地球科学进展 ›› 2018, Vol. 33 ›› Issue (11): 1142 -1153. doi: 10.11867/j.issn.1001-8166.2018.11.1142.

上一篇    下一篇

碎屑磷灰石对沉积物源判别的指示 *
张硕( ), 简星 *( ), 张巍   
  1. 厦门大学近海海洋环境科学国家重点实验室,海洋与地球学院,福建 厦门 361102
  • 收稿日期:2018-06-15 修回日期:2018-10-12 出版日期:2018-11-20
  • 通讯作者: 简星 E-mail:zhangshuomarine@163.com;xjian@xmu.edu.cn
  • 基金资助:
    国家自然科学基金项目“闽江不同季节入海悬浮沉积物的物源分析:来自微量元素和Sr-Nd同位素的约束”(编号:41806052);福建省自然科学基金项目“闽江口沉积物的Nd同位素组成与物源示踪”(编号:2017J05067)资助.

Sedimentary Provenance Analysis Using Detrital Apatite: A Review *

Shuo Zhang( ), Xing Jian *( ), Wei Zhang   

  1. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian Xiamen 361102, China
  • Received:2018-06-15 Revised:2018-10-12 Online:2018-11-20 Published:2018-12-21
  • Contact: Xing Jian E-mail:zhangshuomarine@163.com;xjian@xmu.edu.cn
  • About author:

    First author:Zhang Shuo(1995-), male, Hanzhong City, Shaanxi Province, Master student. Research areas include sedimentary geology and sedimentary geochemistry. E-mail: zhangshuomarine@163.com

  • Supported by:
    Foundation item:Project supported by the National Natural Science Foundation of China "Provenance of seasonal suspended sediments discharged by the Minjiang River: Constraints from trace elements and Sr-Nd isotopes"(No.41806052);The Natural Science Foundation in Fujian Province "Nd isotopes and provenance of the sediments in the Minjiang River mouth"(No.2017J05067)

基于单颗粒碎屑磷灰石原位分析的物源分析是沉积地质学研究的一种重要手段。磷灰石中Sr,Y和稀土等微量元素含量由SiO2含量和所在熔体中的分配系数控制,微量元素的含量在不同岩石的磷灰石中差异较大,可作为指示其母岩类型的重要指标。磷灰石在物源分析中的应用可归纳为以下3个方面:①元素地球化学,特征元素包括Sr、Y、稀土元素(REE)等;②同位素地球化学,包括Sr-Nd同位素、Lu-Hf同位素等;③单颗粒多法定年,即同颗粒磷灰石进行(U-Th)/He、裂变径迹和U-Pb定年分析。综合上述3个方面可获得磷灰石的母岩类型、形成条件和后期演化、源区抬升剥蚀史、沉积区沉降史等信息。尽管碎屑磷灰石的热年代学目前在沉积物源研究中运用广泛,但基于碎屑磷灰石元素及同位素地球化学(包括磷灰石U-Pb同位素定年)的沉积物源判别仍处于起步阶段,在沉积地质学、盆地分析、构造地质学等研究领域具有广阔的应用前景。

In situ analysis of detrital apatite is a significant approach to sedimentary provenance analysis, which is an important aspect in sedimentary geology study. Several trace elements such as Sr, Y and Rare Earth Elements (REEs) concentrate in apatites, and the distribution of these elements depends on the content of SiO2 and the distribution coefficient of the melt, thus the trace element abundances is obviously different in different rocks. These features can be used to indicate parent-rocks of detrital apatites in sedimentary rocks. The approaches and proxies of detrital apatite to sedimentary provenance analysis can be summarized as follows. ①elemental geochemistry, such as Sr, Y, REEs, the approaches including chondrite-normalised REE distribution patterns of apatites, Classification and Regression Tree (CART) and discriminant plots of REE parameters; ②isotopic geochemistry, including Sr-Nd and Lu-Hf isotopes; ③Multi-dating, including low-temperature thermochronology such as (U-Th)/He (AHe)and Fission Track (AFT) dating, and high-temperature thermochronology such as U-Pb dating. Based on an integrated analysis using these methods, we can get various and comprehensive geological information such as the rock type, formation conditions and evolution of source rocks, the history of uplift and exhumation of source areas and even the subsidence history of sedimentary basins. Although the low-temperature thermochronology of detrital apatite is widely used in sedimentary provenance analysis, the elemental and isotopic geochemistry, as well as the U-Pb dating, remains to be developed. These approaches are supposed to have wide application prospects in several research areas such as tectonics, sedimentary geology basin analysis and even paleoclimatology.

