地球科学进展 ›› 2018, Vol. 33 ›› Issue (2): 179 -188. doi: 10.11867/j.issn.1001-8166.2018.02.0179

研究论文 上一篇    下一篇

赤水河流域岩石化学风化及其对大气CO 2的消耗
安艳玲 1, 2( ), 吕婕梅 2, 3, 罗进 3, 吴起鑫 2, 3, 秦立 2   
  1. 1.贵州理工学院,贵州 贵阳 550002
    2.贵州大学喀斯特环境与地质灾害防治重点实验室,贵州 贵阳 550025
    3.贵州大学资源与环境工程学院,贵州 贵阳 550025
  • 收稿日期:2017-08-09 修回日期:2017-12-01 出版日期:2018-02-20
  • 基金资助:
    国家自然科学基金项目“典型喀斯特小流域/溪流系统水—气界面CO 2释放研究”(编号:42603123);贵州省科技合作基金项目“赤水河流域水土流失过程氮、磷输出对水环境污染研究”(编号: 黔科合LH字[2016]7457号)资助

Chemical Weathering and CO 2 Consumption of Chishuihe River Basin, Guizhou Province

Yanling An 1, 2( ), Jiemei Lü 2, 3, Jin Luo 3, Qixin Wu 2, 3, Li Qin 2   

  1. 1.Guizhou Institute of Technology, Guiyang 550002, China
    2.Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang 550025, China
    3.College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
  • Received:2017-08-09 Revised:2017-12-01 Online:2018-02-20 Published:2018-04-02
  • About author:

    First author:An Yanling (1975-), female, Tongliao City, Inner Mongolia Autonomous Region, Professor. Research areas include water environment of river basin.E-mail:20170792@git.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “CO 2 emissions across typical karst stream and river surfaces:A case study at the upper reaches of Maotiaohe”(No.42603123);The Foundation of Guizhou Province “The influence of water and soil erosion process to output of nitrogen and phosphorus at Chishui River”No.Qiankehe LH[2016]7457)

岩石风化碳汇是全球碳汇的重要组成部分,通过对赤水河流域水体主要离子组成进行测定,分析赤水河流域河水水化学特征及其岩石风化过程对大气CO2的消耗。结果表明:赤水河流域离子组成以Ca2+,Mg2+,HC和S O 4 2 - 为主,河水总溶解性固体(TDS)含量均值为317.88 mg/L,高于全球流域均值(65 mg/L)。元素比值分析表明赤水河流域离子组成主要受岩石风化控制,其中碳酸盐岩风化为主导控制因素,碳酸盐岩、硅酸盐岩对河水溶质贡献率分别为70.77%和5.03%。人类活动和大气降水对流域河水溶质的贡献很小。流域岩石化学风化速率为126.716 t/(km2·a),高于黄河、长江、乌江及世界河流均值。流域岩石化学风化对大气CO2的消耗量为10.96×109 mol/a,岩石风化对大气CO2消耗速率为5.79×105 mol/(km2·a),与长江流域接近,高于黄河流域。

Carbon sink produced during rock weathering is critical to global carbon cycles. In this work, we analyzed the major ion chemistry of the Chishuihe River Basin, and the major ion composition of the Chishuihe River system and the principal component analysis was applied for estimating the weathering rate and atmospheric CO2 consumption via the rock chemical weathering. The results demonstrated that the chemical composition of the river was dominated by Ca2+, Mg2+, HC and S. The average concentration(317.88 mg/L) of the total dissolved solids within the Chishuihe River was higher than the average value (65 mg/L) of world rivers. The Gibbs graph combining major ion element ratio analysis indicated that the catchment major ion composition mainly originated from rock weathering, primarily from carbonate weathering, sparsely from silicate weathering. Carbonate and silicate weathering contributed 70.77% and 5.03% separately to the dissolved loads. The anthropogenic and precipitation impact was limited. According to calculation based on principal component and the ion composition characteristics, the chemical weathering rate was 126.716 t/(km2·a), significantly higher than that of the Yellow River and Yangtze River, and also higher than the average rate of the global major rivers. The CO2 consumption flux based on annual average runoff was 10.96×109 mol/a, and the CO2 consumption rate by chemical weathering was 5.79×105 mol/(km2·a).

