地球科学进展 ›› 2016, Vol. 31 ›› Issue (1): 86 -93.

上一篇    下一篇

南亚热带森林植被恢复演替中土壤有机碳组分及其稳定
陈小梅 1( ), 闫俊华 2, 林媚珍 1, 褚国伟 2, 吴建平 2, 张德强 2,,A; *( )   
  1. 1.广州大学地理科学学院,广东 广州 510006
    2.中国科学院华南植物园,广东 广州510650
  • 出版日期:2016-01-20
  • 通讯作者: 张德强 E-mail:xmchen@scib.ac.cn;zhangdeq@scib.ac.cn

Variations in the Fractions and Stabilization of Soil Organic Carbon with Forest Succession in Southern China

Xiaomei Chen 1( ), Junhua Yan 2, Meizhen Lin 1, Guowei Chu 2, Jianping Wu 2, Deqiang Zhang 2( )   

  1. 1.School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China
    2.South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
  • Online:2016-01-20 Published:2016-01-10
  • About author:

    First author: Chen Xiaomei(1985-), female, Nan'an City, Fujian Province, Lecture. Research areas include responses of forest ecosystems to global changes. E-mail: xmchen@scib.ac.cn

    Corresponding author: Zhang Deqiang (1963-), male, Huizhou City, Guangdong Province, Professor. Research areas include the relationship between global change and ecosystems. E-mail: zhangdeq@scib.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Responses of soil organic carbon fractions to precipitation patterns change in a subtropical zonal forest in southern China" (No.31400415);Education Department of Guangdong Province "Mechanism of soil carbon accumulation in subtropical forests along an urban-to-rural gradient in Southern China"(No.2014KQNCX110)

以鼎湖山森林植被恢复演替过程中的松林(初期),混交林(中期)和季风林(后期)为研究对象,通过测定其土壤总有机碳(TOC),易氧化有机碳(ROC)和不易氧化有机碳(NROC)及凋落物13C-NMR分析,以期阐明森林植被恢复演替过程中土壤有机碳组分变化规律及其原因.结果表明:①3个森林土壤ROC含量差异不显著;由松林向季风林演替过程中,ROC占TOC的比例下降.松林新鲜凋落物层的烷氧基碳含量(57.03%)高于季风林(49.10%)和混交林(54.50%).②3个森林土壤NROC含量差异显著,大小顺序为:季风林>混交林>松林.混交林和季风林凋落物半分解层和已分解层的惰性指数明显高于松林.TOC趋势与NROC一致.南亚热带森林由松林向季风林恢复演替过程中,土壤有机碳的稳定性增加,惰性有机碳的持续积累可能是季风林和混交林土壤TOC积累的一个重要过程.

Soil Organic Carbon (SOC) fractions play a critical role in the stabilization of SOC. It is essential to clarify the variations in SOC fractions along forest succession for predicting soil carbon (C) source/sink capacity as forest develops. In the present study, we collected and analyzed soil samples in Total Organic Carbon (TOC) content and the concentration of its Readily Oxidizable Organic Carbon (ROC) and Non-Readily Oxidizable Organic Carbon (NROC) fractions in a Pine Forest (PF), a pine and broadleaf Mixed Forest (MF), and an old-growth monsoon evergreen Broadleaf Forest (BF) in the subtropical China. The three forests represent different successional stages of forest in southern China, with the PF being at the early, the MF at the middle and the BF at the climax stages, respectively. To clarify the reasons for why SOC fractions changed with forest succession, litterfalls in these forests were also collected to assay C functions by means of 13C Nuclear Magnetic Resonance (NMR) analysis. Results showed that although there was no significant difference in the content of ROC among the three forests, the ratio of ROC to TOC in the PF was significantly higher than that in both of the BF and MF. This was likely due to the higher content of O-alkyl C in fresh litter in the PF than in the other two forests. Unlike ROC, however, NROC content was the highest in the BF, followed by the MF and then PF, which could be attributed to the lower recalcitrance index in the partly-decomposed and decomposed litterfall layers in the PF than in the MF and PF. Finally, TOC concentration was significantly the highest in the climax BF, the lowest in the youngest PF, and in between in the MF. Our results suggest that the accumulation of NROC, which is the recalcitrant fraction of SOC, may be the major reason for why forests at the middle and late stages (i.e., the MF and BF, respectively) maintain higher TOC content and Organic Carbon (OC) stabilization in soils.

