地球科学进展 ›› 2019, Vol. 34 ›› Issue (1): 93 -102. doi: 10.11867/j.issn.1001-8166.2019.01.0093

上一篇    下一篇

流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例
常海钦 1( ),付亚龙 1,林鑫 1, 2, *( ),张苗苗 1,孟刚刚 1   
  1. 1. 长安大学地球科学与资源学院,陕西 西安 710054
    2. 西安时空地质矿产技术有限公司,陕西 西安 710068
  • 收稿日期:2018-07-03 修回日期:2018-12-13 出版日期:2019-01-10
  • 通讯作者: 林鑫 E-mail:2016127068@chd.edu.cn;xinlin@chd.edu.cn
  • 基金资助:
    科技部重点研发计划项目“穿透性地球化学勘查技术”(编号:2016YFC0600601)

Spatial Distribution and Controlling Factors of Chemical Weathering Intensity in Drainage Basins A Case Study in the Yangtze River Basin and Pearl River Basin

Haiqin Chang 1( ),Yalong Fu 1,Xin Lin 1, 2, *( ),Miaomiao Zhang 1,Ganggang Meng 1   

  1. 1. School of Earth Science and Resources,Chang’an University,Xi’an 710054, China
    2. Xi'an Space-Time Geology and Mineral Technology Co., Ltd. ,Xi’an 710068, China
  • Received:2018-07-03 Revised:2018-12-13 Online:2019-01-10 Published:2019-03-05
  • Contact: Xin Lin E-mail:2016127068@chd.edu.cn;xinlin@chd.edu.cn
  • About author:Chang Haiqin (1991-), male, Xingtai City, Hebei Province, Master student. Research areas include sedimentary geochemistry. E-mail: 2016127068@chd.edu.cn |Lin Xin (1987-), male, Shangluo City, Shaanxi Province, Lecturer. Research areas include exploration geochemistry. E-mail: xinlin@chd.edu.cn
  • Supported by:
    Project supported by the Key Research and Development Program of the Ministry of Science and Technology “Simulation of vertical dispersion of element in complex covered area”(No.2016YFC0600601)

大型流域盆地化学风化对全球海陆物质循环和气候变化有着显著影响。许多学者提出了不同的化学风化指数,并对影响因素进行了研究。然而,目前对化学风化强度的定量刻画以及化学风化控制因素的认识仍存在不足。以长江和珠江流域盆地水系沉积物地球化学数据为例,利用化学蚀变指数(CIA)和帕克风化指数(WIP)定量刻画了化学风化强度,利用趋势面分析完成了空间分布特征研究,同时基于空间相关分析完成了化学风化强度同气温和降水的相关性分析。获得了以下

①长江流域CIA平均值为72.9,WIP平均值为34.2,指示中等强度风化;珠江流域CIA平均值为93.8,WIP平均值为6.4,指示强风化。②趋势面分析显示化学风化强度存在由北向南逐渐增强的趋势。局部地区的CIA和WIP异常值与该地区较高的年降水量和年均气温相吻合。③长江和珠江流域的化学风化同气候条件紧密相关。研究区内CIA和WIP同年均降水量和年均气温的相关系数均在0.85以上。综上,认为CIA和WIP可以作为定量刻画流域盆地化学风化强度的指标,趋势面分析较好地刻画了区域及局部分布特征。

Chemical weathering in large-scale drainage basins has significant effects on cycling of sea and land matters and climatic change on Earth. Various sediment geochemical proxies have been proposed to study the influencing factors of chemical weathering intensity. However, quantitative description of chemical weathering intensity and knowledge of controlling factors of chemical weathering are still insufficient. Exemplified by the sediment geochemical data from the Yangtze River and Pearl River Basins, the chemical weathering intensity was quantified by Chemical Index of Alteration (CIA) and Weathering Index of Parker (WIP). In addition, the spatial distribution characteristics were studied by using Trend Surface Analysis (TSA), and the correlation of the chemical weathering intensity with temperature and precipitation was completed based on Spatial Correlation Analysis (SCA). The following results were obtained: The average values of the CIA and WIP in the Yangtze River Basin are 72.9 and 34.2, indicating an intermediate weathering intensity. The average values of the CIA and WIP in the Pearl River Basin are 93.8 and 6.4, indicating a strong weathering degree. The TSA shows that the distribution of chemical weathering intensity has obvious latitude effect, that is, the lower the latitude, the stronger the chemical weathering. The abnormal values of the CIA and WIP coincide with a higher annual temperature and precipitation in space. Meanwhile, the correlation coefficients of the CIA and WIP with annual precipitation and annual mean temperature are all above 0.85 in the study area. In conclusion, the chemical weathering in the Yangtze River and the Pearl River Basin is mainly controlled by climatic conditions. The CIA and WIP can be used as a quantitative indicator for the chemical weathering intensity in drainage basins, and the trend surface analysis well depicts the regional and local distribution characteristics.