中图分类号: 

图1 赤水河流域水系图
Fig.1 The river system distribution of Chishui River Basin
图2 赤水河流域河水Na +/Cl -与TDS关系图
Fig.2 Plots of Na +/Cl - vs. TDS for the river water of Chishui River Basin in dry and wet seasons
图3 赤水河流域河水Gibbs图
Fig.3 The Gibbs plot of the river water of Chishui River Basin
图4 赤水河丰水期河水样品主要阳、阴离子三角图
Fig.4 Ternary diagrams of anions and cations in river water of Chishui River Basin in wet season
图5 赤水河枯水期河水样品主要阳、阴离子三角图
Fig.5 Ternary diagrams of anions and cations in river water of Chishui River Basin in dry season
图6 赤水河流域丰水期Mg 2+/Na +-Ca 2+/Na +及HC/Na +-Ca 2+/Na +关系图
Fig.6 Plots of Ca 2+/Na + vs. Mg 2+/Na +, and Ca 2+/Na + vs. HC/Na + ratios for the river water of Chishui River Basin in wet season
图7 赤水河流域枯水期Mg 2+/Na +-Ca 2+/Na +及HC/Na +-Ca 2+/Na +关系图
Fig.7 Plots of Ca 2+/Na + vs. Mg 2+/Na +, and Ca 2+/Na + vs. HC/Na + ratios for the river water of Chishui River Basin in dry season
图8 赤水河流域2(Ca 2++Mg 2+)/HC与2S O 4 2 - /HC当量比值的关系
Fig.8 Plots of HC vs. 2(Ca 2++Mg 2+), and 2S O 4 2 - vs. HC for the river water of Chishui River Basin in dry and wet seasons
表1 赤水河流域河水主成分因子分析载荷矩阵
Table 1 Component loadings of the Chishui River Basin water chemistry calculated in terms of the principal component analysis
表2 不同岩性和大气对赤水河河水化学组成物质的贡献率与世界、国内流域平均值的比较(单位:%)
Table 2 Compare Chishui River Basin chemistry weathering rates with other rivers in the world and China(unit:%)
表3 赤水河流域岩石化学风化碳汇与其他地区河流比较
Table 3 Chishuihe River Basin rocks chemical weathering carbon sink comparing with other rivers in the world and China
[1] Sun Ping’an, Yu Shi, Mo Fuzhen,et al.Hydrochemical characteristics and influencing factors in different geological background: A case study in Darongjiang and Lingqu Basin,Guangxi,China[J]. Environmental Science, 2016, 37(1): 123-131.
[孙平安,于奭,莫付珍,等. 不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J]. 环境科学, 2016, 37(1): 123-131.]
doi: 10.13227/j.hjkx.2016.01.017     URL    
[2] Chen Jingsheng, Xia Xinghui.Process in research on river hydro-chemistry in China[J]. Scientia Geographic Sinica, 1999, 19(4): 289-293.
[陈静生,夏星辉. 我国河流水化学研究进展[J]. 地理科学, 1999, 19(4): 289-293.]
doi: 10.3969/j.issn.1000-0690.1999.04.001     URL    
[3] Han Guilin, Liu Congqiang.Hydrogeochemistry of rivers in Guizhou Province, China: Constraints on crustal weathering in karst terrain[J]. Advance in Earth Science, 2005, 20(4): 394-406.
[韩贵琳,刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.]
doi: 10.3321/j.issn:1001-8166.2005.04.004     URL    
[4] Qin Xiaoqun, Jiang Zhongcheng, Zhang Liankai,et al.The difference of the weathering rate between carbonate rocks and silicate rocks and its effects on the atmospheric CO2 consumption in the Pearl River Basin[J]. Geological Bulletin of China, 2015, 34(9): 1 749-1 757.
[覃小群,蒋忠诚,张连凯,等. 珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J]. 地质通报, 2015, 34(9): 1 749-1 757.]
[5] Hindshaw R S, Tipper E T, Reynolds B C, et al.Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland)[J]. Chemical Geology, 2011, 285(1/4): 215-230.
doi: 10.1016/j.chemgeo.2011.04.012     URL    
[6] Milliman J D, Meade R H.World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21.
doi: 10.1086/628741     URL    
[7] Suchet P A, Probst J L.A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2)[J]. Tellus B, 1995, 47(1/2): 273-280.
doi: 10.1034/j.1600-0889.47.issue1.23.x     URL    
[8] Lü Jiemei, An Yanling, Wu Qixin,et al.Rock weathering characteristics and the atmospheric carbon sink in the chemical weathering processes of Qingshuijiang River Basin[J]. Environmental Science, 2016, 37(12): 4 671-4 679.
