(11): 108-118.
张尧,韩宗珠,艾丽娜,等. 黄海全新世泥质体表层沉积物重矿物特征及其指示意义[J]. 中国海洋大学学报,2018,48(11): 108-118.
55 Peng Hanchang. Discussion on the sedimentary environment of the western North Yellow Sea based on the distribution law and the related factors of authigenic pyrites [J]. Geological Review,1979,25(2): 53-57.
彭汉昌. 从自生黄铁矿的分布规律和相关因素探讨北黄海西部海域的沉积环境[J]. 地质论评,1979,25(2): 53-57.
56 Lin S,Huang K M,Chen S K. Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment [J]. Deep-Sea Research Part I: Oceanographic Research Papers,2002,49: 1 837-1 852.
57 Kang Xuming,Gu Li,Liu Sumei. Distributions and influence factors of Acid Volatile Sulfide and pyrite in the Bohai Sea and Yellow Sea in spring [J]. Marine Environmental Science,2014,33(1): 1-7.
康绪明,古丽,刘素美. 春季黄渤海沉积物中酸可挥发性硫与黄铁矿的分布特征及影响因素[J]. 海洋环境科学,2014,33(1): 1-7.
58 Pu X Q,Li F C,Zhong S J,et al. Acid volatile sulfides in sediments of South Yellow Sea [C]//2008 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai: IEEE,2008. DOI: 10.1109/ICBBE.2008.259.
doi: 10.1109/ICBBE.2008.259    
59 He Xingliang,Tan Liju,Duan Xiaoyong,et al. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay [J]. Marine Geology & Quaternary Geology,2020,40(3): 51-60.
贺行良,谭丽菊,段晓勇,等. 杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质,2020,40(3): 51-60.
60 Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance [J]. American Journal of Science,1982,282: 451-473.
61 Kao S J,Hsu S C,Horng C S,et al. Carbon-Sulfur-Iron relationships in the rapidly accumulating marine sediments off southwestern Taiwan [J]. The Geochemical Society Special Publications,2004,9: 441-457.
62 Ge C,Zhang W G,Dong C Y,et al. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea,China [J]. Journal of Geophysical Research: Solid Earth,2015,120: 4 720-4 733.
63 Zhao Kuihuan. Primary study of authigenic pyrite in the sediment of the Huanghai Sea [J]. Journal of Oceanography of Huanghai & Bohai Seas,1987,5(1): 21-30.
赵奎寰. 黄海自生黄铁矿的初步研究[J]. 黄渤海海洋,1987,5(1): 21-30.
64 Chu Fengyou,Chen Lirong. Morphological features of authigenic pyrite from South Yellow Sea sediments [J]. Oceanologia et Limnologia Sinica,1994,25(5): 461-467,573-574.
初凤友,陈丽蓉. 南黄海沉积物中自生黄铁矿的形态标型研究[J]. 海洋与湖沼,1994,25(5): 461-467,573-574.
65 Chu Fengyou,Chen Lirong,Shen Shunxi,et al. Origin and environmental significance of authigenic pyrite from the South Yellow (Huanghai) Sea sediments [J]. Oceanologia et Limnologia Sinica,1995,26(3): 227-233.
初凤友,陈丽蓉,申顺喜,等. 南黄海自生黄铁矿成因及其环境指示意义[J]. 海洋与湖沼,1995,26(3): 227-233.
66 Duan Weimin,Chen Lirong. Formation history of pyrite in the early diagenesis in the Yellow Sea and East China Sea [J]. Science in China (Series B),1993,23(5): 545-552.
段伟民,陈丽蓉. 黄、东海早期成岩过程中黄铁矿的形成史[J]. 中国科学:B辑,1993,23(5): 545-552.
67 Rickard D. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,522: 62-75.
68 Wilkin R T,Barnes H L,Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions [J]. Geochimica et Cosmochimica Acta,1996,60(20): 3 897-3 912.
