地球科学进展 ›› 2016, Vol. 31 ›› Issue (4): 357 -364. doi: 10.11867/j.issn.1001-8166.2016.04.0357.

综述与评述 上一篇    下一篇

南大洋酸化指标——海水文石饱和度变异的研究进展
汪燕敏 1, 2, 祁第 1, 2, 3, 陈立奇 1, 2*, *   
  1. 1.国家海洋局海洋—
    大气化学与全球变化重点实验室,福建 厦门 361005;
    2.国家海洋局第三海洋研究所,福建 厦门 361005;
    3.厦门大学海洋与地球学院,福建 厦门 361102
  • 收稿日期:2016-02-10 修回日期:2016-03-25 出版日期:2016-04-10
  • 通讯作者: 陈立奇(1945-),男,福建晋江人,研究员,主要从事海洋大气化学与全球变化科学研究.E-mail:lqchen@soa.gov.cn
  • 基金资助:
    南北极环境综合考察与评估专项项目专题4“南极周边海域海洋化学与碳通量考察”(编号:CHINARE2012-2016:01-04-02; 02-01,03-04-02); 国家自然科学基金重点项目“南大洋N2O源汇格局:驱动机制及其对海洋N2O收支的影响”(编号:41230529)资助

Review on Researches of Aragonite Saturation State in the Southern Ocean:A Key Parameter of Southern Ocean Acidification

Wang Yanmin 1, 2, Qi Di 1, 2, 3, Chen Liqi 1, 2, *   

  1. 1.Key Laboratory of Global Change and Marine-Atmospheric Chemistry of State Oceanic Administration(SOA), Xiamen 361005,China;
    2.Third Institute of Oceanography, SOA, Xiamen 361005, China;
    3.Ocean and Earth Science College, Xiamen University, Xiamen 361102, China
  • Received:2016-02-10 Revised:2016-03-25 Online:2016-04-10 Published:2016-04-10
  • About author:Wang Yanmin (1991-), female, Xining City, Qinghai Province, Master student. Research areas include ocean acidification.E-mail:wangyanmin@tio.org.cnCorresponding author:Chen Liqi (1945-), male, Jinjiang City, Fujian Province, Professor. Research areas include marine atmospheric chemistry and global change.E-mail:lqchen@soa.gov.cn
  • Supported by:
    Project supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Programs “Investigation of ocean chemistry and carbon fluxes in the oceans and seas surrounding the Antarctica”(No; CHINARE2012-2016: 01-04-02; 02-01, 03-04-02); The National Natural Science Foundation of China“N2O source and sink in the Southern Ocean: Driving mechanim and its impact on oceanic N2O budget”(No.41230529)
南大洋因具有较强的CO 2吸收能力,其海洋酸化问题较全球其他海域尤为突出。文石饱和度(Ω 文石)作为衡量海洋酸化状况的指标之一,在评估海洋钙质生物的生存环境中发挥着重要的作用。然而,由于南大洋复杂的气候环境,在这一区域开展海洋酸化和Ω 文石的研究异常困难。因此,为了便于今后在南极周边海域开展海洋酸化的研究,了解南大洋海洋酸化的现状,对南极周边海域Ω 文石的研究进行了概述。南大洋表层海水Ω 文石具有明显的时空分布特征,主要体现为近岸海域Ω 文石值一般低于开阔大洋海域,且具有夏季高、冬季低的季节变化特征。在垂向分布上,海水Ω 文石值呈现由表层向深层递减的趋势。此外,由于受到深层水团的通风和涌升的影响,南大洋Ω 文石等值线深度随纬度升高而变浅。海水Ω 文石受海冰融化、海—气CO 2交换、浮游植物活动以及水文等诸多因素的共同控制。最后,对南大洋未来海洋酸化的变化趋势进行展望,提出亟需解决的科学问题。
The Southern Ocean is a strong sink for atmospheric CO 2, making it especially vulnerable to ocean acidification (OA). The aragonite saturation state (Ω arg) of seawater has been used as an index for the estimation of OA, which plays a critical role in evaluating the living environment of marine calcified organisms. However, it is very difficult to perform the studies of OA and Ω arg in the Southern Ocean due to its harsh climate. Therefore, in order to better understand the OA and its further influences, the advances of Ω arg studies were summarized in the oceans surrounding the Antarctica. Significant spatial and temporal variations of surface seawater Ω arg are demonstrated in the Southern Ocean. In general, the surface seawater Ω arg shows a lower value in the off-shore areas than in the open oceans. And, Ω arg also exhibits a strong seasonal cycle with a higher value in summer than in winter. The distributions of Ω arg in vertical water column generally present a declining tendency from surface to bottom. In addition, the shoaling of Ω arg horizon at high latitude could be attributed to the ventilation and upwelling of deep waters in the Southern Ocean. There are many factors that could impact the Ω arg in the Southern Ocean, including sea ice melting, sea-air CO 2 exchange, biological activities and hydrological processes, etc. Finally, the future changes and key scientific problems of OA in the Southern Ocean are proposed.

