Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (1): 84-92    DOI: 10.11867/j.issn.1001-8166.2019.01.0084
    
环境样品中氨基糖分析检测方法的研究进展
魏金娥1(),张洪海1,2,陈岩1,*(),杨桂朋1,2
1. 中国海洋大学化学化工学院,山东 青岛 266100
2. 青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室,山东 青岛 266237
Progress on Analytical Methods of Amino Sugars in Environmental Samples
Jin’e Wei1(),Honghai Zhang1,2,Yan Chen1,*(),Guipeng Yang1,2
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. Function Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
 全文: PDF(920 KB)   HTML
摘要:

氨基糖作为环境中重要的生源有机质,其含量和组成信息能够反映有机质来源和微生物对有机质的贡献。国内外针对环境中氨基糖的分析测定开展了大量的研究,但系统地评述其分析方法及最新进展的工作仍然较少。从前处理方法和检测技术等方面,系统归纳了气相色谱法、高效液相色谱法和红外光谱法3类常用的氨基糖分析方法的优缺点和适用条件。在前处理方面,气相色谱法前处理过程较为繁琐且需衍生化处理,而高效液相色谱法前处理相对简单且更易实现自动化;在仪器检测方面,气相色谱法能同时检测环境中4种主要的氨基糖(氨基葡萄糖、氨基半乳糖、氨基甘露糖和胞壁酸),并且比高效液相色谱法稳定,而红外光谱法虽具有结构定性方面的优势,但其灵敏度较低。总之,尚未有一种分析方法既能保证氨基糖的灵敏分析又能兼顾实验效率,因此在分析环境样品中氨基糖时应根据样品形态和检测要求合理选择分析方法。在检测分析方面,今后可以在分析方法的经济性、兼容互补性以及在线自动化等方面着力开展工作,为更深入地开展环境中氨基糖生物地球化学过程的研究提供技术支持。

关键词: 氨基糖分析方法气相色谱液相色谱红外光谱    
Abstract:

As a kind of important biogenic organic matter, amino sugars can effectively provide insights for the source of organic matters and the contribution of bacterial organic matters based on their concentrations and compositions in the environment. A large number of studies on the analysis of amino sugars have been conducted for environmental samples throughout the world. However, comprehensive and systematic reviews of new progress on the analytical method are still rare. From the aspects of pretreatment methods and detection techniques, the advantages and disadvantages and applicable conditions of three common methods (eg. gas chromatography, high performance liquid chromatography and infrared spectroscopy) were systematically summarized. In terms of pretreatment, the process of the gas chromatography is cumbersome and requires derivatization, while the pretreatment of high performance liquid chromatography is relatively simple and easier to automate. In respect of instrument detection, the gas chromatography can detect four amino sugars (glucosamine, galactosamine, mannosamine and muramic acid) simultaneously and is more stable than the high performance liquid chromatography. In addition, the infrared spectroscopy method has the advantages of structural qualitative, however, its sensitivity is lower. There is no analytical method that can guarantee both sensitive analysis of amino sugars and experimental efficiency. Therefore, the analytical method should be reasonably selected according to the form of the sample and the requirements in the analysis of amino sugars. Further work should focus on economy, compatibility and online automation of analytical methods, so as to provide technical support for the research on biogeochemical processes of amino sugars in the environment.

Key words: Amino sugars    Analytical methods    Gas chromatography    Liquid chromatography    Infrared reflectance spectroscopy.
收稿日期: 2018-10-10 出版日期: 2019-03-05
ZTFLH:  P593  
基金资助: 中央高校基本科研业务费专项项目“东海溶解有机物的光化学降解及对活性气体产生机制的影响研究”(编号:201762030)
通讯作者: 陈岩     E-mail: weijine@stu.ouc.edu.cn;yanchen@ouc.edu.cn
作者简介: 魏金娥(1995-),女,山东潍坊人,硕士研究生,主要从事海洋中氨基糖的生物地球化学循环研究.|陈岩(1982-),男,山东淄博人,实验师,主要从事海洋生物地球化学循环研究. E-mail:yanchen@ouc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
魏金娥
张洪海
陈岩
杨桂朋

引用本文:

魏金娥,张洪海,陈岩,杨桂朋. 环境样品中氨基糖分析检测方法的研究进展[J]. 地球科学进展, 2019, 34(1): 84-92.