中图分类号: 

表 1 鼎湖山森林植被恢复演替序列的样地特征
Table 1 Vegetation characteristics and soil properties of three forests at Dinghushan
图 1 森林植被恢复演替序列的土壤总有机碳,易氧化有机碳和不易氧化有机碳含量
图中误差棒代表标准差,每幅图中不同字母代表在相同土壤层次中不同森林差异显著
Fig. 1 The soil TOC,ROC and NROC in three forests
Bars are means and error bars are standard deviations. Means with different letters are significantly different among the forest types in each soil layer in each panel
表2 森林植被恢复演替序列的土壤易氧化有机碳(ROC)占总有机碳(TOC)比例(单位:%)
Table 2 The percentages of ROC to TOC at three forest types (unit:%)
图2 森林植被恢复演替序列的凋落物官能团碳相对含量(单位:%)
L: 未分解层, Fresh litter layer;F:半分解层, Fermentation layer;H:已分解层, Humus layer
Fig. 2 Distribution of C functional groups in the forest floor layers among the three forests(unit:%)
表3 鼎湖山森林植被恢复演替序列的凋落物惰性指数(单位:%)
Table 3 The recalcitrance index in the forest floor of three forests(unit:%)
[1] Food and Agriculture Organization of the United Nations: State of the World's Forests2012[R/OL]. ROME, 2012[2015-07-01]. http://www.fao.org/docrep/016/i3010e/i3010e00.htm.
[2] He Jinsheng.Carbon cycling of Chinese forests: From carbon storage, dynamics to models[J]. Science in China (Series C),2012, 42(3): 252-254.
[贺金生. 中国森林生态系统的碳循环:从储量,动态到模式[J]. 中国科学:C辑, 2012, 42(3): 252-254.]
[3] Luo Y Q, Weng E S.Dynamic disequilibrium of the terrestrial carbon cycle under global change[J]. Trends in Ecology & Evolution,2011, 26(2): 96-104.
[4] Liu Shirong, Wang Hui, Luan Junwei.A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5 437-5 448.
[刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5 437-5 448.]
[5] Reichstein M, Bahn M, Ciais P, et al.Climate extremes and the carbon cycle[J]. Nature, 2013, 500(7 462): 287-295.
[6] Lützow M V, Kögel-Knabner I, Ekschmitt K, et al.SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms[J]. Soil Biology and Biochemistry, 2007, 39(9): 2 183-2 207.
[7] Bradford M A, Fierer N, Reynolds J F.Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils[J]. Functional Ecology, 2008, 22(6): 964-974.
[8] Dungait J A J, Hopkins D W, Gregory A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6): 1 781-1 796.
[9] Rovira P, Jorba M, Romanyà J.Active and passive organic matter fractions in Mediterranean forest soils[J]. Biology and Fertility of Soils, 2010, 46(4): 355-369.
[10] Jagadamma S, Lal R.Integrating physical and chemical methods for isolating stable soil organic carbon[J]. Geoderma, 2010, 158: 322-330,doi:10.1016/j.geoderma.2010.05.04.
[11] Bruun S, Ågren G I, Christensen B T, et al.Measuring and modeling continuous quality distributions of soil organic matter[J]. Biogeosciences,2010, 7: 27-41.
[12] Lopez-Sangil, Rovira P.Sequential chemical extractions of the mineral-associated soil organic matter: An integrated approach for the fractionation of organ-mineral complexes[J]. Soil Biology and Biochemistry, 2013, 62(3): 57-67.
[13] Zhou G Y, Zhou C Y, Liu S G, et al.Belowground carbon balance and carbon accumulation rate in the successional series of monsoon evergreen broad-leaved forest[J].Science in China (Series D), 2006, 49(3): 311-321.
[14] Sun Baowei, Yang Xiaodong, Zhang Zhihao, et al.Relationships between soil carbon pool and vegetation carbon return through succession of evergreen broad-leaved forests in Tiantong region[J].Chinese Journal of Plant Ecology,2013, 37(9): 803-810.
[孙宝伟, 杨晓东, 张志浩, 等. 浙江天童常绿阔叶林演替过程中土壤碳库与植被碳归还的关系[J]. 植物生态学报2013, 37(9): 803-810.]
[15] Fan Yuexin, Yang Yusheng, Yang Zhijie, et al.Seasonal dynamics and content of soil labile organic carbon of mid-subtropcial evergreen broadleaved forest during natural seccession[J]. Acta Ecologica Sinica, 2013, 33(18): 5 751-5 759.
[范跃新,杨玉盛,杨智杰,等. 中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态[J]. 生态学报, 2013, 33(18): 5 751-5 759.]
[16] Sun Weijun, Fang Xi, Xiang Wenhua, et al.Active pools of soil organic carbon in subtropical forests at different successional stages in Central Hunan' China[J]. Acta Ecologica Sinica, 2013,33(14):7 765-7 773.
[孙伟军,方晰,项文化,等. 湘中丘陵区不同演替阶段森林土壤活性有机碳库特征[J]. 生态学报, 2013, 33(14): 7 765-7 773.]
[17] Ma Wenji.Effect of Succession on Soil Carbon Pool of Evergreen Broad-Leaved Forests in Ningbo, Zhejiang[D].Shanghai: East China Normal University, 2015.
[马文济. 浙江宁波常绿阔叶林演替对土壤碳库结构的影响[D].上海:华东师范大学,2015.]
[18] Six J, Elliott E T, Paustian K, et al.Aggregation and soil organic matter accumulation in cultivated and native grassland soil[J].Soil Science Society of America Journal, 1998, 62(5): 1 367-1 377.