中图分类号: 

[1] USNOAA/ESRL. Trends in Atmospheric Carbon Dioxide[EB/OL].2014[2016-03-10].http:∥www. esrl. noaa. gov/ gmd/ ccgg/ trends/.
[2] Feely R A, Doney S C, Cooley S R. Ocean acidification:Present conditions and future changes in a high-CO 2 world[J]. Oceanography , 2009, 22(4): 36-47.
[3] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO 2 [J]. Science , 2004, 305(5 682): 367-371.
[4] Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature , 2005, 437(7 059): 681-686.
[5] Lüthi D, Floch M L, Bereiter B, et al. High-resolution carbon dioxide concentration record 650000-800000 years before present[J]. Nature , 2008, 453: 379-382.
[6] Cooley S R, Powell H L K, Doney S C. Ocean acidification’s potential to alter global marine ecosystem services[J]. Oceanography , 2009, 22(4): 172-181.
[7] Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature ,2003, 425(6 956): 365.
[8] Cooley S R, Doney S C. Anticipating ocean acidification’s economic consequences for commercial fisheries[J]. Environmental Research Letters , 2009, 4(2): 1-8.
[9] Kroeker K J, Kordas R L, Crim R, et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming[J]. Global Change Biology , 2013, 19(6): 1 884-1 896.
[10] Yamamoto-Kawai M, McLaughlin F A, Carmack E C, et al. Aragonite undersaturation in the Arctic Ocean, effects of ocean acidification and sea ice melt[J]. Science , 2009, 326: 1 098-1 100,doi: 10.1126/science.1174190.
[11] Beaufort L, Probert I, de Garidel-Thoron T, et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification[J]. Nature , 2011, 476(7 358): 80-83.
[12] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean p CO 2 , and net sea air CO 2 flux over the global oceans[J]. Deep Sea Research Part II : Topical Studies in Oceanography , 2009, 56(8/10): 554-577.
[13] Weeber A, Swart S, Monteiro P M S. Seasonality of sea ice controls interannual variability of summertime Ω A at the ice shelf in the Eastern Weddell Sea-an ocean acidification sensitivity study[J]. Biogeosciences Discussions , 2015, 12(2): 1 653-1 687.
[14] Egleston E S, Sabine C L, Morel F M M. Revelle revisited buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity[J]. Global Biogeochemical Cycles , 2010, 24(1): 70-75.
[15] Steinacher M, Joos F, Frölicher T L, et al. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model[J]. Biogeosciences , 2009, 6(4): 515-533.
[16] Chen L, Xu S, Gao Z, et al. Estimation of monthly air-sea CO 2 flux in the southern Atlantic and Indian Ocean using in-situ and remotely sensed data[J]. Remote Sensing of Environment , 2011, 115(8): 1 935-1 941.
[17] Ito T, Woloszyn M, Mazloff M. Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow[J]. Nature , 2010, 463(7 277): 80-83.
[18] Gao Zhongyong, Chen Liqi, Wang Weiqiang. Air-sea fluxes and the distribution of sink and source of CO 2 between 80°W and 80°E in the Southern Ocean[J]. Journal of Polar Research ,2001, 13(3):175-186.
.极地研究, 2001, 13(3): 175-186.]
[19] Matson P G, Martz T R, Hofmann G E. High-frequency observations of pH under Antarctic sea ice in the southern Ross Sea[J]. Antarctic Science , 2011, 23(6): 607-613.
[20] Gonz��lez-D��vila M, Santana-Casiano J M, Fine R A, et al. Carbonate system in the water masses of the Southeast Atlantic sector of the Southern Ocean during February and March 2008[J]. Biogeosciences , 2011, 8(5): 1 401-1 413.
[21] Bednarsek N, Tarling G A, Bakker D C, et al. Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation[J]. PLoS One , 2014, 9(10): e109183.
[22] Dufour C O, Frenger I, Frölicher T L, et al. Anthropogenic carbon and heat uptake by the ocean: Will the Southern Ocean remain a major sink[J]. US Clivar Variations , 2015, 13(4): 32.