69 Hu Yongliang,Wang Wei,Zhou Chuanming. Morphologic and isotopic characteristics of sedimentary pyrite: A case study from deepwater facies,Ediacaran lantian formation in South China [J]. Acta Sedimentologica Sinica,2020,38(1): 138-149.
胡永亮,王伟,周传明. 沉积地层中的黄铁矿形态及同位素特征初探——以华南埃迪卡拉纪深水相地层为例[J]. 沉积学报,2020,38(1): 138-149.
70 Chang Xiaolin,Huang Yuangeng,Chen Zhongqiang,et al. The microscopic analysis of pyrite framboids and application in Paleo?oceanography [J]. Acta Sedimentologica Sinica,2020,38(1): 150-165.
常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165.
71 Yang Xueying,Gong Yiming. Pyrite framboid: Indicator of environments and life [J]. Earth Science—Journal of China University of Geosciences,2011,36(4): 643-658.
杨雪英,龚一鸣. 莓状黄铁矿:环境与生命的示踪计[J]. 地球科学:中国地质大学学报,2011,36(4): 643-658.
72 Wang Q W,Morse J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology [J]. Marine Chemistry,1996,52: 99-121.
73 Tostevin R,Turchyn A V,Farquhar J,et al. Multiple sulfur isotope constraints on the modern sulfur cycle [J]. Earth and Planetary Science Letters,2014,396: 14-21.
74 Canfield D E. Biogeochemistry of sulfur isotopes [J]. Reviews in Mineralogy and Geochemistry,2001,43: 607-636.
75 Deusner C,Holler T,Arnold G L,et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration [J]. Earth and Planetary Science Letters,2014,399: 61-73.
76 Berner R A. Sedimentary pyrite formation [J]. American Journal of Science,1970,268: 1-23.
77 Berner R A. Sedimentary pyrite formation: An update [J]. Geochimica et Cosmochimica Acta,1984,48(4): 605-615.
78 Yuan Yingru,Chen Guanqiu. Mineral assembly characteristics of the sediments and its distribution pattern in the northwestern part of South Huanghai Sea [J]. Oceanologia et Limnologia Sinica,1981,12(6): 512-521.
袁迎如,陈冠球. 南黄海西北部沉积物中矿物组合特征及其分布规律[J]. 海洋与湖沼,1981,12(6): 512-521.
79 Bao Gende,Wang Yifan. Authigenic iron sulfide in sediments from Changjiang River mouth and near-shore [J]. Transactions of Oceanology and Limnology,1983(4): 51-58.
鲍根德,汪依凡. 东海陆架沉积物中自生硫化铁的初步研究[J]. 海洋湖沼通报,1983(4): 51-58.
80 Zhu M X,Shi X N,Yang G P,et al. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: Constraints from solid-phase sulfur speciation and stable sulfur isotope [J]. Continental Shelf Research,2013,54: 24-36.
81 Zhang Mingyu,Chang Xin,Hu Limin,et al. The source,transport and burial process of organic carbon in the inner shelf of the East China Sea and its deposition record [J]. Acta Sedimentologica Sinica,2020.DOI:10.14027/j.issn.1000-0550.2020.080.
doi: 10.14027/j.issn.1000-0550.2020.080    
张明宇,常鑫,胡利民,等. 东海内陆架有机碳的来源、输运与埋藏过程及其沉积记录[J]. 沉积学报,2020. DOI: 10.14027/j.issn.1000-0550.2020.080.
doi: 10.14027/j.issn.1000-0550.2020.080    
82 Lin S,Huang K M,Chen S K. Organic carbon deposition and its control on iron sufide formation of the southern East China Sea continental shelf sediments [J]. Continental Shelf Research,2000,20: 619-635.
83 Xiong Linfang,Shi Xuefa,Deng Yu,et al. Distribution characteristics of the organic matter in the surficial sediments on the shelf of the southern Yellow Sea and the northern East China Sea [J]. Marine Science Bulletin,2013,32(3): 281-286.
熊林芳,石学法,邓煜,等. 南黄海、东海北部陆架区表层沉积物有机质分布特征[J]. 海洋通报,2013,32(3): 281-286.
