地球科学进展 ›› 2015, Vol. 30 ›› Issue (11): 1185 -1197. doi: 10.11867/j.issn.1001-8166.2015.11.1185

综述与评述    下一篇

显生宙海相碳酸盐高 δ 13C时期的古海洋学
黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江   
  1. 成都理工大学油气藏地质及开发工程国家重点实验室,沉积地质研究院,四川 成都610059
  • 收稿日期:2015-09-07 修回日期:2015-11-05 出版日期:2015-11-20
  • 基金资助:
    国家自然科学基金项目“川渝地区早三叠世海相碳酸盐岩的碳同位素研究”(编号:41272130)资助

The Paleoceanography during the Time with High δ 13C of Phanerozoic marine carbonates

Huang Sijing, Li Xiaoning, Wu Wenhui, Zhang Meng, Hu Zuowei, Liu Sibing, Huang Keke, Zhong Yijiang   

  1. State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
  • Received:2015-09-07 Revised:2015-11-05 Online:2015-11-20 Published:2015-11-20
  • About author:First author: Huang Sijing, male,(1949- ), borninRonchang of Chongqing, professor, engaged in teaching and study of sedimentology. E-mail: hsj@cdut.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China “Carbon isotope composition of the Lower Triassic marine carbonates in Sichuan and Chongqing area” (No.41272130)
海相碳酸盐的碳同位素组成记录了地球发展与演化过程中的若干重大事件,作为古生代—中新生代转折时期的石炭纪—三叠纪初具有非常高的 13C值,以此作为主线,综合研究了相应时间段的氧、锶同位素组成与变化、碳酸盐沉积盆地面积与变化,以此探讨海相碳酸盐碳同位素组成与海平面变化、有机碳库和碳酸盐碳库碳存量的变化、大气和海洋系统中CO 2含量的变化,以及地球生态系统的长周期变化之间的联系。研究表明:①显生宙的碳同位素演化趋势中, 13C值大于3‰的时间基本上都集中在石炭纪—三叠纪初,但三叠纪初表现为 13C值的高频率大幅度波动,石炭纪—二叠纪则表现为长时间持续稳定的高 13C值,显示该时间段有机碳库存量的大幅度增加,相应时间段较高的 18O值显示有机碳高速埋藏时间间隔中地球系统经历了长时间的变冷和冰室气候条件,说明有机碳高速埋藏、气候变冷、大气 pCO 2的降低和 pO 2升高之间存在有机的联系;② 13C高值时间间隔中大气CO 2被绿色植物过度消耗,海水被迫不断向大气输送CO 2以达到平衡,但全球气候变冷导致海水数量减少和水柱压力降低又使得海水对CO 2的溶解能力降低以及海相碳酸盐碳库碳存量的减少,从泥盆纪、石炭纪到二叠纪,碳酸盐沉积速度显著降低,全球碳酸盐沉积盆地面积显著减小,到中、晚二叠世,一些碳酸盐沉积被硅质沉积取代,甚至包括一些浅水台地,这可能会导致一些钙质无脊椎动物数量的减少,这也说明二叠纪广泛的硅质沉积是一种全球事件;③显生宙碳酸盐锶同位素演化趋势表明,晚二叠世海水 87Sr/ 86Sr急剧降低,并在二叠纪—三叠纪界线附近达到极小值,显示晚古生代结束时幔源锶的迅速加入,并伴随深部CO 2对大气和海洋系统的补充,但与该过程有关的广泛的火山活动和地球表面温度的升高进一步加速了二叠纪末的生物群体绝灭;④全球气候变冷及相应的大陆冰盖体积的增加,北非与劳伦大陆的拼合是石炭纪—二叠纪全球海平面降低的主要原因,但该时间间隔有机碳库存量大幅度增加所消耗的水可能也是海平面降低的重要原因之一,降低幅度可能达到数十米的范围;⑤二叠纪末全球生物群体绝灭是地球系统调整的一种必然,晚古生代有机碳长时间高速埋藏,全球海水数量减少,海水对CO 2溶解量降低,钙质无脊椎动物难以生存,最终在古生代结束前通过广泛的岩浆事件从深部向海洋和大气中补充CO 2以调整地球系统碳库存量的不平衡,但短时间的热事件和地球表面温度的升高加剧了生物的群体绝灭与更替。
Carbon isotopic composition of marine carbonates is a record for various important geological events in the process of earth development and evolution. The carbonates of Carboniferous, Permian and Triassic, as the transition from Paleozoic to Mesozoic-Cenozoic have very high 13C value. Taking this as the main point, and combined with the oxygen, strontium isotopic composition in carbonates, distribution of carbonate basin area through geologic time, the correlation of carbon isotopic composition of marine carbonates to sea level change, organic carbon burial flux, exchange of CO 2 content in atmosphere and ocean, and long cycle evolution of the earth ecosystems were approached. The results are shown as follows: ①The interval of 13C >3‰ during Phanerozoic was concentrated in Carboniferous, Permian and the beginning of Triassic, but the beginning of Triassic was characterized by higher frequency and larger fluctuations in 13C value during a short time, whereas the Carboniferous-Permian presented a continuously stable high 13C value, indicating a larger amount of organic carbon accumulation in this time interval. Relatively high 18O values during this time was also observed, showing a long time of glaciations