中图分类号: 

图1 长江和珠江流域岩性地质图
Fig.1 Lithologic map of the Yangtze and Pearl River Basins
图2 长江和珠江流域年均降水和年均气温分布等值线图
Fig.2 Contour map of meanannual precipitation and mean annual temperature distribution in Yangtze and Pearl River Basins
图3 长江和珠江流域水系沉积物主量元素、CIAWIP箱式图
Fig.3 Box plot of major elements,CIA and WIP of stream sediments in the Yangtze and Pearl River Basins
表1 长江和珠江流域水系沉积物主量元素、 CIAWIP统计特征
Table 1 Statistical characteristics of major elements, CIA and WIP of stream sediments in the Yangtze and Pearl
图4 A-CN-K三角图
Fig.4 The A-CN-K ternary diagram
图5 长江和珠江流域CIAWIP空间分布等值线图
Fig.5 Contour map of spatial distribution of CIA and WIP in Yangtze and Pearl River Basins
图6 6次多项式趋势面分析
Fig.6 Spatial distribution of the 6th-order trend
图7 6次多项式趋势面残差图
Fig.7 Spatial distribution of the 6th-order residual
1 Xie Chenji , Gao Quanzhou , Tao Zhen .Review and perspectives of the study on chemical weathering and hydrochemistry in river basin[J].Tropical Geography,2012,32(4):331-337.
解晨骥,高全洲,陶贞 .流域化学风化与河流水化学研究综述与展望[J].热带地理,2012,32(4):331-337.
2 Nesbitt H W , Young G M . Early proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5 885):715-717.
3 Parker A . An index of weathering for silicate rocks[J]. Geological Magazine,1970,107:501-504.
4 Harnois L . The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3):319-322.
5 Vital H , Stattegger K . Major and trace elements of stream sediments from the lowermost Amazon River[J]. Chemical Geology, 2000, 168(1):151-168.
6 Singh M , Sharma M , Tobschall H J . Weathering of the Ganga alluvial plain, Northern India: Implications from fluvial geochemistry of the Gomati River[J]. Applied Geochemistry, 2005, 20(1):1-21.
7 Yang Shouye , Jung H S , Li Congxian . Two unique weathering regimes in the Changjiang and Huanghe Drainage Basins: Geochemical evidence from river sediments[J]. Sedimentary Geology, 2004, 164(1/2):19-34.
8 Li Chao , Yang Shouye . Is Chemical Index of Alteration (CIA) a reliable proxy for chemical weathering in global drainage basins?[J]. American Journal of Science, 2010, 310(2):111-127.
9 Qi Wei , Fu Jianfei , Wang Ende ,et al .Study of the soil weathering degree of the Liao River Basin based on CIA Index[J]. Journal of Northeastern University(Natural Science),2012,33(3):444-447.
綦魏,付建飞,王恩德,等 .基于化学蚀变指数(CIA)的辽河流域土壤风化程度研究[J].东北大学学报:自然科学版,2012,33(3):444-447.
10 Qiu Shifan , Zhu Zhaoyu , Yang Tian , et al . Chemical weathering of monsoonal eastern China: Implications from major elements of topsoil[J]. Journal of Asian Earth Sciences, 2014, 81(4):77-90.
11 Duzgoren-Aydin N S , Aydin A , Malpas J . Re-assessment of chemical weathering indices: Case study on pyroclastic rocks of Hong Kong[J]. Engineering Geology, 2002, 63(1/2):99-119.
12 Price J R , Velbel M A . Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks[J]. Chemical Geology, 2003, 202(3/4):397-416.
13 Hagedorn B , Cartwright I . Climatic and lithologic controls on thetemporal and spatial variability of CO2 consumption via chemical weathering:An example from the Australian Victorian Alps[J]. Chemical Geology,2009, 260:234-253.
14 Raymo M E , Ruddiman W F . Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359 (6 391):117-122.
15 Gaillardet J , Dupré B , Louvat P , et al . Global silicate weathering and CO2, consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4):3-30.
16 White A F , Blum A E . Effects of climate on chemical weathering in watersheds[J]. Geochimica et Cosmochimica Acta, 1995, 59(9):1 729-1 747.
17 Pinet P , Souriau M . Continental erosion and large-scale relief [J].Tectonics, 1988, 7(3):563-582.
18 Li Jingying .A Study on the Chemical Weathering, Mechanical Denudation Correlative with River Water and Sediment Geochemistry and CO2 Consumption Budget and Controlling Factor sin the Major Drainage Basins of China[D].Qingdao:Ocean University of China,2003.
李晶莹 . 中国主要流域盆地的风化剥蚀作用与大气CO2的消耗及其影响因子研究[D].青岛:中国海洋大学,2003.
19 Shao Xie , Huang Ping , Huang Ronghui .A review of the South China Sea summer monsoon onset[J]. Advances in Earth Science,2014,29(10) :1 126-1 137.
邵勰,黄平,黄荣辉 .南海夏季风爆发的研究进展[J].地球科学进展,2014,29(10) : 1 126-1 137.
