[1] Veizer J, Ala D, Azmy K, et al. 87 Sr/ 86 Sr, δ 13 C and δ 18 O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 59-88.
[2] Gradstein F M, Ogg J G, Schmitz M, et al. Geologic Time Scale 2012[M]. Netherlands: Elsevier, 2012.
[3] Jin Zhenkui, Yu Kuanhong, Pan Yi, et al. Global distribution of phanerozoic carbonates and controlling factors[J]. Geoscience, 2013, 27(3): 637-643.[金振奎, 余宽宏, 潘怡, 等. 全球显生宙碳酸盐岩时空分布规律及其控制因素[J]. 现代地质, 2013, 27(3): 637-643.]
[4] Harland W B, Armstrong R L, Cox A V, et al. A Geologic Time Scale[M]. Cambridge: Cambridge University Press, 1990.
[5] Livingstone D A. Chemical Composition of Rivers and Lakes[R].Washington: Geological Survey Professional Papers, 1963: 41-44.
[6] Mason B. Principles of Geochemistry (3rd)[M]. New York: John Wiley and Sons Inc., 1966: 329.
[7] Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J].Chemical Geology, 1999, 161(1/3): 181-198.
[8] Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with application to carbonate diagenesis[J].Geochimica et Cosmochimica Acta, 1990, 54(11):3 123-3 138.
[9] Banner J L. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis[J].Sedimentology, 1995, 42(5): 805-824.
[10] Jacobsen S, Kaufman A J. The Sr, C and O evolution of Neoproterozoic seawater[J].Chemical Geology, 1999, 161(1):37-57.
[11] Horacek M, Brandner R, Abart R. Carbon isotope record of the P/T boundary and the Lower Triassic in the southern Alps: Evidence for rapid changes in storage of organic carbon[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2):347-354.
[12] Wang Guoqing, Xia Wenchen. The variation of isotopes (C,O) and the organism extinction event across the P/T boundary in Ziyun section, Guizhou Province[J].Earth Science Frontiers, 2000,7(4):339-344.[王国庆, 夏文臣. 贵州紫云剖面P/T界面附近碳氧同位素的变化及生物绝灭事件[J]. 地学前缘, 2000,7(4):339-344.]
[13] Sun Yadong, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the early Triassic greenhouse[J].Science, 2012,338(6 105):366-370.
[14] Tong Jinnan, Qiu Haiou, Zhao Laishi, et al. Lower Triassic inorganic carbon isotope excursion in Chaohu, Anhui Province, China[J]. Journal of China University of Geoscience, 2002,13(2):98-106.
[15] Tong Jinnan, Zuo Jingxun, Chen Z Q. Early Triassic carbon isotope excursions from South China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction[J].Geological Journal, 2007, 42(3/4):371-389.
[16] Huang Sijing, Huang Keke, Lü Jie, et al. Carbon isotopic composition of Early Triassic marine carbonates, Eastern Sichuan Basin, China[J]. Sciences in China (Series D),2012,55(12):2 026-2 038.
[17] Zuo Jingxun, Tong Jinnan, Qiu Haiou, et al. Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze region, South China[J].Science in China (Series D),2006,49(3):225-241.
[18] Cao Changqun, Wang Wei, Jin Yugan. Carbon isotope excursion across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China[J].Chinese Science Bulletin, 2002, 47(13):1 125-1 129.
[19] Payne J L, Lehrmann D J, Wei J, et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction[J].Science, 2004, 305(5 683):506-509.
[20] Payne J L, Summers M, Rego B L. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: Implications for tempo and mode of biotic recovery from the end-Permian mass extinction[J]. Paleobiology, 2011, 37(3):409-425.
[21] Meyer K M, Yu M, Jost A B, et al. δ 13 C evidence that high primary productivity delayed recovery from end-Permian mass extinction[J].Earth and Planetary Science Letters, 2011, 302(3/4): 378-384.
[22] Chen Jinshi, Shao Maorong, Huo Weiguo, et al. Carbon isotope of carbonate strata at Permian-Triassic boundary in Changxing, Zhejiang[J].Scientia Geologica Sinica, 1984, 1: 88-93.[陈锦石, 邵茂茸, 霍卫国, 等. 浙江长兴二叠系和三叠系界限地层的碳同位素[J]. 地质科学, 1984, 1: 88-93.]