and cold climate, which suggest a connection among rapid organic carbon burial, cold climate, as well as pCO 2 and pO 2 states of atmosphere. ②The over consumption of atmosphere CO 2 by green plants during the time with high 13C of seawater forced CO 2 being transferred from ocean to atmosphere for the balance, but the decrease in the seawater amount and water column pressure caused by the global cooling could weaken dissolution capacity of CO 2 in seawater and carbon storage of marine carbonates, and also reduce the carbonate sedimentary rate and decrease the carbonate basin area globally from Devonian to Carboniferous and Permian. During the middle-late Permian carbonate was widely replaced by siliceous sediments even though in shallow carbonate platform, which resulted in the decrease of marine invertebrates, suggesting the Permian chert event should be global. ③The Phanerozoic 87Sr/ 86Sr trend of seawater showed a sharp fall in Permian and drop to a minimum at the end of the Permian, indicting input of strontium from the submarine hydrothermal systems (mantle flux). Such process should accompany with a supplement of CO 2 from deep earth to atmosphere and ocean system, but the process associated with widespread volcanism and rises of earth’s surface temperature pricked up the mass extinction during the time of end Permian. ④Cold climate and increase of continental icecap volume, the amalgamation of northern Africa and Laurentia continentals were the main reasons responsible for the sea level drop, but the water consumption result from the significantly increased accumulation of organic carbon should also be one of the reasons for the sea level drop on the order of tens of meters. ⑤The mass extinction at the end Permian was an inevitable event in the process of earth system adjustment. It was difficult for marine invertebrates to survive because of the continuously rapid burial of organic carbon, and of the decrease of sea water amount and its dissolution ability to CO 2. At last, at the end of Paleozoic, the supplement of CO 2 to atmosphere and ocean by widely magma activities resulted in a high temperature of earth surface and intensified mass extinction.

中图分类号: 

[1] Veizer J, Ala D, Azmy K, et al. 87 Sr/ 86 Sr, δ 13 C and δ 18 O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 59-88.
[2] Gradstein F M, Ogg J G, Schmitz M, et al. Geologic Time Scale 2012[M]. Netherlands: Elsevier, 2012.
[3] Jin Zhenkui, Yu Kuanhong, Pan Yi, et al. Global distribution of phanerozoic carbonates and controlling factors[J]. Geoscience, 2013, 27(3): 637-643.[金振奎, 余宽宏, 潘怡, 等. 全球显生宙碳酸盐岩时空分布规律及其控制因素[J]. 现代地质, 2013, 27(3): 637-643.]
[4] Harland W B, Armstrong R L, Cox A V, et al. A Geologic Time Scale[M]. Cambridge: Cambridge University Press, 1990.
[5] Livingstone D A. Chemical Composition of Rivers and Lakes[R].Washington: Geological Survey Professional Papers, 1963: 41-44.
[6] Mason B. Principles of Geochemistry (3rd)[M]. New York: John Wiley and Sons Inc., 1966: 329.
[7] Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J].Chemical Geology, 1999, 161(1/3): 181-198.
[8] Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with application to carbonate diagenesis[J].Geochimica et Cosmochimica Acta, 1990, 54(11):3 123-3 138.