中图分类号: 

图1 各类型岩石中磷灰石REE球粒陨石标准化配分模式图
(a)~(c) 数据来自参考文献[ 19 ];(d),(e) 数据来自参考文献[ 6 ];(f) 数据来自参考文献[35,36];(g)数据来自参考文献[ 32 , 33 , 34 ];(h)数据来自参考文献[37,38];(i)数据来自参考文献[ 39 ];(j)数据来自参考文献[ 40 ];(k)数据来自参考文献[ 41 ];(l)数据来自参考文献[42,43]
Fig.1 Chondrite-normalised REE distribution patterns of apatites from different rock types
The data in (a)~(c) comes from reference[19]; The data in (d),(e) comes from reference[6]; The data in (f) comes from references[35,36];The data in (g) comes from references[32~34]; The data in (h) comes from references[37,38]; The data in (i) comes from reference[39];The data in (j) comes from reference[40]; The data in (k) comes from reference[41]; The data in (l) comes from references[42,43]
图2 辨别磷灰石母岩类型的分类回归树
虚线部分为本文改动或增加部分,增加部分数据来源:榴辉岩数据来自参考文献[25,41];碳酸岩数据来自参考文献[40,49];花岗岩数据来自参考文献[19,50];铁矿床数据来自参考文献[33,37]
Fig.2 CART for the recognition of apatites from different rock types
The dotted lines mean the modified or added, the data in added part: The data in eclogite comes from references[25,41]; The data in carbonatite comes from references[40,49]; The data in granite comes from references[19,50]; The data in iron deposit comes from references[33,37]
图3 不同岩石类型的二元判别图解(a)(Gd/Yb) N-δEu图解;(b)(La/Sm) N -(La/Yb) N图解;(c)(La/Yb) N-∑REE图解;碳酸岩数据来自参考文献[40,49];二辉橄榄岩、辉绿岩数据来自参考文献[ 6 ];正长岩数据来自参考文献[35,36];花岗岩数据来自参考文献[19,50~52];花岗伟晶岩数据来自参考文献[ 39 ];岩浆型铁矿床数据来自参考文献[37,38];热液流体相关的铁矿床数据来自参考文献[ 32 , 33 , 34 ];榴辉岩数据来自参考文献[ 41 ];角闪岩数据来自参考文献[ 53 ];磷块岩数据来自参考文献[42,43]
Fig.3 Fields of apatite composition from different rock types, proposed as discriminant plots (a) Plot of (Gd/Yb) N-δEu, (b) Plot of (La/Sm) N -(La/Yb) N, (c) Plot of (La/Yb) N-∑REE. The data in carbonatite comes from references [40,49]; The data in lherzolite and dolerite comes from reference[6]; The data in syenite comes from references[35,36]; The data in carbonatite comes from references[19,50~52]; The data in granitic pegmatite comes from reference[39]; The data in magmatic iron deposit comes from references[37,38]; The data in hydrothermal iron deposit comes from references[32~34]; The data in eclogite comes from reference[41];The data in amphibolite comes from reference[53]; The data in phosphorite comes from references[42,43]
图4 磷灰石多法定年示意图
(a)岩石抬升、剥蚀过程中的热历史轨迹;(b)多法定年峰值图;数据来自参考文献[55,56]
Fig.4 Illustration of Multi-dating of detrital apatite
(a)The track of thermal history during lifting and exhumation;(b)The density diagrams of multi-dating; The data comes from references[55,56]
[1] Qian Tao, Wang Zongxiu, Liu Yongqing, et al. A provenance analysis of Jurassic sedimentary in southern Qaidam Basin stratigraphic sequence and chronological information by LA-ICP-MS[J]. Science in China(Series D),2018,48(2):224-242.
[钱涛, 王宗秀, 柳永清,等. 柴达木盆地北缘侏罗纪沉积物源分析:地层序列及LA-ICP-MS年代学信息[J]. 中国科学: D辑,2018,48(2):224-242.]
[2] Yang Renchao, Li Jinbu, Fan Aiping, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 2013, 31(1):99-107.
[杨仁超, 李进步, 樊爱萍,等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报, 2013, 31(1):99-107.]
URL    
[3] Jian Xing, Guan Ping, Zhang Wei.Detrital rutile: A sediment provenance indicator[J]. Advances in Earth Science,2012,27(8): 828-846.