[23] Kurtz N T, Markus T. Satellite observations of Antarctic sea ice thickness and volume[J]. Journal of Geophysical Research Oceans , 2012, 117(C8): 40-50.
[24] Thompson D W J,Solomon S. Interpretation of recent Southern hemisphere climate change[J]. Science , 2002, 296(5 569): 895-899.
[25] Turner J, Comiso J C, Marshall G J, et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent[J]. Geophysical Research Letters , 2009, 36(8): 134-150.
[26] Hauck J, Hoppema M, Bellerby R G J, et al. Data-based estimation of anthropogenic carbon and acidification in the Weddell Sea on a decadal timescale[J]. Journal of Geophysical Research , 2010, 115(C3): 132-148.
[27] Gao Z, Chen L, Gao Y. Air-sea carbon fluxes and their controlling factors in the Prydz Bay in the Antarctic[J]. Acts Oceanologica Sinica , 2008, 27(3): 136-146.
[28] Xu S, Chen L, Chen H, et al. Sea-air CO 2 fluxes in the Southern Ocean for the late spring and early summer in 2009[J]. Remote Sensing of Environment , 2016, 175: 158-166,doi: 10.1016/j.rse.2015.12.049.
[29] Takahashi T, Sutherland S C, Chipman D W, et al. Climatological distributions of p H, p CO 2 , total CO 2 , alkalinity, and CaCO 3 saturation in the global surface ocean, and temporal changes at selected locations[J]. Marine Chemistry , 2014, 164: 95-125,doi: 10.1016/j.marchem.2014.06.004.
[30] Roden N P,Shadwick E H,Tilbrook B, et al. Annual cycle of carbonate chemistry and decadal change in coastal Prydz Bay,East Antarctica[J]. Marine Chemistry ,2013,155(4):135-147.
[31] Kapsenberg L, Kelley A L, Shaw E C, et al. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments[J]. Scientific Reports , 2015, 5: 9 638,doi: 10.1038/srep09638.
[32] DeJong H B, Dunbar R B, Mucciarone D A, et al. Carbonate saturation state of surface waters in the Ross Sea and Southern Ocean: Controls and implications for the onset of aragonite undersaturation[J]. Biogeosciences Discussions , 2015, 12(11): 8 429-8 465.
[33] Sweeney C. The Annual Cycle of Surface Water CO 2 and O 2 in the Ross Sea: A Model for Gas Exchange on the Continental Shelves of Antarctica, in Biogeochemistry of the Ross Sea[M]. USA: American Geophysical Union, 2003.
[34] McNeil B I, Tagliabue A, Sweeney C. A multi-decadal delay in the onset of corrosive ‘acidified’ waters in the Ross Sea of Antarctica due to strong air-sea CO 2 disequilibrium[J]. Geophysical Research Letters , 2010, 37(19): 607-612.
[35] Mattsdotter B M, Fransson A, Torstensson A, et al. Ocean acidification state in western Antarctic surface waters: Controls and interannual variability[J]. Biogeosciences , 2014, 11(1): 57-73.
[36] Shadwick E H, Trull T W, Thomas H, et al . Vulnerability of polar oceans to anthropogenic acidification: Comparison of arctic and antarctic seasonal cycles[J]. Scientific Reports , 2013, 3: 2 339.
[37] Mucci A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure[J]. American Journal of Science , 1983, 283(7): 11.
[38] Huang Peng, Chen Liqi, Cai Minggang. Progress in anthropogenic carbon estimation, spatial and temporal distribution in the ocean[J]. Advances in Earth Science ,2015, 30(8):67-74.
.地球科学进展, 2015, 30(8): 67-74.]
[39] Le Quéré C, Rödenbeck C, Buitenhuis E T, et al. Saturation of the Southern Ocean CO 2 sink due to recent climate change[J]. Science , 2007, 316(5 832): 1 735-1 738.
[40] Lovenduski N S, Gruber N, Doney S C. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink[J]. Global Biogeochemical Cycles , 2008, 22(3): 90.
[41] Lenton A, Tilbrook B, Law R M, et al. Sea-air CO 2 fluxes in the Southern Ocean for the period 1990-2009[J]. Biogeosciences , 2013, 10(6): 4 037-4 054.