[9] Banner J L. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis[J].Sedimentology, 1995, 42(5): 805-824.
[10] Jacobsen S, Kaufman A J. The Sr, C and O evolution of Neoproterozoic seawater[J].Chemical Geology, 1999, 161(1):37-57.
[11] Horacek M, Brandner R, Abart R. Carbon isotope record of the P/T boundary and the Lower Triassic in the southern Alps: Evidence for rapid changes in storage of organic carbon[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2):347-354.
[12] Wang Guoqing, Xia Wenchen. The variation of isotopes (C,O) and the organism extinction event across the P/T boundary in Ziyun section, Guizhou Province[J].Earth Science Frontiers, 2000,7(4):339-344.[王国庆, 夏文臣. 贵州紫云剖面P/T界面附近碳氧同位素的变化及生物绝灭事件[J]. 地学前缘, 2000,7(4):339-344.]
[13] Sun Yadong, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the early Triassic greenhouse[J].Science, 2012,338(6 105):366-370.
[14] Tong Jinnan, Qiu Haiou, Zhao Laishi, et al. Lower Triassic inorganic carbon isotope excursion in Chaohu, Anhui Province, China[J]. Journal of China University of Geoscience, 2002,13(2):98-106.
[15] Tong Jinnan, Zuo Jingxun, Chen Z Q. Early Triassic carbon isotope excursions from South China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction[J].Geological Journal, 2007, 42(3/4):371-389.
[16] Huang Sijing, Huang Keke, Lü Jie, et al. Carbon isotopic composition of Early Triassic marine carbonates, Eastern Sichuan Basin, China[J]. Sciences in China (Series D),2012,55(12):2 026-2 038.
[17] Zuo Jingxun, Tong Jinnan, Qiu Haiou, et al. Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze region, South China[J].Science in China (Series D),2006,49(3):225-241.
[18] Cao Changqun, Wang Wei, Jin Yugan. Carbon isotope excursion across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China[J].Chinese Science Bulletin, 2002, 47(13):1 125-1 129.
[19] Payne J L, Lehrmann D J, Wei J, et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction[J].Science, 2004, 305(5 683):506-509.
[20] Payne J L, Summers M, Rego B L. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: Implications for tempo and mode of biotic recovery from the end-Permian mass extinction[J]. Paleobiology, 2011, 37(3):409-425.
[21] Meyer K M, Yu M, Jost A B, et al. δ 13 C evidence that high primary productivity delayed recovery from end-Permian mass extinction[J].Earth and Planetary Science Letters, 2011, 302(3/4): 378-384.
[22] Chen Jinshi, Shao Maorong, Huo Weiguo, et al. Carbon isotope of carbonate strata at Permian-Triassic boundary in Changxing, Zhejiang[J].Scientia Geologica Sinica, 1984, 1: 88-93.[陈锦石, 邵茂茸, 霍卫国, 等. 浙江长兴二叠系和三叠系界限地层的碳同位素[J]. 地质科学, 1984, 1: 88-93.]
[23] Huang Sijing. Carbon isotopes of Permian and Permian-Triassic boundary in upper Yangtze platform and the mass extinction[J].Geochimica, 1994,23(1):60-68.[黄思静. 上扬子二叠系—三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件[J]. 地球化学,1994,23(1):60-68.]
[24] Wang Wei, Shen Shuzhong, Zhu Zili. Carbon isotopes at the Permian-Triassic boundary section of Selong, Tibet, China and their significance[J].Chinese Science Bulletin, 1997,42(4):406-409.[王伟, 沈树忠, 朱自力. 中国西藏色龙二叠系—三叠系界线剖面的碳同位素特征及其意义[J]. 科学通报,1997,42(4):406-409.]
[25] Holser W T, Magaritz M. Events near the Permian-Triassic boundary[J].Modern Geology, 1987, 11(2):155-180.
[26] Magarita M, Bar R, Baud A, et al. The carbon isotope shift at the Permian-Triassic boundary in the Southern Alps is gradual[J].Nature, 1988, 331(6 154):337-389.
[27] Korte C, Kozur H W, Veizer J. δ 13 C and δ 18 O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(3/4):287-306.
[28] Huang Sijing, Zhou Shaohua. Carbon and strontium isotopes of Paleozoic marine carbonates in Upper Yangtze platform, Southwest China[J].Acta Geologica Sinica, 1997, 71(3):282-292.