[简星, 关平, 张巍.碎屑金红石: 沉积物源的一种指针[J].地球科学进展,2012,27(8): 828-846.]
doi: 10.11867/j.issn.1001-8166.2012.08.0828     URL    
[4] Eynatten H V, Dunkl I.Assessing the sediment factory: The role of single grain analysis[J]. Earth-Science Reviews, 2012,115(1/2): 97-120.
doi: 10.1016/j.earscirev.2012.08.001     URL    
[5] Lisker F, Ventura B, Glasmacher U A.Apatite thermochronology in modern geology[J]. Geological Society London Special Publications, 2009, 324(1):1-23.
doi: 10.1144/SP324.1     URL    
[6] Belousova E A, Griffin W L, O'Reilly, et al. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 2002,76(1):45-69.
doi: 10.1016/S0375-6742(02)00204-2     URL    
[7] Jian X, Guan P, Zhang W, et al. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam Basin[J]. Gondwana Research, 2018, 60:94-104.
doi: 10.1016/j.gr.2018.04.007     URL    
[8] David M C, Spiking R A.Geochronology and thermochronology using apatite: Time and temperature, lower crust to surface[J]. Elements, 2015,11(3):189-194.
doi: 10.2113/gselements.11.3.189     URL    
[9] Danišík M, Pfaff K, Evans N J, et al. Tectonothermal history of the Schwarzwald ore district (Germany): An apatite triple dating approach[J]. Chemical Geology,2010, 278(1/2):58-69.
doi: 10.1016/j.chemgeo.2010.08.022     URL    
[10] Morton A C, Hallsworth C R.Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999,124(1/4):3-29.
doi: 10.1016/S0037-0738(98)00118-3     URL    
[11] Thomson S N, Gehrels G E, Ruiz J, et al. Routine low damage apatite U-Pb dating using laser ablation-multi collector-ICPMS[J]. Geochemistry Geophysics Geosystems, 2012,13. DOI:10.1029/2011GC003928.
doi: 10.1029/2011GC003928     URL    
[12] Malusà M G, Wang J, Garzanti E, ,et al. Trace-element. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology[J].Lithos,2017,290/291:48-59.
[13] Huang Xiaofen, Zhang Qin.A study on crystal structure of collophanite[J]. Acta Mineralogica Sinica, 2011,31(3):566-570.
[黄小芬, 张覃.胶磷矿晶体结构研究[J]. 矿物学报, 2011,31(3):566-570.]
URL    
[14] Cai Xiucheng, Fu Yude.Several progress in study of apatite[J]. Earth and Environment, 1979,(10):16-22.
[蔡秀成, 富毓德. 磷灰石研究的某些进展[J]. 地质地球化学,1979,(10):16-22.]
[15] Webster J D, Piccoli P M.Magmatic apatite: A powerful, yet deceptive mineral[J]. Elements, 2015,11(3):177-182.
doi: 10.2113/gselements.11.3.177     URL    
[16] Yue Yuanzhen.Characteristics of the apatites of the volcanic complex in Lujiang-Zhongyang[J]. Journal of Mineralogy and Petrology, 1983, (4):12-16.
[岳元珍. 庐枞地区中生代陆相火山杂岩中的磷灰石特征及其地质意义[J]. 矿物岩石,1983,(4):12-16.]
[17] Nash W P.Phosphate minerals in terrestrial igneous and metamorphic rocks[M]∥Phosphate Minerals. Heidelberg: Springer Berlin, 1984:215-241.
[18] Harlov D E, Andersson U B, Förster H J, et al. Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden[J]. Chemical Geology, 2002, 191(1/3):47-72.
doi: 10.1016/S0009-2541(02)00148-1     URL    
[19] Sha L K, Chappell B W.Apatite chemical composition by electron microprobe and laser-blation inductively coupled plasma spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta,1999,63(22):3 861-3 881.
doi: 10.1016/S0016-7037(99)00210-0     URL    
[20] Farley K A, Shuster D L, Ketcham R A.U and Th zonation in apatite observed by laser ablation ICPMS and implications for the(U-Th)/He system[J]. Geochimica et Cosmochimica Acta, 2011,75(16):4 515-4 530.
doi: 10.1016/j.gca.2011.05.020     URL    
[21] Flowers R M, Kelley S A.Interpreting data dispersion and "inverted" dates in apatite(U-Th)/He and fission track datasets: An example from the US midcontinent[J]. Geochimica et Cosmochimica Acta, 2011, 75(18):5 169-5 186.
doi: 10.1016/j.gca.2011.06.016     URL    
[22] Ault A K, Flowers R M.Is apatite U-Th zonation information necessary for accurate interpretation of apatite (U-Th)/He thermochronometry data[J]. Geochimica et Cosmochimica Acta,2012,79:60-78.
doi: 10.1016/j.gca.2011.11.037     URL    
[23] Johnstone S, Hourigan J, Gallagher C.LA-ICP-MS depth profile analysis of apatite: Protocol and implications for(U-Th)/He thermochronometry[J]. Geochimica et Cosmochimica Acta, 2013,109:143-161.
doi: 10.1016/j.gca.2013.01.004     URL    
[24] Spiegel C, Kohn B, Belton D, et al. Apatite(U-Th-Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation[J]. Earth and Planetary Science Letters, 2009,285(1):105-114.
doi: 10.1016/j.epsl.2009.05.045     URL    
[25] Zheng Mengmeng, Zhang Lijuan,Lü Zeng, et al. Geochemistry of apatite from HP-UHP metamorphic belt in southwestern Tianshan Mountains, Xinjiang[J]. Acta Petrologica et Mineralogica, 2017,36(4):501-518.