[吕婕梅,安艳玲,吴起鑫,等. 清水江流域岩石风化特征及其碳汇效应[J]. 环境科学, 2016, 37(12): 4 671-4 679.]
doi: 10.13227/j.hjkx.201605118     URL    
[9] An Yanling, Lü Jiemei, Wu Qixin,et al.Hydro-chemical characteristics of upper Chishui River Basin in dry season[J]. 2015,38(8): 117-122.
[安艳玲,吕婕梅,吴起鑫,等. 赤水河流域上游枯水期水化学特征及其影响因素分析[J]. 环境科学与技术, 2015,38(8):117-122.]
[10] Luo Jin, An Yanling, Wu Qixin,et al.Spatial distribution of surface water chemical components in the middle and lower reaches of the Chishui River Basin[J]. Earth and Environment, 2014, 42(3): 297-305.
[罗进,安艳玲,吴起鑫,等. 赤水河中下游冬季河水化学空间分布特征分析[J]. 地球与环境, 2014, 42(3): 297-305.]
[11] An Yanling, Jiang Hao, Wu Qixin, et al.Assessment of water quality in the Chishui River Basin during low water period[J]. Resources and Environment in the Yangtze Basin, 2014, 23(10): 1 472-1 478.
[安艳玲,蒋浩,吴起鑫,等. 赤水河流域枯水期水环境质量评价研究[J]. 长江流域资源与环境, 2014, 23(10): 1 472-1 478.]
doi: 10.11870/cjlyzyyhj201410019     URL    
[12] Meybeck M, Helmer R.The quality of rivers: From pristine stage to global pollution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 75(4): 283-309.
doi: 10.1016/0031-0182(89)90191-0     URL    
[13] Grosbois C, Négrel P, Fouillac C, et al.Dissolved load of the Loire River: Chemical and isotopic characterization[J]. Chemical Geology, 2000, 170(1/4): 179-201.
doi: 10.1016/S0009-2541(99)00247-8     URL    
[14] Gaillardet J, Dupre B, Allegre C J, et al.Chemical and physical denudation in the Amazon River Basin[J]. Chemical Geology, 1997, 142(3): 141-173.
doi: 10.1016/S0009-2541(97)00074-0     URL    
[15] Gaillardet J, Dupré B, Louvat P, et al.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30.
doi: 10.1016/S0009-2541(99)00031-5     URL    
[16] Lerman A W.CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance[J]. Marine Chemistry, 2007, 106(1): 326-350.
doi: 10.1016/j.marchem.2006.04.004     URL    
[17] Xie Chenji, Gao Quanzhou, Tao Zhen.Review and perspectives of the study on chemical weathering and hydrochemistry in river basin[J]. Tropical Geography, 2012,32(4): 331-337,356.
[解晨骥,高全洲,陶贞. 流域化学风化与河流水化学研究综述与展望[J]. 热带地理, 2012,32(4): 331-337,356.]
doi: 10.3969/j.issn.1001-5221.2012.04.001     URL    
[18] Li Jun, Liu Congqiang, Li Longbo, et al.The impacts of chemical weathering of carbonate rock by sulfuric acid on the cycling of dissolved inorganic carbon in Changjiang River water[J]. Geochimica, 2010, 39(4): 305-313.
[李军,刘丛强,李龙波,等. 硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响[J]. 地球化学, 2010, 39(4): 305-313.]
URL    
[19] Li Siyue, Lu X, He Min, et al.Major element chemistry in the upper Yangtze River: A case study of the Longchuanjiang River[J]. Geomorphology, 2011, 129(1/2): 29-42.
doi: 10.1016/j.geomorph.2011.01.010     URL    
[20] Li Siliang, Liu Congqiang, Li Jun, et al.Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints[J]. Chemical Geology, 2010, 277(3): 301-309.
doi: 10.1016/j.chemgeo.2010.08.013     URL    
[21] Li Siliang, Calmels D, Han Guilin, et al.Sulfuric acid as an agent of carbonate weathering constrained by 13CDIC: Examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270(3): 189-199.
doi: 10.1016/j.epsl.2008.02.039     URL    
[22] Liu Congqiang, Jiang Yingkui, Tao Faxiang, et al.Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica, 2008, 37(4): 404-414.
[刘丛强,蒋颖魁,陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414.]
doi: 10.3321/j.issn:0379-1726.2008.04.014     URL    
[23] Pekey H, Karakas D, Bakoglu M.Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses[J]. Marine Pollution Bulletin, 2004, 49(9/10): 809-818.
doi: 10.1016/j.marpolbul.2004.06.029     URL     pmid: 15530525