84 Zhu M X,Hao X C,Shi X N,et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf [J]. Applied Geochemistry,2012,27: 892-905.
85 Gomes M L,Hurtgen M T. Sulfur isotope systematics of a euxinic,low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans [J]. Geology,2013,41(6): 663-666.
86 Wu Xueting,Liu Lihua,Wu Nengyou,et al. Geochemistry of early diagenesis in marine sediments: Research progress [J]. Marine Geology Frontiers,2015,31(12): 17-26.
吴雪停,刘丽华,吴能友,等. 海洋沉积物中早期成岩作用地球化学研究进展[J]. 海洋地质前沿,2015,31(12): 17-26.
87 Zhang Yonghua,Wu Zijun. Sedimentary organic carbon mineralization and its contribution to the marine carbon cycle in the marginal seas [J]. Advances in Earth Science,2019,34(2): 202-209.
张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展,2019,34(2): 202-209.
88 Wang Meng,Cai Feng,Li Qing,et al. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at core A,site 79 of the middle Okinawa Trough [J]. Science China: Earth Sciences,2015,45(12): 1 819-1 828.
王蒙,蔡峰,李清,等. 冲绳海槽79站位A孔甲烷渗漏影响下的自生黄铁矿及其硫同位素特征[J]. 中国科学:地球科学,2015,45(12): 1 819-1 828.
89 Lin Z Y,Sun X M,Peckmann J,et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea [J]. Chemical Geology,2016,440: 26-41.
90 Zhang X,Lin C M,Li Y L,et al. Sealing mechanism for cap beds of shallow-biogenic gas reservoirs in the Qiantang River incised valley,China [J]. Continental Shelf Research,2013,69: 155-167.
91 Chen Y F,Deng B,Zhang J. Shallow gas in the Holocene mud wedge along the inner East China Sea shelf [J]. Marine and Petroleum Geology,2020,114: 104233.
92 Tyson R V. Sedimentation rate,dilution,preservation and total organic carbon: Some results of a modelling study [J]. Organic Geochemistry,2001,32: 333-339.
93 Middelburg J J. Organic carbon,sulphur,and iron in recent semi-euxinic sediments of Kau Bay,Indonesia [J]. Geochimica et Cosmochimica Acta,1991,55(3): 815-828.
94 Lang X G,Tang W B,Ma H R,et al. Local environmental variation obscures the interpretation of pyrite sulfur isotope records [J]. Earth and Planetary Science Letters,2020,533: 116056.
95 Pasquier V,Sansjofre P,Rabineau M,et al. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes [J]. Proceedings of the National Academy of Sciences,2017,114(23): 5 941-5 945.
96 Ma K,Sun Z L,Zhu M X,et al. Characterizing geochemistry of organic carbon,sulfur,and iron in sediments of the middle Okinawa Trough since the last glacial maximum [J]. Deep Sea Research I: Oceanographic Research Papers,2020. DOI: 10.1016/j.dsr.2020.103452.
doi: 10.1016/j.dsr.2020.103452    
97 Leavitt W D,Halevy I,Bradley A S,et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record [J]. Proceedings of the National Academy of Sciences,2013,110(28): 11 244-11 249.
98 Zheng Y,Zheng H B,Kissel C,et al. Sedimentation rate control on diagenesis,East China Sea sediments [J]. Physics of the Earth and Planetary Interiors,2011,187: 301-309.
[1] 李向东. 复合流沉积特征的谱系研究现状及其理论框架[J]. 地球科学进展, 2021, 36(4): 375-389.
[2] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[3] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[4] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[5] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[6] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[7] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11): 1111-1119.
[8] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[9] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[10] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[11] 陈小梅, 闫俊华, 林媚珍, 褚国伟, 吴建平, 张德强. 南亚热带森林植被恢复演替中土壤有机碳组分及其稳定[J]. 地球科学进展, 2016, 31(1): 86-93.
[12] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[13] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[14] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[15] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
阅读次数
全文


摘要