地球科学进展 ›› 2016, Vol. 31 ›› Issue (4): 403 -408. doi: 10.11867/j.issn.1001-8166.2016.04.0403.

上一篇    下一篇

基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨
陈林 1, 2( ), 唐红 1,,A; *( ), 李雄耀 1, 欧阳自远 1, 王世杰 3   
  1. 1.中国科学院地球化学研究所月球与行星科学研究中心,贵州 贵阳 550081
    2.中国科学院大学,北京 100049
    3.中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550081
  • 收稿日期:2016-01-30 修回日期:2016-03-15 出版日期:2016-04-20
  • 通讯作者: 唐红 E-mail:chenlin@mail.gyig.ac.cn;tanghong@mail.gyig.ac.cn
  • 基金资助:
    国家自然科学基金项目“太阳风注入月表斜长石所生成水的形态和热稳定性模拟研究”(编号:41403057);贵州省科学技术基金项目“月表红外探测水赋存状态的模拟研究”(编号:黔科合J字[2013]2288号)资助

The Quantitative IR Spectroscopic Determination of OH in Apatite Based on 1.4 μm

Lin Chen 1, 2( ), Hong Tang 1( ), Xiongyao Li 1, Ziyuan Ouyang 1, Shijie Wang 3   

  1. 1.Lunar and Planetary Science Research Center, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081,China
    2.University of Chinese Academy of Sciences, Beijing 100049,China
    3.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081,China
  • Received:2016-01-30 Revised:2016-03-15 Online:2016-04-20 Published:2016-04-10
  • About author:

    First author:Chen Lin(1990-), male, Chengdu City, Sichuan Province, Master student.Research area include Lunar and Planetary Sciences.E-mail:chenlin@mail.gyig.ac.cn

    Corresponding author:Tang Hong(1984-), female, Neijiang City, SichuanProvince, Associate Professor.Research area include lunar and planetary sciences.E-mail:tanghong@mail.gyig.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “The form and thermal stability of water in lunar plagioclase by solar wind implantation”(No.41403057);The Guizhou Province Science and Technology Fund “Simulation of infrared detection of water occurrence state on lunar surface”(No

水在地球科学各个领域以及行星演化和太空探索中都是非常重要的物质。我国嫦娥-3号的近红外光谱数据在1.4 μm附近出现了微弱的峰,可能代表了水的存在。为了定量计算其水含量,以磷灰石为研究对象,通过对磷灰石结构水在1.4 μm和2.8 μm红外光谱相关性的分析和验证,获得了其在1.4 μm红外光谱的摩尔吸收系数。磷灰石在1.4 μm和2.8 μm处的吸收峰与其晶体定向有关,当光矢量E平行于磷灰石晶体c轴时,根据Beer-Lambert定律,可用公式C=ωA/ερd定量计算磷灰石中水的含量。这一结果可为解译嫦娥-3号近红外光谱数据中水的信号提供借鉴。该方法能为月球其他矿物在近红外光谱中结构水的定量计算提供依据。

Water plays an important role in nearly every aspect of geological processes as well as in the evolution of planetary bodies. Chang E-3 NIR spectra appeared weak peak of OH in the vicinity of signal 1.4 μm, it may represent the presence of water. In order to quantitatively calculate the water content, apatite as the research object in the paper. Through analyzing and validating the infrared spectrum correlation between 1.4 μm and 2.8 μm of the structure water in the apatite, we obtained its molar absorption coefficient in the infrared spectrum of 1.4 μm. IR spectra were collected on oriented. When the light vector E is parallel to the c-axis of the apatite crystal, H2O concentration in apatite can be related to measured IR absorbance as follows: C=ωA/ερd, which based on Beer-Lambert’s law. This result can provide reference for the interpretation of Chang E-3 near-infrared spectral data of water signal. This method can provide the basis for the quantitative calculation of structure water in the near infrared spectrum in other moon minerals.