[24] Guo H, Ding A J, So K L, et al.Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution[J]. Atmospheric Environment, 2009, 43(6): 1 159-1 169.
doi: 10.1029/2000JC900029     URL    
[25] Simeonov V, Stratis J A, Samara C, et al.Assessment of the surface water quality in Northern Greece[J]. Water Research, 2003, 37(17): 4 119-4 124.
doi: 10.1016/S0043-1354(03)00398-1     URL     pmid: 12946893
[26] Thurston G D, Spengler J D.A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston[J]. Atmospheric Environment, 1985, 19(1): 9-25.
doi: 10.1016/0004-6981(85)90132-5     URL    
[27] Li J Y, Zhang J.Effect of atmospheric precipitation on the dissolved loads of the Dongjiang River, China[J]. Journal of Environmental Sciences, 2004, 16(3): 502-508.
doi: 10.3321/j.issn:1001-0742.2004.03.032     URL     pmid: 15272732
[28] Li S Y, Zhang Q F.Response of dissolved trace metals to land use/land cover and their source apportionment using a receptor model in a subtropic river, China[J]. Journal of Hazardous Materials, 2011, 190(1/3): 205-213.
doi: 10.1016/j.jhazmat.2011.03.026     URL     pmid: 21470777
[29] Huang Qibo, Qin Xiaoqun, Liu Pengyu,et al.The influence of allogenic water and sulfuric acid to karst carbon sink in karst subterranean river in Southern Hu’nan[J]. Advances in Earth Science, 2017, 32(3): 307-318.
[黄奇波,覃小群,刘朋雨,等. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.]
doi: 10.11867/j.issn.1001-8166.2017.03.0307     URL    
[30] Meybeck M.Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428.
doi: 10.2475/ajs.287.5.401     URL    
[31] Li Jingying.A Study on the Chemieal Weathering,Mechanical Denudation Correlative with River Water and Sediment Geochemistry and CO2 Consumption Budget and Contolling Fators in the Major Drainage Basin of China[D].Qingdao: Ocean University of China, 2003.
[李晶莹. 中国主要流域盆地的风化剥蚀作用与大气CO2的消耗及其影响因子研究[D]. 青岛:中国海洋大学, 2003.]
[32] Liu Jiandong, Hu Hong, Zhang Longjun.Progress of carbon sink by chemical weathering of watershed[J]. Chinese Journal of Soil Science, 2007, 38(5): 998-1 002.
[刘建栋,胡泓,张龙军. 流域化学风化作用的碳汇机制研究进展[J]. 土壤通报, 2007, 38(5): 998-1 002.]
[33] Li Jingying, Zhang Jing.Chemical weathering processes and atmospheric CO2 consumption in the Yellow River drainage basin[J]. Marine Geology & Quaternary Geology, 2003, 23(2): 43-49.
[李晶莹,张经. 黄河流域化学风化作用与大气CO2的消耗[J]. 海洋地质与第四纪地质, 2003, 23(2): 43-49.]
URL    
[34] Xie Chenji, Gao Quanzhou, Tao Zhen, et al.Chemical weathering and CO2 consumption in the Dongjiang River Basin[J]. Acta Scientiae Circumstantiae, 2013, 33(8): 2 123-2 133.
[解晨骥,高全洲,陶贞,等. 东江流域化学风化对大气CO2的吸收[J]. 环境科学学报, 2013, 33(8): 2 123-2 133.]
[1] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[2] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[3] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[4] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[5] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[6] 汪齐连,刘丛强,赵志琦,B.Chetelat,丁虎. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958.
[7] 许模,毛邦燕,张强. 现代深部岩溶研究进展与展望[J]. 地球科学进展, 2008, 23(5): 495-500.
[8] 徐则民,黄润秋,唐正光,费维水. 岩体化学风化的非连续性及其科学意义[J]. 地球科学进展, 2006, 21(7): 706-712.
[9] 韩贵琳;刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.
[10] 马英军;霍润科;徐志方;张辉;刘丛强. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1): 87-094.
[11] 李晶莹,张经. 流域盆地的风化作用与全球气候变化[J]. 地球科学进展, 2002, 17(3): 411-419.
[12] 李春雷,陈 骏,季峻峰. 青藏高原的隆起与海洋锶同位素组成的演化[J]. 地球科学进展, 1999, 14(6): 582-588.
[13] 马英军,刘丛强. 生态系统营养离子循环及水化学演化的锶同位素示踪[J]. 地球科学进展, 1999, 14(4): 377-383.
[14] 陈宗宇. 水文地球化学模拟研究的现状[J]. 地球科学进展, 1995, 10(3): 278-282.
阅读次数
全文


摘要