[郑萌萌, 张丽娟, 吕增,等.新疆西南天山高压—超高压变质带中磷灰石的地球化学研究[J]. 岩石矿物学杂志, 2017,36(4):501-518.]
[26] Tang Qian, Sun Xiaoming, Liang Jinlong, et al. Rare Earth Elements(REE) geochemistry of apatites in HP-UHP metamorphic rocks from Chinese Continental Scientific Drilling(CCSD) project and their implications[J]. Acta Petrologica Sinica,2007,23(12): 3 255-3 266.
[汤倩, 孙晓明, 梁金龙,等. CCSD HP-UHP变质岩中磷灰石稀土元素(REE)地球化学及其示踪意义[J]. 岩石学报, 2007,23(12):3 255-3 266.]
doi: 10.3969/j.issn.1000-0569.2007.12.018     URL    
[27] Piccoli P M.Apatite in igneous systems[J]. Phosphates Geochemical Geobiological & Materials Importance, 2002,48(1):255-292.
[28] Bühn B, Wall F, Bas M J L. Rare earth element systematics of carbonatitic fluorapatites, and their significance for carbonatite magma evolution[J]. Contributions to Mineralogy & Petrology, 2001,141(5):572-591.
doi: 10.1007/s004100100261     URL    
[29] Zhu Xiaoqing, Wang Zhonggang, Huang Yan, et al. REE content and distribution in apatite and its geological tracing significance[J]. Chinese Rare Earths, 2004,25(5):41-45.
[朱笑青, 王中刚, 黄艳,等.磷灰石的稀土组成及其示踪意义[J]. 稀土, 2004,25(5): 41-45.]
doi: 10.3969/j.issn.1004-0277.2004.05.013     URL    
[30] Hoche T, Moisescu C, Avramov I, et al. Microstructure of SiO2-Al2O3-CaOP2O5-K2 O-F-glass ceramics needlelike versus isometric morphology of apatite crystals[J]. Chemistry of Materials,2001,13(4):1 312-1 319.
doi: 10.1021/cm001203p     URL    
[31] Li Yingyun.Some characteristics of igneous apatite[J]. Geological Review, 1963,21(3):141-145.
[李应运. 火成岩中副矿物磷灰石的某些特征[J]. 地质论评, 1963,21(3):141-145.]
URL    
[32] Nie Fengjun, Jiang Sihong, Liu Yan.Rare earth element features of apatite separated from the Heiyingshan high-grade iron deposit, Inner Mongolia[J]. Acta Geoscientica Sinica, 2005,26(5):435-442.
[聂凤军,江思宏,刘妍.内蒙古黑鹰山富铁矿床磷灰石稀土元素地球化学特征[J]. 地球学报, 2005,26(5):435-442.]
doi: 10.3975/cagsb.2005.05.07     URL    
[33] Zhang Lejun, Zhou Taofa, Fan Yu, et al. A LA-ICP-MS study of apatite from the Taocun magnetite-apatite deposit, Ningwu Basin[J]. Acta Geologica Sinica, 2011,85(5):834-848.
[张乐骏, 周涛发, 范裕,等.宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J]. 地质学报, 2011,85(5):834-848.]
URL    
[34] Lan Caiyun, Zhao Taiping, Luo Zhengzhuan, et al. The genesis of the Zhaoanzhuang Fe oxide deposit in Wuyang region of Henan Province: Insights from magnetite and apatite[J]. Acta Petrologica Sinica, 2015,31(6):1 653-1 670.
[兰彩云, 赵太平, 罗正传,等.河南舞阳赵案庄铁矿床成因:来自磁铁矿和磷灰石的矿物学证据[J]. 岩石学报, 2015,31(6): 1 653-1 670.]
URL    
[35] Zhou Lingdi, Wang Yangchuan.REE geochemical characteristics of apatite, sphene and zircon from alkaline rocks[J]. Geochimica, 1988,(3):224-233.
[周玲棣, 王扬传.碱性岩中磷灰石、榍石和锆石的稀土元素地球化学特征[J]. 地球化学, 1988,(3): 224-233.]
URL    
[36] Zhao Zhenhua, Bao Zhiwei, Qiao Yulou.A peculiar composite M-and W-type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China[J]. Chinese Science Bulletin, 2010,55(15):1 474-1 488.
[赵振华, 包志伟, 乔玉楼.一种特殊的“M”与“W”复合型稀土元素四分组效应:以水泉沟碱性正长岩为例[J]. 科学通报, 2010,55(15):1 474-1 488.]