Jin’e Wei,Honghai Zhang,Yan Chen,Guipeng Yang. Progress on Analytical Methods of Amino Sugars in Environmental Samples. Advances in Earth Science, 2019, 34(1): 84-92.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.01.0084        http://www.adearth.ac.cn/CN/Y2019/V34/I1/84

图1   AS样品的GC方法处理过程
分析方法 检出限 定量限 检测时间/min RSD/% 分析对象
GC-FID - 10~20 μg/mL 19.5 <2 土壤[13]
HPLC-FLD 1.7~9.0 μg/g 4.2~29.9 μg/g 26 2 土壤和植物[14]
HPAEC-PAD 1~4 nmol/L - 90 2~11 海水[15]
表1   GC-FID、高效液相色谱—荧光检测法(HPLC-FLD)和高效阴离子交换色谱—安培检测法(HPAEC-PAD)分析AS的检测指标比较
图2   GlcN和MurA糖腈乙酰化衍生方程式(据参考文献[16]修改)
图3   AS样品的HPAEC-PAD方法处理过程(据参考文献[15]修改)
分析方法 水解 纯化 衍生状况 应用 参考文献
GC-FID 6 mol/L HCl 调pH、无水甲醇 需要 土壤 [13]
HPLC-FLD 6 mol/L HCl 需要 土壤和根系 [14]
HPAEC-PAD 3 mol/L HCl 固相萃取柱 不需要 海水 [15]
HPLC-IRMS 6 mol/L HCl 调pH、无水甲醇、固相萃取柱 不需要 土壤 [40]
IR 6 mol/L HCl 调pH、无水甲醇 不需要 土壤 [45]
表2  不同分析方法前处理比较
分析方法 应用对象 优势 不足 发展趋势
GC-FID 土壤中GlcN,GalN,ManN和MurA 同时定量4种AS

样品须经过衍生化处理;

易受氨基糖苷类抗生素干扰

衍生过程由离线向“在线”发展
GC-IRMS 土壤和海洋沉积物中AS的δ13C 受样品中杂质影响较小 样品须经过衍生化处理; 检测丰度高的同位素时,准确度会下降 多同位素同时检测
GC-MS 土壤中AS的APE 不仅能提供同位素比值信息还能提供分子结构信息

样品须经过衍生化处理;

在定量方面有一定的缺陷

向高分辨质谱发展
HPLC-FLD 土壤和根系中GlcN,GalN,ManN和MurA 实现在线衍生化 需要衍生化处理; 受氨基酸干扰强; 不能同时检测中性糖 发展同时高效检测AS和氨基酸的方法
HPAEC-PAD 海水和沉积物中GlcN,GalN,ManN和MurA 无需衍生化前处理; 干扰较小 MurA不能与其他3种AS同时分析; 易受CO2影响 前处理过程向自动化发展
HPLC-IRMS 土壤中AS的δ13C 无需衍生化前处理 对CO2污染敏感; MurA不能与其他3种AS同时分析 多同位素同时检测
UPLC-HRMS 土壤中游离GlcN和MurA 无需衍生化前处理; 仪器灵敏度高、检测速度快

仪器使用及维护成本高;