[19] Compton J E, Boone R D.Long-term impacts of agriculture on soil carbon and nitrogen in new England forests[J].Ecology, 2000, 81(8): 2 314-2 330.
[20] Pan Genxing, Lu Haifei, Li Lianqing, et al.Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management[J].Advances in Earth Science,2015,30(8): 940-951.
[潘根兴,路海飞,李恋卿,等. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J].地球科学进展, 2015, 30(8): 940-951.]
[21] Ostertag R, Marín-Spiotta E, Silver W L, et al.Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico[J]. Ecosystems, 2008, 11: 701-714, doi:10.1007/s10021-0028-9152-1.
[22]Peng Shaolin, Wang Bosun. Forest succession at Dinghushan, Guangdong, China[22]Peng Shaolin, Wang Bosun. Forest succession at Dinghushan, Guangdong, China[J]. Botanical Journal of South China, 1993, 2(Trial issue I): 34-42.
[彭少麟, 王伯荪. 鼎湖山森林群落演替之研究[J]. 热带亚热带植物学报, 1993, 2(试刊I): 34-42.]
[23] Zhang Deqiang, Ye Wanhui, Yu Qingfa, et al.The litter-fall of representative forest of successional series in Dinghushan[J]. Acta Ecologica Sinica,2000, 20(6): 938-944.
[24] Huang W J, Liu J X, Zhou G Y, et al.Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China[J]. Biogeosciences, 2011, 8: 1 901-1 910,doi:10.5194/bg-8-1901-2011.
[25] Liu Guangsong.Soil Physical and Chemical Analysis, Description of Soil Profiles[M]. Beijing: Standard Press of China, 1996.
[刘光松. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996.]
[26] Blair G J, Lefroy R B, Lisle L.Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural system[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1 459-1 466.
[27] Zhang T, Li Y F, Chang S X, et al.Converting paddy field to Lei bamboo (Phyllostachys praecox) stands affected soil nutrient concentrations, labile organic carbon pools, and organic carbon chemical compositions[J].Plant Soil, 2013, 367(1/2): 249-261.
[28] Tirol-Padre A, Ladha J K.Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon[J]. Soil Science Society of America Journal, 2004, 68(3): 969-978.
[29] Yang Y S, Guo J F, Chen G S, et al.Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China[J]. Plant Soil, 2009, 323(1/2): 153-162.
[30] Gabriel C, Kellman L.Investigating the role of moisture as an environmental constraint in the decomposition of shallow and deep mineral soil organic matter of a temperature coniferous soil[J]. Soil Biology and Biochemistry, 2004, 68: 373-384,doi:10.1016/j.soilbio.2013.10.009.
[31] Deng Qi, Liu Shizhong, Liu Juxiu, et al.Contributions of litter-fall to soil respiration and its affecting factors in southern subtropical forests of China[J]. Advances in Earth Science,2007, 22(9): 976-986.
[邓琦, 刘世忠, 刘菊秀, 等. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J]. 地球科学进展, 2007, 22(9): 976-986.]
[32] Liu Manqiang, Chen Xiaoyun, Guo Juhua, et al, Soil biota on soil organic carbon stabilization[J]. Advances in Earth Science,2007, 22(2):152-158.
[刘满强, 陈小云, 郭菊华, 等. 土壤生物对土壤有机碳稳定性的影响[J]. 地球科学进展,2007, 22(2): 152-158.]
[33] Zhou Li, Li Baoguo, Zhou Guangsheng.Advances in controlling factors of soil organic carbon[J]. Advances in Earth Science, 2005, 20(1): 99-105.
[周莉,李保国,周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105.]
[34] Alarcn-Gutiérrez E, Floch C, Ziarelli C, et al. Characterization of a Mediterranean litter by 13C CPMAS NMR: Relationships between litter depth, enzyme activities and temperature[J]. European Journal of Soil Science,2008, 59(3):486-495.
[35] Ono K, Hiradate S, Morita S, et al.Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan[J]. Plant Soil,2011, 338(1): 171-181.
[36] Lü Maokui, Xie Jinsheng, Zhou Yanxiang, et al.Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area[J]. Chinese Journal of Applied Ecology,2014, 25(1): 37-44.
[吕茂奎, 谢锦升, 周艳翔, 等. 红壤侵蚀地马尾松人工林恢复演替过程中土壤非保护性有机碳的变化[J]. 应用生态学报, 2014, 25(1): 37-44.]
[37] Zhang D Q, Sun X M, Zhou G Y, et al.Seasonal dynamics of soil CO2 effluxes with responses to environmental factors in lower subtropical forest of China[J]. Science in China (Series D),2006, 49(Suppl.): 139-149.
[38] Martin P H, Sherman R E, Fahey T J.Forty years of tropical forest recovery from agriculture: Structure and floristic of secondary and old-growth riparian forests in the Dominican Republic[J].Biotropica,2004, 36: 297-317.
[1] 邓琦,刘世忠,刘菊秀,孟泽,张德强. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J]. 地球科学进展, 2007, 22(9): 976-986.
阅读次数
全文


摘要