[37] Liu Feng, Yang Fuquan, Li Yanhe, et al. Trace element and rare earth element characteristics of apatite from Abagong iron deposit in Altay City, Xinjiang[J]. Mineral Deposits, 2009,28(3):251-264.
[刘锋, 杨富全, 李延河,等.新疆阿勒泰市阿巴宫铁矿磷灰石微量和稀土元素特征及矿床成因探讨[J]. 矿床地质, 2009,28(3):251-264.]
[38] Frietsch R, Perdahl J A.Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types[J]. Ore Geology Reviews, 1995, 9(6):489-510.
doi: 10.1016/0169-1368(94)00015-G     URL    
[39] Zhang Hui, Liu Congqiang.Tetrad effect of REE in apatites from pegmatite NO.3, Altay, Xinjiang and its implications[J]. Geochimica, 2001,30(4):323-334.
[张辉, 刘丛强.新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素“四分组效应”及其意义[J]. 地球化学, 2001,30(4):323-334.]
doi: 10.3321/j.issn:0379-1726.2001.04.004     URL    
[40] Qiu Jiansheng, Zhang Xiaolin, Hu Jian, et al. In situ LA-ICP-MS analyses of apatites from carbonatites in western Shandong Province: Implications for petrogenesis[J]. Acta Petrologica Sinica, 2009,25(11):2 855-2 865.
[邱检生, 张晓琳, 胡建,等.鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义[J]. 岩石学报, 2009,25(11):2 855-2 865.]
URL    
[41] Chen Zhenyu, Zeng Lingsen, Meng Lijuan.Mineralogy and trace elemental geochemistry of apatite in Sulu eclogites[J]. Acta Petrologica Sinica, 2009,25(7):1 663-1 677.
[陈振宇, 曾令森, 孟丽娟.苏鲁榴辉岩中磷灰石的矿物学和微量元素地球化学[J]. 岩石学报, 2009,25(7):1 663-1 677.]
URL    
[42] Xie Qilai, Chen Duofu, Qi Liang, et al. REEs geochemistry of Doushantuo phosphorites and modification during post sedimentary stages in Weng'an area, South China[J]. Acta Sedimentologica Sinica, 2003,21(4):627-633.
[解启来, 陈多福, 漆亮,等.贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化[J]. 沉积学报, 2003,21(4):627-633.]
doi: 10.3969/j.issn.1000-0550.2003.04.014     URL    
[43] Wang Min, Sun Xiaoming, Ma Mingyang.Rare earth elements geochemistry and genesis of Xinhua large size phosphorite deposit in western Guizhou[J]. Mineral Deposits, 2004, 23(4):484-493.
[王敏,孙晓明,马名扬.黔西新华大型磷矿磷块岩稀土元素地球化学及其成因意义[J].矿床地质,2004,23(4):484-493.]
doi: 10.3969/j.issn.0258-7106.2004.04.008     URL    
[44] Boyton W V.Rare Earth Element Geochemistry[M]. New York: Elsevier Science Publishers, 1984:63-114.
[45] Zhu Yongfeng, Massonne H J.Discovery of pyrrhotite exsolution in apatite[J]. Acta Petrologica Sinica, 2005,21(2):405-410.
[朱永峰, Massonne H J.磷灰石中磁黄铁矿出溶结构的发现[J]. 岩石学报, 2005,21(2):405-410.]
doi: 10.3969/j.issn.1000-0569.2005.02.014     URL    
[46] Liang Fenghua, Zeng Lingsen, Chen Jing, et al. Discovery of apatite with copper-bearing pyrrhotite exsolution in an eclogite from Rongcheng, eastern Shandong Province[J]. Acta Petrologica Sinica, 2006,22(2):433-438.
[梁凤华, 曾令森, 陈晶,等.胶东荣成榴辉岩中含铜磁黄铁矿出溶结构的磷灰石的发现及其意义[J]. 岩石学报, 2006,22(2):433-438.]
doi: 10.3321/j.issn:1000-0569.2006.02.015     URL    
[47] Tang Qian, Sun Xiaoming, Xu Li, et al. Discovery of iron oxide, monazite and barite exsolutions in apatite veins in eclogite from the Chinese Contimental Scientific Drilling(CCSD) project and significance[J]. Acta Petrologica Sinica, 2006,22(7):1 915-1 920.
[汤倩, 孙晓明, 徐莉,等.中国大陆科学钻探(CCSD)榴辉岩磷灰石脉体中铁的氧化物、重晶石和独居石出溶物的发现及其意义[J]. 岩石学报, 2006,22(7):1 915-1 920.]
doi: 10.3969/j.issn.1000-0569.2006.07.017     URL    
[48] Guo Haiyan, Xia Yong, He Shan, et al. Geochemical characteristics of Zhijin phosphorite type rare-earth deposit, Guizhou Province, China[J]. Acta Mineralogica Sinica,2017,37(6):755-763.