仪器需要专业的人员进行维护操作

向多维液相色谱发展
IR 土壤中TAS-N,GlcN,GalN和MurA 无危险试剂使用; 检测快速; 与色谱方法相比,成本低 相对于色谱方法,方法的灵敏度不高 向高空间分辨率的组分分析方向发展
表3   AS分析方法比较
1 Benner R , Kaiser K . Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter [J]. Limnology and Oceanography, 2003, 48(1): 118-128.
2 Carstens D , K?llner K E , Bürgmann H , et al . Contribution of bacterial cells to lacustrine organic matter based on amino sugars and D-amino acids [J]. Geochimica et Cosmochimica Acta, 2012, 89:159-172.
3 He Hongbo , Zhang Wei , Xie Hongtu , et al . A GC/MS method to assess N ratios in soil amino sugars and amino acid enantiomers [J]. Acta Pedologica Sinica, 2009, 46(2): 289-298.
3 何红波,张威,解宏图,等 . 测定土壤氨基糖和氨基酸手性异构体中氮同位素比值的气相色谱/质谱方法[J]. 土壤学报, 2009, 46(2): 289-298.
4 Ren Chengzhe , Yuan Huamao , Song Jinming , et al . Amino sugars and their indicating role in the cycling of organic matter in marine environment [J]. Advances in Earth Science, 2017, 32(9): 959-971.
4 任成喆,袁华茂,宋金明,等 . 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
5 Hu Y , Zheng Q , Zhang S , et al . Significant release and microbial utilization of amino sugars and D-amino acid enantiomers from microbial cell wall decomposition in soils [J]. Soil Biology and Biochemistry, 2018, 123: 115-125.
6 Glaser B , Turrión M , Alef K . Amino sugars and muramic acid—Biomarkers for soil microbial community structure analysis [J]. Soil Biology and Biochemistry, 2004, 36(3): 399-407.
7 Carstens D , Schubert C J . Amino acid and amino sugar transformation during sedimentation in lacustrine systems [J]. Organic Geochemistry, 2012, 50: 26-35.
8 Benner R , Kaiser K . Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter [J]. Limnology and Oceanography, 2003, 48(1): 118-128.
9 Davis J , Kaiser K , Benner R . Amino acid and amino sugar yields and compositions as indicators of dissolved organic matter diagenesis [J]. Organic Geochemistry, 2009, 40(3): 343-352.
10 Prabhu S V , Baldwin R P . Electrocatalysis and detection of amino sugars, alditols, and acidic sugars at a copper-containing chemically modified electrode [J]. Analytical Chemistry, 1989, 61(20): 2 258-2 263.
11 Reissig J L , Storminger J L , Leloir L F . A modified colorimetric method for the estimation of N-acetylamino sugars [J]. Journal of Biological Chemistry, 1955, 217(2): 959-966.
12 Suzuki S , Shimotsu N , Honda S , et al . Rapid analysis of amino sugars by microchip electrophoresis with laser-induced fluorescence detection [J]. Electrophoresis, 2001, 22(18): 4 023-4 031.
13 Zhang X , Amelung W . Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils [J]. Soil Biology & Biochemistry, 1996, 28(9): 1 201-1 206.
14 Indorf C , Dyckmans J , Khan K S , et al . Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates [J]. Biology and Fertility of Soils, 2011, 47(4): 387-396.
15 Kaiser K , Benner R . Determination of amino sugars in environmental samples with high salt content by high-performance anion-exchange chromatography and pulsed amperometric detection [J]. Analytical Chemistry, 2000, 72(11): 2 566-2 572.
16 Liang C , Read H W , Balser T C . GC-based detection of aldononitrile acetate derivatized glucosamine and muramic acid for microbial residue determination in soil [J/OL]. Journal of Visualized Experiments, 2012. [2018-09-30]. .
17 Benzing-purdie L . Glucosamine and galactosamine distribution in a soil as determined by gas liquid chromatography of soil hydrolysates: Effect of acid strength and cations [J]. Soil Science Society of America Journal, 1980, 45: 66-70.