[42] Landschützer P, Gruber N, Haumann F A, et al. The reinvigoration of the Southern Ocean carbon sink[J]. Science , 2015, 349(6 253): 1 221-1 224.
[43] Munro D R,Lovenduski N S,Takahashi T, et al. Recent evidence for a strengthening CO 2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage(2002-2015)[J]. Geophysical Research Letters ,2015,42(18):7 623-7 630.
[44] Qi Di, Chen Liqi. Review on researches of aragonite saturation state in the Arctic Ocean: A key parameter of Arctic Ocean acidification[J]. Advances in Earth Science , 2014, 29(5):569-576.
.地球科学进展, 2014, 29(5): 569-576.]
[45] Leventer A. Particulate Flux from Sea Ice in Polar Waters, in Sea Ice[M]. Oxford, United Kingdom: Blackwell Science Limited, 2003.
[46] Taylor M H, Losch M, Bracher A. On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: A modeling approach[J]. Journal of Geophysical Research Oceans , 2013, 118(1): 63-75.
[47] Smith N R, Zhaoqian D, Kerry K R, et al. Water masses and circulation in the region of Prydz Bay, Antarctica[J]. Deep Sea Research Part I : Oceanographic Research Papers , 1984, 31(9): 1 121-1 147.
[48] Nunes Vaz R A,Lennon G W. Physical oceanography of the Prydz Bay region of Antarctic waters[J]. Deep Sea Research Part I : Oceanographic Research Papers , 1996, 43(5): 603-641.
[49] Han Zhengbing, Hu Chuanyu, Xue Bin, et al. Particulate organic carbon in the surface water of South Ocean and Prydz Bay during the austral summer of 2007/2008 and 2008/2009[J]. Journal of Polar Research ,2011, 23(1):11-18.
.极地研究, 2011, 23 (1): 11-18.]
[50] Liu Chenggang, Ning Xiuren, Sun Jun, et al. Size structure of standing stock and productivity and new production of phytoplankton in the Prydz Bay and adjacent Indian sector of the Southern Ocean during the austral summer of 2001/2002[J]. Acta Oceanologica Sinica ,2004, 26(6):135-147.
.海洋学报, 2004, 26(6): 135-147.]
[51] Raven J, Caldeira K, Elderfield H, et al. Ocean Acidification due to Increasing Atmospheric Carbon Dioxide[M]. London, UK: The Royal Society, 2005.
[52] Rivaro P, Messa R, Ianni C, et al. Distribution of total alkalinity and pH in the Ross Sea (Antarctica) waters during austral summer 2008[J]. Polar Research , 2014,33: 699-701.
[53] McNeil B I, Matear R J. Southern Ocean acidification: A tipping point at 450 ppm atmospheric CO 2 [J]. Proceedings of the National Academy of Sciences , 2008, 105(48): 18 860-18 864.
[54] Chen Liqi. Evidence of Arctic and Antarctic changes and their regulation of global climate change (further findings since the fourth IPCC assessment report released)[J]. Journal of Polar Research ,2013, 25(1):1-6.
.极地研究, 2013, 25(1):1-6.]
[1] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[2] 吴延俊, 赵进平. 欧亚海盆大西洋水输运过程及热释放研究进展[J]. 地球科学进展, 2020, 35(3): 231-245.
[3] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[4] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[5] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[6] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[7] 李琦, 宋然然, 匡冬琴, 卢绪涛, 李小春. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展, 2016, 31(3): 225-235.
[8] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[9] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[10] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[11] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[12] 王江海, 孙贤贤, 徐小明, 吴酬飞, 彭娟, 袁建平. 海洋碳封存技术:现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25.
[13] 王金平, 张志强, 高峰, 王文娟. 英国海洋科技计划重点布局及对我国的启示[J]. 地球科学进展, 2014, 29(7): 865-873.
[14] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
[15] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
阅读次数
全文


摘要