[郭海燕, 夏勇, 何珊,等.贵州织金磷块岩型稀土矿地球化学特征[J]. 矿物学报,2017, 37(6): 755-763.]
URL    
[49] Broom-Fendley S, Brady A E, Wall F, et al. REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite[J]. Ore Geology Reviews,2016, 81:23-41.
doi: 10.1016/j.oregeorev.2016.10.019     URL    
[50] Belousova E A, Walters S, Griffin W L, et al. Trace-element signatures of apatites in granitoids from the mtisa inlier, northwestern Queensland[J]. Journal of the Geological Society of Australia, 2001,48(4):603-619.
doi: 10.1046/j.1440-0952.2001.00879.x     URL    
[51] Zeng Lingsen, Chen Jing, Gao Li'e, et al. The geochemical nature of apatites in high Sr /Y two-mica granites from the north Himalayan gneiss domes, southern Tibet[J].Acta Petrologica Sinica, 2012,28(9): 2 981-2 993.
[曾令森, 陈晶, 高利娥,等.藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义[J]. 岩石学报, 2012, 28(9):2 981-2 993.]
URL    
[52] Li Junjie.Preliminary study on the accessory minerals in granitoids in eastern Jilin and Heilongjiang Provinces[J]. Geology and Resources, 2005,14(2):103-107.
[李俊杰. 吉黑东部花岗岩类中副矿物锆石、磷灰石、榍石的初步研究[J]. 地质与资源, 2005,14(2): 103-107.]
[53] Li Lixing, Li Houmin, Chen Zhenyu, et al. Occurrence and genesis of hornblendite-associated nelsonite in northern Hebei Province, China:Evidence from apatite geochemistry[J]. Acta Geologica Sinica, 2014,88(3):380-388.
[李立兴, 李厚民, 陈振宇,等.冀北与角闪石岩相关铁钛磷灰岩的特征及成因——磷灰石矿物化学的证据[J]. 地质学报, 2014,88(3):380-388.]
doi: 10.3969/j.issn.0001-5717.2014.03.007     URL    
[54] Morton A, Yaxley G.Detrital apatite geochemistry and its application in provenance studies[J]. Special Paper of the Geological Society of America, 2007,420(10): 319-344.
[55] Carrapa B, Decelles P G, Reiners P W, et al. Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the central Andes: A multiphase tectonothermal history[J]. Geology, 2009,37(5):407-410.
doi: 10.1130/G25698A.1     URL    
[56] Decelles P G, Carrapa B, Gehrels G E.Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina[J]. Geology, 2007,35(4):323-326.
doi: 10.1130/G23322A.1     URL    
[57] Zhou Yaoqi, Shi Bingjie, Li Su, et al. Geochemical research progress of accessory minerals[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013,37(4):59-70.
[周瑶琪, 史冰洁, 李素,等.副矿物地球化学研究进展[J]. 中国石油大学学报:自然科学版, 2013,37(4):59-70.]
[58] Jiang Yi, Chang Hong.Apatite (U-Th)/He dating: A review[J]. Acta Petrologica et Mineralogica, 2012,31(5): 757-766.
[蒋毅, 常宏. 磷灰石(U-Th)/He定年方法综述[J]. 岩石矿物学杂志, 2012, 31(5):757-766.]
[59] Wang Jie, Qin Jianzhong, Liu Wenhui, et al. Mesozoic tectonics and dynamic thermal history in Yuanba area of northeastern Sichuan basin: Application of (U-Th)/He dating of apatite and zircon[J]. Petroleum Geology & Experiment, 2012,34(1): 19-24.
[王杰, 秦建中, 刘文汇,等.川东北元坝地区中生代构造与动态热演化史——磷灰石、锆石(U-Th)/He定年分析[J]. 石油实验地质, 2012,34(1):19-24.]
doi: 10.3969/j.issn.1001-6112.2012.01.004     URL    
[60] Bao Zengkuan, Yuan Wanming, Wang Shicheng, et al. Apatite (U-Th)/He dating and its application[J]. Acta Petrologica et Mineralogica, 2005,24(2):126-132.
[保增宽, 袁万明, 王世成,等.磷灰石(U-Th)/He定年技术及应用简介[J]. 岩石矿物学杂志, 2005,24(2):126-132.]
doi: 10.3969/j.issn.1000-6524.2005.02.006     URL    
[61] Wang Xiuxi.Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau[J]. Advances in Earth Science, 2017,32(3):234-244.
[王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J].地球科学进展,2017,32(3):234-244.]
doi: 10.11867/j.issn.1001-8166.2017.03.0234     URL    
[62] Zhang Weibin, Wu Lin, Wang Fei.Factor impacting the accuracy of apatite(U-Th)/He dating[J]. Seismology and Geology, 2016,38(4): 1 107-1 123.