18 K?gel I , Bochter R . Amino sugar determination in organic soils by capillary gas chromatography using a nitrogen-selective detector [J]. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1985, 148(3): 260-267.
19 Zhang Wei , He Hongbo , Zhang Ming , et al . Analysis of soil hydrolyzed monosaccharides by gas chromatography as aldononitrile acetates derivatives [J]. Chinese Journal of Soil Science, 2008, 39(4): 913-916.
19 张威,何红波,张明,等 . 糖腈乙酰酯衍生气相色谱法测定土壤水解性单糖[J]. 土壤通报, 2008, 39(4): 913-916.
20 Liang C , Pedersen J A , Balser T C . Aminoglycoside antibiotics may interfere with microbial amino sugar analysis [J]. Journal of Chromatography A, 2009, 1 216(27): 5 296-5 301.
21 Rinne K T , Saurer M , Streit K , et al . Evaluation of a liquid chromatography method for compound-specific δ13C analysis of plant carbohydrates in alkaline media [J]. Rapid Communications in Mass Spectrometry, 2012, 26(18): 2 173-2 185.
22 Zhu R , Lin Y S , Lipp J S , et al . Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment [J]. Biogeosciences, 2014, 11(17): 4 869-4 880.
23 Barrie A , Bricout J , Koziet J . Gas chromatography—Stable isotope ratio analysis at natural abundance levels [J]. Biomedical Mass Spectrometry, 1984, 11(11): 583-588.
24 Glaser B , Gross S . Compound-specific δ13C analysis of individual amino sugars—A tool to quantify timing and amount of soil microbial residue stabilization [J]. Rapid Communications in Mass Spectrometry, 2005, 19(11): 1 409-1 416.
25 Wei Hailun , Cai Jingong , Wang Guoli , et al . The diversity of organic matter in marine sediments and the suspiciousness of source parameters: A review [J]. Advances in Earth Science, 2018, 33(10): 1 024-1 033.
25 韦海伦, 蔡进功, 王国力, 等 .海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1 024-1 033.
26 Tian Qiuxiang , Zhang Wei , Yan Ying , et al . The application of stable isotope techniques in investigating cycling of soil organic components [J]. Soils, 2011, 43(6): 862-869.
26 田秋香,张威,闫颖,等 . 稳定性同位素技术在土壤重要有机组分循环转化研究中的应用[J]. 土壤, 2011, 43(6): 862-869.
27 He H , Xie H , Zhang X , et al . A gas chromatographic/mass spectrometric method for tracing the microbial conversion of glucose into amino sugars in soil [J]. Rapid Communications in Mass Spectrometry, 2005, 19(14): 1 993-1 998.
28 He H , Xie H , Zhang X . A novel GC/MS technique to assess 15N and 13C incorporation into soil amino sugars [J]. Soil Biology and Biochemistry, 2006, 38(5): 1 083-1 091.
29 Fernandes L , D'Souza F , Matondkar S G P , et al . Amino sugars in suspended particulate matter from the Bay of Bengal during the summer monsoon of 2001 [J]. Journal of Earth System Science, 2006, 115(3): 363-370.
30 Niggemann J , Lomstein B A , Schubert C J . Diagenesis of amino compounds in water column and sediment of Lake Baikal [J]. Organic Geochemistry, 2018, 115: 67-77.
31 Zelles L . The simultaneous determination of muramic acid and glucosamine in soil by high-performance liquid chromatography with precolumn fluorescence derivatization[J]. Biology and Fertility of Soils, 1988, 6(2): 125-130.
32 Appuhn A , Joergensen R G , Raubuch M , et al . The automated determination of glucosamine, galactosamine, muramic acid, and mannosamine in soil and root hydrolysates by HPLC[J]. Journal of Plant Nutrition and Soil Science, 2004, 167(1): 17-21.
33 Cataldi T R , Campa C , De Benedetto G E . Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: The potential is still growing [J]. Fresenius Journal of Analytical Chemistry, 2000, 368(8): 739-758.
34 Cao L , Tian H , Wu M , et al . Determination of curdlan oligosaccharides with high-performance anion exchange chromatography with pulsed amperometric detection [J]. Journal of Analytical Methods in Chemistry, 2018, DOI:10.1155/2018/3980814.