[23] Huang Sijing. Carbon isotopes of Permian and Permian-Triassic boundary in upper Yangtze platform and the mass extinction[J].Geochimica, 1994,23(1):60-68.[黄思静. 上扬子二叠系—三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件[J]. 地球化学,1994,23(1):60-68.]
[24] Wang Wei, Shen Shuzhong, Zhu Zili. Carbon isotopes at the Permian-Triassic boundary section of Selong, Tibet, China and their significance[J].Chinese Science Bulletin, 1997,42(4):406-409.[王伟, 沈树忠, 朱自力. 中国西藏色龙二叠系—三叠系界线剖面的碳同位素特征及其意义[J]. 科学通报,1997,42(4):406-409.]
[25] Holser W T, Magaritz M. Events near the Permian-Triassic boundary[J].Modern Geology, 1987, 11(2):155-180.
[26] Magarita M, Bar R, Baud A, et al. The carbon isotope shift at the Permian-Triassic boundary in the Southern Alps is gradual[J].Nature, 1988, 331(6 154):337-389.
[27] Korte C, Kozur H W, Veizer J. δ 13 C and δ 18 O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(3/4):287-306.
[28] Huang Sijing, Zhou Shaohua. Carbon and strontium isotopes of Paleozoic marine carbonates in Upper Yangtze platform, Southwest China[J].Acta Geologica Sinica, 1997, 71(3):282-292.
[29] Huang Keke, Huang Sijing, Lan Yefang, et al. Review of the carbon isotope of early triassic carbonates[J].Advances in Earth Science, 2013, 28(3): 357-365.[黄可可, 黄思静, 兰叶芳, 等. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展, 2013, 28(3): 357-365.]
[30] Zhu Youhua, Luo Hui, Cai Huawei, et al. Stratigraphic division of the early and middle Triassic at the Xiejiacao section in Guang’an Sichuan[J].Journal of Stratigraphy, 2012, 36(4): 784-791.[祝幼华, 罗辉, 蔡华伟, 等. 四川广安谢家槽海相早中三叠世地层划分[J]. 地层学杂志,2012,36(4):784-791.]
[31] International Commission on Stratigraphy. International Chronostratigraphic Chart[Z/OL].2015. http://www.stratigraphy.org.
[32] Weng Jintao. The effect of carbonate rocks on global carbon cycle[J].Advances in Earth Science, 1995,10(2):154-158.[翁金桃. 碳酸盐岩在全球碳循环过程中的作用[J]. 地球科学进展,1995,10(2):154-158.]
[33] Niu Xingtang. Relationship between paleo-glaciation development and coal accumulation[J].Coal Geology & Exploration, 1975,(2):28-33.[牛兴堂. 古冰川发育与聚煤作用的关系[J]. 煤田地质与勘探,1975,(2):28-33.]
[34] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle-A test of our knowledge of Earth as a system[J].Science, 2000,290(5 490):291-296.
[35] Hu Deliang, translated. Southern winds help stash Earth’s carbon dioxide[J].Advances in Climate Change Research, 2010, 6(5): 390.[胡德良,译.南半球的风有助于存储地球上的CO 2 [J].气候变化研究进展,2010, 6(5): 390.]
[36] Beauchamp B, Boud A. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(1/2):37-63.
[37] Murchey B L, Jones D L. Amid-Permian chert event: Widespread deposition of biogenetic siliceous sediments in coastal, island arc and oceanic basins[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1/2):161-174.
[38] Liu Xinyu, Yan Jiaxin. Nodular chert of the Permian Chihsia Formation from south China and its geological implications[J]. Acta Sedimentologica Sinica, 2007, 25(5): 730-736.[刘新宇, 颜佳新. 华南地区二叠纪栖霞组燧石结核成因研究及其地质意义[J].沉积学报, 2007, 25(5): 730-736.]
[39] Yang Rui, Li Hong, Liu Yiqun, et al. Origin of nodular cherts in limestones in Middle Permian Qixia Formation,Chaohu,Anhui Province[J].Geoscience, 2014,28(3):501-511.[杨锐, 李红, 柳益群, 等. 安徽巢湖地区中二叠统栖霞组灰岩中燧石成因[J]. 现代地质, 2014,28(3):501-511.]
[40] Tian Yang, Zhao Xiaoming, Niu Zhijun, et al. Petrogenesis and sedimentary environment of Permian Wujiaping Formation siliceous rocks in Lichuan, Southwestern Hubei[J].Acta Sedimentologica Sinica,2013, 31(4): 590-599.[田洋, 赵小明, 牛志军, 等. 鄂西南利川二叠纪吴家坪组硅质岩成因及沉积环境[J]. 沉积学报, 2013, 31(4): 590-599.]