20 Lu Wenxi , Wu Jian .Aerosol’s impacts on the Indian summer monsoon and the East Asian summerm on soon: An overview[J].Advances in Earth Science,2016,31(3) :248-257.
陆雯茜,吴涧 .气溶胶影响印度夏季风和东亚夏季风的研究进展[J].地球科学进展,2016,31(3):248-257.
21 Hao Qingzhen , Zhang Renhe , Wang Pinxian ,et al .Monsoons across multi-scales:Summary of fourth conference on Earth system science[J].Advances in Earth Science,2016,31(7) :689-699.
郝青振,张人禾,汪品先,等 .全球季风的多尺度演化[J].地球科学进展,2016,31(7):689-699.
22 Liu Huiping .A study on the topography classification in Changjiang reaches [J]. Journal of Central China Normal University(Natural Sciences), 1994,28(1):129-132.
刘会平 .长江流域地貌类型研究[J].华中师范大学学报:自然科学版,1994,28(1):129-132.
23 Zeng Zhaoxuan .Topgraphic features of Peral River valley[J]. Pearl River,1993,(2):3-6.
曾昭璇 .珠江流域地形特征[J].人民珠江,1993,(2):3-6.
24 Xie Xuejin , Ren Tianxiang , Xi Xiaohuan ,et al . The implementation of the Regional Geochemistry-National Reconnaissance program (RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica,2009,30(6):700-716.
谢学锦,任天祥,奚小环,等 .中国区域化探全国扫面计划卅年[J].地球学报,2009,30(6):700-716.
25 Xie Xuejin . Applied Geochemistry Into The 21st Century-in Memory of Prof.Xie’s Fifty Years Research Activity on Geochemical Exploration[M].Beijing:Geological Publishing House, 2002.
谢学锦 .面向21世纪的应用地球化学:谢学锦院士从事地球化学研究50周年[M]. 北京:地质出版社, 2002.
26 Xie Xuejin .Regional Geochemical Exploration[M]. Beijing: Geological Publishing House,1979.
谢学锦 .区域化探[M].地质出版社,1979.
27 Shao Jingqing , Yang Shouye . Does Chemical Index of Alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River Basin?[J].Chinese Science Bulletin,2012,57(11):933-942.
邵菁清,杨守业 .化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候?[J].科学通报,2012,57(11):933-942.
28 Mclennan S M . Weathering and global denudation[J]. Journal of Geology, 1993, 101(2):295-303.
29 Guo Yulong , Yang Shouye , Su Ni , et al . Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices[J]. Geochimica et Cosmochimica Acta 2018,227:48-63.
30 Garzanti E , Andó S , France-Lanord C , et al . Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh)[J]. Earth & Planetary Science Letters, 2011, 302(1/2):107-120.
31 Nesbitt H W , Young G M , Mclennan S M , et al . Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. Journal of Geology, 1996, 104(5):525-542.
32 Servaraj K , Chen C T A . Moderate chemical weathering of subtropical Taiwan: Constraints from solid-phase geochemistry of sediments and sedimentary rocks[J]. The Journal of Geology,2006,114(1): 101-116.
33 Shao Jingqing , Yang Shouye , Li Chao . Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments[J]. Sedimentary Geology, 2012, 265/266(6):110-120.
34 Agterberg F P . Geomathematics[M]. New York:Elsevier,1974.
35 Zhao Pengda . Quantitative Geoscience: Methods and Its Applications[M].Beijing:High Education Press, 2004.
赵鹏大 .定量地学方法及应用[M]. 北京:高等教育出版社, 2004.
36 Wang Xueren .Multivariate Statistical Analysis of Geological Data[M]. Beijing:Science Press, 1982.
王学仁 .地质数据的多变量统计分析[M]. 北京:科学出版社, 1982.
37 Zhao Xudong . Petroleum Mathematic Geology[M].Beijing:Petroleum Industry Press,1992.
赵旭东 .石油数学地质概论[M]. 北京:石油工业出版社, 1992.
38 Li Hanlin , Zhao Yongjun , Zha Ming . The main factors affecting the goodness-of-fit trend surface and method of choosing optimum trend surface[J]. Geological Review,1994,40(Suppl.1):33-38.
李汉林,赵永军,查明 .影响趋势面拟合度的主要因素和选择最佳趋势面的方法[J].地质论评,1994,40(增刊1):33-38.
39 Taylor S R , McLennan S M . The Continental Crust: Its Composition and Evolution[M]. Oxford:Blackwell, 1985.
40 Viers J , Dupré B , Gaillardet J . Chemical composition of suspended sediments in world rivers: New insights from a new database[J]. Science of the Total Environment, 2009, 407(2):853-868.
41 Garzanti E , Padoan M , Andò S , et al . Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift[J]. Journal of Geology, 2013, 121(6):547-580.
[1] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[2] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
[3] 姜彤,施雅风. 全球变暖、长江水灾与可能损失[J]. 地球科学进展, 2003, 18(2): 277-284.
[4] 李晶莹,张经. 流域盆地的风化作用与全球气候变化[J]. 地球科学进展, 2002, 17(3): 411-419.
阅读次数
全文


摘要