doi: 10.1155/2018/3980814.
35 Cheng X , Kaplan L A . Improved analysis of dissolved carbohydrates in stream water with HPLC-PAD [J]. Analytical Chemistry, 2001, 73(3): 458-461.
36 Krummen M , Hilkert A W , Juchelka D , et al . A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2004, 18(19): 2 260-2 266.
37 Lorrain A , Graham B , Ménard F , et al . Nitrogen and carbon isotope values of individual amino acids: A tool to study foraging ecology of penguins in the Southern Ocean [J]. Marine Ecology Progress Series, 2009, 391: 293-306.
38 Richter A , Wanek W , Werner R A , et al . Preparation of starch and soluble sugars of plant material for the analysis of carbon isotope composition: A comparison of methods [J]. Rapid Communications in Mass Spectrometry, 2009, 23(16): 2 476-2 488.
39 Hofstetter T B , Berg M . Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis[J]. Trends in Analytical Chemistry, 2011, 30(4): 618-627.
40 Bodé S , Denef K , Boeckx P . Development and evaluation of a high-performance liquid chromatography/isotope ratio mass spectrometry methodology for δ13C analyses of amino sugars in soil [J]. Rapid Communications in Mass Spectrometry, 2009, 23(16): 2 519-2 526.
41 Dippold M A , Boesel S , Gunina A , et al . Improved δ13C analysis of amino sugars in soil by ion chromatography-oxidation-isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2014, 28(6): 569-576.
42 Theodoridis G , Gika H G , Wilson I D . Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies[J].Mass Spectrometry Reviews, 2011, 30(5): 884-906.
43 Milne S B , Mathews T P , Myers D S , et al . Sum of the parts: Mass spectrometry-based metabolomics[J]. Biochemistry, 2013, 52(22): 3 829-3 840.
44 Hu Y , Zheng Q , Wanek W . Flux analysis of free amino sugars and amino acids in soils by isotope tracing with a novel liquid chromatography/high resolution mass spectrometry platform [J]. Analytical Chemistry, 2017, 89(17): 9 192-9 200.
45 Dick W A , Thavamani B , Conley S , et al . Prediction of β-glucosidase and β-glucosaminidase activities, soil organic C, and amino sugar N in a diverse population of soils using near infrared reflectance spectroscopy[J]. Soil Biology and Biochemistry, 2013, 56: 99-104.
46 Zhang B , Yang X , Drury C F , et al . A mid-infrared spectroscopy method to determine the glucosamine, galactosamine, and muramic acid concentrations in soil hydrolysates [J]. Soil Biology & Biochemistry, 2013, 77(3): 842.
47 Zhang L , Yang X , Drury C , et al . Infrared spectroscopy estimation methods for water-dissolved carbon and amino sugars in diverse Canadian agricultural soils[J]. Canadian Journal of Soil Science, 2018, 98(3): 484-499.
[1] 曾献棣, 唐红, 李雄耀, 欧阳自远, 王世杰. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482.
[2] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[3] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[4] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[5] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[6] 姜苏,李院生,马红梅,安春雷. 环境中高氯酸盐的来源、污染现状及其分析方法[J]. 地球科学进展, 2010, 25(6): 617-624.
[7] 蒲阳,张虎才,雷国良,常凤琴,杨明生,庞有智. 西北地区晚第四纪沉积地层一元正脂肪酸酰胺分布特征及古气候意义[J]. 地球科学进展, 2010, 25(5): 533-542.
[8] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[9] 赵士洞,张永民. 生态系统与人类福祉——千年生态系统评估的成就、贡献和展望[J]. 地球科学进展, 2006, 21(9): 895-902.
[10] 王毅民,王晓红,高玉淑. 地球科学中的现代分析技术[J]. 地球科学进展, 2003, 18(3): 476-482.
[11] 李新景,卢松年. 高温气相色谱与石油分析[J]. 地球科学进展, 1999, 14(2): 193-196.
[12] 刘洛夫. 金属卟啉分析的新方法[J]. 地球科学进展, 1995, 10(1): 78-80.