中图分类号: 

表1 样品特征
Table 1 Apatite samples and description
表2 磷灰石近红外光谱数据
Table 2 Infrared spectrum properties of apatite
图1 磷灰石2.8 μm红外光谱图
Fig.1 Infrared spectra of apatite in 2.8 μm
图2 磷灰石1.4 μm红外光谱图
Fig.2 Infrared spectra of apatite in 1.4 μm
图3 磷灰石1.4~2.8μm相关性
Fig.3 Correlation between 1.4 μm and 2.8 μm in apatite
表3 1.4 μm A intA lin摩尔吸收系数计算结果
Table 3 Calculation results of ε 1.4 with A int and A lin
表4 磷灰石样品含水量(wt%)
Table 4 Water content of apatite (wt%)
[1] Yang Xiaozhi, Xia Qunke, Yu Huimin, et al.The possible effect of hydrogen on the high electrical conductivity in the lower continental crust[J]. Advances in Earth Science,2006, 21(1):31-38.
[杨晓志, 夏群科, 于慧敏,等.大陆下地壳高电导率的起源:矿物中的结构水[J]. 地球科学进展, 2006, 21(1):31-38.]
[2] Clark R N.Detection of adsorbed water and hydroxyl on the Moon[J].Science,2009, 326(5 952):562-564.
[3] Pieters C M, Goswami J N, Clark R N, et al.Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1[J].Science,2009, 326(5 952):568-572.
[4] Sunshine J M, Farnham T L, Feaga L M, et al.Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft[J].Science,2009, 326(5 952):565-568.
[5] Spudis P D, Bussey D B J, Baloga S M, et al. Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission[J].Geophysical Research Letters,2010, 37(6):401-408.
[6] Saal A E, Hauri E H, Cascio M L, et al.Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192-195[J].Nature,2008, 454(7 201):192-195.
[7] Boyce J W, Yang L, Rossman G R, et al.Lunar apatite with terrestrial volatile abundances[J].Nature,2010, 466:466-469.
[8] Greenwood J P, Itoh S, Sakamoto N, et al.Water in Apollo rock samples and the D/H of lunar apatite[J]. Lunar and Planetary Science Conference,2010, 41:2 439.
[9] Liu Y, Guan Y, Zhang Y, et al.Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water[J].Nature Geoscience,2012, 5(11):779-782.
[10] Hui H, Peslier A H, Zhang Y, et al.Water in lunar anorthosites and evidence for a wet early Moon[J].Nature Geoscience,2013, 6(3):177-180.
[11] Hu Yongyun, Tian Feng, Zhong Shijie, et al.Recent progresses in comparative planetology—Summary of the session of comparative planetology at the 3rd conference of Earth System Sciences[J].Advances in Earth Science,2014,29(11):1 298-1 302.
[胡永云, 田丰, 钟时杰,等.比较行星学研究进展——第三届地球系统科学大会比较行星学分会场综述[J]. 地球科学进展, 2014, 29(11):1 298-1 302.]
[12] Mccubbin F M, Nekvasil H.Maskelynite-hosted apatite in the Chassigny meteorite: Insights into late-stage magmatic volatile evolution in Martian magmas[J].American Mineralogist,2008, 93(4):676-684.
[13] Mathez E A, Webster J D.Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid[J].Geochimica et Cosmochimica Acta,2005, 69(5):1 275-1 286.
[14] Webster J D, Tappen C M, Mandeville C W.Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa[J].Geochimica et Cosmochimica Acta,2009, 73(3):559-581.
[15] Wang K L, Zhang Y, Naab F U.Calibration for IR measurements of OH in apatite[J].American Mineralogist,2011, 96(8/9):1 392-1 397.
[16] Levitt S R, Condrate R A.The polarized infrared spectra of hydroxyl ion in fluorapatite[J].Applied Spectroscopy,1970, 24(2):288-289.
[1] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[2] 杨晓志,夏群科,于慧敏,郝艳涛. 大陆下地壳高电导率的起源:矿物中的结构水[J]. 地球科学进展, 2006, 21(1): 31-38.
[3] 夏群科,陈道公,支霞臣. 名义上无水的地幔矿物中结构水的研究进展[J]. 地球科学进展, 1999, 14(5): 452-457.
[4] 任战利. 沉积盆地热演化史研究新进展[J]. 地球科学进展, 1992, 7(3): 43-.
阅读次数
全文


摘要