[张炜斌, 吴林, 王非.磷灰石(U-Th)/He年龄准确度的影响因素[J]. 地震地质, 2016,38(4):1 107-1 123.]
doi: 10.3969/j.issn.0253-4967.2016.04.024     URL    
[63] Fu Shanling, Zhao Chenghai.Progress of in situ U-Th/He isotopic dating technique and its application to low temperature deposits[J]. Rock and Mineral Analysis, 2017,36(1):1-13.
[付山岭, 赵成海.原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景[J]. 岩矿测试, 2017,36(1):1-13.]
doi: 10.15898/j.cnki.11-2131/td.2017.01.002     URL    
[64] Shen Chuanbo, Mei Lianfu, Fan Yuanfang, et al. Advances and prospects of apatite fission track thermochronology[J]. Geological Science and Technology Information, 2005,24(2):57-63.
[沈传波, 梅廉夫, 凡元芳,等.磷灰石裂变径迹热年代学研究的进展与展望[J]. 地质科技情报, 2005,24(2):57-63.]
doi: 10.3969/j.issn.1000-7849.2005.02.011     URL    
[65] Stock G M, Ehlers T A, Farley K A.Where does sediment come from? Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry[J]. Geology, 2006, 34(9):725-728.
doi: 10.1130/G22592.1     URL    
[66] Chang Jian, Qiu Nansheng.Apatite low-temperature thermochronometry and applications to Tarim Basin in the northwestern China[J]. Earth Science Frontiers, 2017,24(3): 79-93.
[常健, 邱楠生.磷灰石低温热年代学技术及在塔里木盆地演化研究中的应用[J]. 地学前缘, 2017, 24(3):79-93.]
doi: 10.13745/j.esf.2017.03.007     URL    
[67] Chen W, Simonetti A.In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology, 2013,353(5):151-172.
doi: 10.1016/j.chemgeo.2012.04.022     URL    
[68] Cherniak D J, Lanford W A, Ryerson F J.Lead diffusion in apatite and zircon using ion implantation and ruther ford backscattering techniques[J]. Geochimica et Cosmochimica Acta, 1991,55(6):1 663-1 674.
doi: 10.1016/0016-7037(91)90137-T     URL    
[69] Zhou Hongying, Geng Jianzhen, Cui Yurong, et al. In situ U-Pb dating of apatite using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012,33(6):857-864.
[周红英, 耿建珍, 崔玉荣,等.磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报,2012,33(6): 857-864.]
doi: 10.3975/cagsb.2012.06.03     URL    
[70] Olivetti V, Balestrieri M L, Rossetti F, et al. Evidence of a full west Antarctic ice sheet back to the early Oligocene: Insight from double dating of detrital apatites in Ross Sea sediments[J]. Terra Nova, 2015,27(3):238-246.
doi: 10.1111/ter.12153     URL    
[71] Zattin M, Andreucci B, Thomson S N, et al. New constraints on the provenance of the ANDRILL AND-2A succession (Western Ross Sea, Antarctica) from apatite triple dating[J]. Geochemistry Geophysics Geosystems, 2013,13(10). DOI:10.1029/2012GC004357.
doi: 10.1029/2012GC004357     URL    
[72] Zhang Wenlan, Shao Ji'an, Wang Rucheng, et al. Sr-rich apatite from the Dangzishan leucitite-ijolite xenoliths (Heilongjiang Province): Mineralogy and mantle-fluid metasomatism[J]. Chinese Science Bulletin, 2010,55(33): 3 214-3 225.
[张文兰, 邵济安, 王汝成,等.荡子山白榴霓霞岩包体中富Sr磷灰石的发现及其成因矿物学研究[J].科学通报, 2010,55(33):3 214-3 225.]
doi: 10.1017/S0004972710001772     URL    
[73] Zong Keqing, Liu Yongsheng, Gao Changgui, et al. Spatial variations of trace element and Sr isotopic compositions of apatite in eclogite from the CCSD main hole[J]. Acta Petrologica Sinica, 2007,23(12):3 267-3 274.
[宗克清,刘勇胜,高长贵,等. CCSD主孔榴辉岩中磷灰石微区微量元素和Sr同位素组成研究[J].岩石学报, 2007,23(12):3 267-3 274.]
doi: 10.3969/j.issn.1000-0569.2007.12.019     URL    
[74] Hou Kejun, Qin Yan, Li Yanhe, et al. In situ Sr-Nd isotopic measurement of apatite using lase ablation multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2013,32(4):547-554.