[41] Huang Hua, Wang Guozhi, Wang Yingjun, et al. Geochemical characteristics of the permian chert in the Jiangnan orogenic belt and its geological implications[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 567-573.[黄华, 王国芝, 王英军, 等. 江南造山带内二叠系硅质岩的地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 2013, 32(5):567-573.]
[42] Cheng Cheng, Li Shuangying, Zhao Daqian, et al. Geochemical characteristics of the middle-upper Permian bedded cherts in the northern margin of the Yangtze block and its response to the evolution of paleogeography and paleo-ocean[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1):155-166.[程成, 李双应, 赵大千, 等. 扬子地台北缘中上二叠统层状硅质岩的地球化学特征及其对古地理古海洋演化的响应[J]. 矿物岩石地球化学通报, 2015, 34(1):155-166.]
[43] Qiu Weiting, Gu Hongxin. Sedimentary environments of the chert (siliceous rocks) from the Lower Permian Gufeng formation in Northeastern Sichuan[J].Sedimentary Facies and Palaeogeography, 1991,(6):1-8.[邱威挺, 古鸿信. 试论川东北地区下二叠统孤峰组燧石硅质岩的沉积环境[J]. 岩相古地理, 1991,(6):1-8.]
[44] Qiu Zhen, Wang Qingchen. Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Xiang-Qian-Gui region[J].Acta Petrologica Sinica, 2010,26(12):3 612-3 628.[邱振, 王清晨. 湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景[J]. 岩石学报, 2010,26(12):3 612-3 628.]
[45] Li Hongjing, Xie Xinong, Zhou Lian, et al. Petrogenesis and sedimentary environment of the Permian cherts in the Yangtze region[J].Petroleum Geology & Experiment, 2009, 31(6):564-569.[李红敬, 解习农, 周炼, 等. 扬子地区二叠系硅质岩成因分析及沉积环境研究[J]. 石油实验地质, 2009, 31(6):564-569.]
[46] Lin Liangbiao, Chen Hongde, Zhu Lidong. Geochemical characteristics of silicalites from Wujiaping Formation in Shizhu, Chongqing[J].Journal of Mineralogy and Petrology,2010,30(3):52-58.[林良彪, 陈洪德, 朱利东. 重庆石柱吴家坪组硅质岩地球化学特征[J]. 矿物岩石, 2010,30(3):52-58.]
[47] Yao Xu, Zhou Yaoqi, Li Su, et al. Research status and advances in chert and Permian chert event[J].Advances in Earth Science, 2013, 28(11): 1 189-1 200.[姚旭, 周瑶琪, 李素, 等. 硅质岩与二叠纪硅质沉积事件研究现状及进展[J]. 地球科学进展, 2013, 28(11): 1 189-1 200.]
[48] Huang Sijing, Qing Hairuo, Huang Peipei, et al. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China[J].Science in China (Series D),2008,51(4):528-539.
[49] Luo Zhili, Yong Ziquan, Liu Shugen, et al. Divergent role of Emei Tafrongeny on Yangtse palaeoslab and Tarim palaeoslab and its significance in geoscience[J].Xinjiang Petroleum Geology, 2004, 25(1):1-7.[罗志立, 雍自权, 刘树根,等.“峨眉地裂运动”对扬子古板块和塔里木古板块的离散作用及其地学意义[J]. 新疆石油地质,2004,25(1):1-7.]
[50] Zhou Yiping, Ren Youliang. Origin and significance of some tonteins in coal bed of Xuanwei formation, Eastern Yunnan[J].Yunnan Geology, 1983, 2(1): 38-46.[周义平, 任友谅. 滇东上二叠统宣威组煤层中某些夹砰(Tonteins)的成因及其地质意义[J]. 云南地质, 1983,2(1): 38-46.]
[51] Erwin D H. The Great Paleozoic Crisis[M]. New York: Columbia University Press, 1993.
[52] Hallam A. Mass Extinction and Their Aftermath[M]. London: Oxford University Press, 1997:94-141.
[53] Tait J, Schatz M, Bachtadse V, et al. Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes[C]//London: Geological Society Speciall Publications,2000,179:21-34.
[54] Li Tong. Chemical element abundances in the Earth and it’s major shells[J].Geochimica, 1976,(3):167-174.[黎彤. 化学元素的地球丰度[J].地球化学,1976,(3):167-174.] |