[29] Huang Keke, Huang Sijing, Lan Yefang, et al. Review of the carbon isotope of early triassic carbonates[J].Advances in Earth Science, 2013, 28(3): 357-365.[黄可可, 黄思静, 兰叶芳, 等. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展, 2013, 28(3): 357-365.]
[30] Zhu Youhua, Luo Hui, Cai Huawei, et al. Stratigraphic division of the early and middle Triassic at the Xiejiacao section in Guang’an Sichuan[J].Journal of Stratigraphy, 2012, 36(4): 784-791.[祝幼华, 罗辉, 蔡华伟, 等. 四川广安谢家槽海相早中三叠世地层划分[J]. 地层学杂志,2012,36(4):784-791.]
[31] International Commission on Stratigraphy. International Chronostratigraphic Chart[Z/OL].2015. http://www.stratigraphy.org.
[32] Weng Jintao. The effect of carbonate rocks on global carbon cycle[J].Advances in Earth Science, 1995,10(2):154-158.[翁金桃. 碳酸盐岩在全球碳循环过程中的作用[J]. 地球科学进展,1995,10(2):154-158.]
[33] Niu Xingtang. Relationship between paleo-glaciation development and coal accumulation[J].Coal Geology & Exploration, 1975,(2):28-33.[牛兴堂. 古冰川发育与聚煤作用的关系[J]. 煤田地质与勘探,1975,(2):28-33.]
[34] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle-A test of our knowledge of Earth as a system[J].Science, 2000,290(5 490):291-296.
[35] Hu Deliang, translated. Southern winds help stash Earth’s carbon dioxide[J].Advances in Climate Change Research, 2010, 6(5): 390.[胡德良,译.南半球的风有助于存储地球上的CO 2 [J].气候变化研究进展,2010, 6(5): 390.]
[36] Beauchamp B, Boud A. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(1/2):37-63.
[37] Murchey B L, Jones D L. Amid-Permian chert event: Widespread deposition of biogenetic siliceous sediments in coastal, island arc and oceanic basins[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1/2):161-174.
[38] Liu Xinyu, Yan Jiaxin. Nodular chert of the Permian Chihsia Formation from south China and its geological implications[J]. Acta Sedimentologica Sinica, 2007, 25(5): 730-736.[刘新宇, 颜佳新. 华南地区二叠纪栖霞组燧石结核成因研究及其地质意义[J].沉积学报, 2007, 25(5): 730-736.]
[39] Yang Rui, Li Hong, Liu Yiqun, et al. Origin of nodular cherts in limestones in Middle Permian Qixia Formation,Chaohu,Anhui Province[J].Geoscience, 2014,28(3):501-511.[杨锐, 李红, 柳益群, 等. 安徽巢湖地区中二叠统栖霞组灰岩中燧石成因[J]. 现代地质, 2014,28(3):501-511.]
[40] Tian Yang, Zhao Xiaoming, Niu Zhijun, et al. Petrogenesis and sedimentary environment of Permian Wujiaping Formation siliceous rocks in Lichuan, Southwestern Hubei[J].Acta Sedimentologica Sinica,2013, 31(4): 590-599.[田洋, 赵小明, 牛志军, 等. 鄂西南利川二叠纪吴家坪组硅质岩成因及沉积环境[J]. 沉积学报, 2013, 31(4): 590-599.]
[41] Huang Hua, Wang Guozhi, Wang Yingjun, et al. Geochemical characteristics of the permian chert in the Jiangnan orogenic belt and its geological implications[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 567-573.[黄华, 王国芝, 王英军, 等. 江南造山带内二叠系硅质岩的地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 2013, 32(5):567-573.]
[42] Cheng Cheng, Li Shuangying, Zhao Daqian, et al. Geochemical characteristics of the middle-upper Permian bedded cherts in the northern margin of the Yangtze block and its response to the evolution of paleogeography and paleo-ocean[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1):155-166.[程成, 李双应, 赵大千, 等. 扬子地台北缘中上二叠统层状硅质岩的地球化学特征及其对古地理古海洋演化的响应[J]. 矿物岩石地球化学通报, 2015, 34(1):155-166.]
[43] Qiu Weiting, Gu Hongxin. Sedimentary environments of the chert (siliceous rocks) from the Lower Permian Gufeng formation in Northeastern Sichuan[J].Sedimentary Facies and Palaeogeography, 1991,(6):1-8.[邱威挺, 古鸿信. 试论川东北地区下二叠统孤峰组燧石硅质岩的沉积环境[J]. 岩相古地理, 1991,(6):1-8.]
[44] Qiu Zhen, Wang Qingchen. Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Xiang-Qian-Gui region[J].Acta Petrologica Sinica, 2010,26(12):3 612-3 628.[邱振, 王清晨. 湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景[J]. 岩石学报, 2010,26(12):3 612-3 628.]
[45] Li Hongjing, Xie Xinong, Zhou Lian, et al. Petrogenesis and sedimentary environment of the Permian cherts in the Yangtze region[J].Petroleum Geology & Experiment, 2009, 31(6):564-569.[李红敬, 解习农, 周炼, 等. 扬子地区二叠系硅质岩成因分析及沉积环境研究[J]. 石油实验地质, 2009, 31(6):564-569.]
[46] Lin Liangbiao, Chen Hongde, Zhu Lidong. Geochemical characteristics of silicalites from Wujiaping Formation in Shizhu, Chongqing[J].Journal of Mineralogy and Petrology,2010,30(3):52-58.[林良彪, 陈洪德, 朱利东. 重庆石柱吴家坪组硅质岩地球化学特征[J]. 矿物岩石, 2010,30(3):52-58.]
[47] Yao Xu, Zhou Yaoqi, Li Su, et al. Research status and advances in chert and Permian chert event[J].Advances in Earth Science, 2013, 28(11): 1 189-1 200.[姚旭, 周瑶琪, 李素, 等. 硅质岩与二叠纪硅质沉积事件研究现状及进展[J]. 地球科学进展, 2013, 28(11): 1 189-1 200.]
[48] Huang Sijing, Qing Hairuo, Huang Peipei, et al. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China[J].Science in China (Series D),2008,51(4):528-539.
[49] Luo Zhili, Yong Ziquan, Liu Shugen, et al. Divergent role of Emei Tafrongeny on Yangtse palaeoslab and Tarim palaeoslab and its significance in geoscience[J].Xinjiang Petroleum Geology, 2004, 25(1):1-7.[罗志立, 雍自权, 刘树根,等.“峨眉地裂运动”对扬子古板块和塔里木古板块的离散作用及其地学意义[J]. 新疆石油地质,2004,25(1):1-7.]
[50] Zhou Yiping, Ren Youliang. Origin and significance of some tonteins in coal bed of Xuanwei formation, Eastern Yunnan[J].Yunnan Geology, 1983, 2(1): 38-46.[周义平, 任友谅. 滇东上二叠统宣威组煤层中某些夹砰(Tonteins)的成因及其地质意义[J]. 云南地质, 1983,2(1): 38-46.]
[51] Erwin D H. The Great Paleozoic Crisis[M]. New York: Columbia University Press, 1993.
[52] Hallam A. Mass Extinction and Their Aftermath[M]. London: Oxford University Press, 1997:94-141.
[53] Tait J, Schatz M, Bachtadse V, et al. Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes[C]//London: Geological Society Speciall Publications,2000,179:21-34.
[54] Li Tong. Chemical element abundances in the Earth and it’s major shells[J].Geochimica, 1976,(3):167-174.[黎彤. 化学元素的地球丰度[J].地球化学,1976,(3):167-174.]
[1] 张英杰,王龙. 显生宙一级层序的银河年旋回响应:重要的进展与争论[J]. 地球科学进展, 2020, 35(3): 275-285.
[2] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[3] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[4] 李琦, 宋然然, 匡冬琴, 卢绪涛, 李小春. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展, 2016, 31(3): 225-235.
[5] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[6] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[7] 王江海, 孙贤贤, 徐小明, 吴酬飞, 彭娟, 袁建平. 海洋碳封存技术:现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25.
[8] 胡作维, 李云, 李北康, 黄思静, 韩信. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37-49.
[9] 史斗,刘文汇,郑军卫. 深层气理论分析和深层气潜势研究[J]. 地球科学进展, 2003, 18(2): 236-244.
阅读次数
全文


摘要