[侯可军, 秦燕, 李延河,等. 磷灰石Sr-Nd同位素的激光剥蚀—多接收器电感耦合等离子体质谱微区分析[J]. 岩矿测试, 2013,32(4):547-554.]
doi: 10.3969/j.issn.0254-5357.2013.04.005     URL    
[75] Ling Wenli, Cheng Jianping.New method and new technique for the high precision chronolgy of Lu-Hf isotopic[J]. Geological Science and Technology Information, 1998,17(3):85-90.
[凌文黎, 程建萍. 高精度Lu-Hf同位素测定的新技术与新方法[J]. 地质科技情报, 1998,17(3):85-90.]
URL    
[76] Cherniak D J.Rare earth element diffusion in apatite[J]. Geochimica et Cosmochimica Acta, 2000,64(22):3 871-3 885.
doi: 10.1016/S0016-7037(00)00467-1     URL    
[77] Barfod G H, Krogstad E J, Frei R, et al. Lu-Hf and Pb SL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite[J]. Geochimica et Cosmochimica Acta, 2005, 69(7):1 847-1 859.
doi: 10.1016/j.gca.2004.09.014     URL    
[78] Larsson D, Söderlund U.Lu-Hf Apatite Geochronology of mafi cumulates: An example from a Fe-Ti mineralization at Smålands Taberg, southern Sweden[J]. Chemical Geology, 2005,224(4):201-211.
doi: 10.1016/j.chemgeo.2005.07.007     URL    
[79] Wang Tao, Wang Zongqi, Wang Dongsheng, et al. U-Pb and Hf isotopic data of detrital zircons from the Laohutang formation in the Wugongshan area, central Jiangxi Province: Constraint on sedimentary age and material source[J]. Acta Geoscientica Sinica, 2018,39(2):167-178.
[王涛, 王宗起, 王东升,等.江西武功山地区老虎塘组碎屑锆石U-Pb年龄和Hf同位素:沉积时代厘定及其源区特征[J]. 地球学报,2018,39(2):167-178.]
URL    
[80] Han Kunying, Xu Kejuan, Gao Linzhi, et al. U-Pb age and Lu-Hf isotope of detrital zircons from the meta-sedimentary rocks in the Yunkai region and their geological significance[J]. Acta Petrologica Sinica, 33(9):2939-2956.
[韩坤英, 许可娟, 高林志,等. 云开地区变质沉积岩碎屑锆石U-Pb年龄、Lu-Hf同位素特征及其地质意义[J]. 岩石学报, 2017, 33(9):2939-2956.]
URL    
[81] Nie Fengjun, Jiang Sihong, Liu Yan, et al. Sm-Nd isotopic dating of apatite separates from Heiyingshan high-grade iron deposit, Inner Mongolia[J]. Mineral Deposits, 2005,24(2):134-140.
[聂凤军, 江思宏, 刘妍,等.内蒙古黑鹰山富铁矿床磷灰石钐-钕同位素年龄及其地质意义[J]. 矿床地质,2005,24(2):134-140.]
[82] Chen Qiying, Feng Lanying.Sulphur and carbon isotopes of sedimentary apatite, Guizhou Province and their geological significance[J]. Acta Petrologica Sinica, 1996,12(4):594-597.
[陈其英, 封兰英. 黔中沉积磷灰石的硫碳同位素及其地质意义[J]. 岩石学报, 1996, 12(4):594-597.]
URL    
[83] Chu Tongqing, Shen Weizhou.Isotopic geochemistry of apatite from carbonatite in central Shandong[J]. Acta Mineralogica Sinica, 1997,17(1):82-85.
[储同庆, 沈渭洲.鲁中碳酸岩中磷灰石同位素地球化学研究[J]. 矿物学报,1997,17(1):82-85.]
URL    
[1] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[2] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[3] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[4] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
[5] 梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.
[6] 张文防,戴霜,刘海娇,陈世强,张永全,张莉莉,张瑞,汪禄波. 六盘山地区下白垩统红色绿色泥岩地球化学特征及气候环境[J]. 地球科学进展, 2012, 27(11): 1236-1244.
[7] 丁振举,刘丛强,姚书振,周宗桂. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展, 2000, 15(3): 307-312.
[8] 杨学明,杨晓勇,M.J.Le Bas. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 1998, 13(5): 457-466.
[9] 陈国能. 花岗岩成因与成矿理论研究进展——原地重熔说与元素地球化学场简介[J]. 地球科学进展, 1998, 13(2): 140-144.
[10] 贺秀斌. 微量元素锶及其同位素的地球化学研究与应用前景[J]. 地球科学进展, 1997, 12(1): 15-19.
[11] 谭明,刘东生. 洞穴碳酸钙沉积的古气候记录研究[J]. 地球科学进展, 1996, 11(4): 388-395.
[12] 洪阿实, 彭子成,李平. 洞穴石笋古温度研究的同位素地球化学方法[J]. 地球科学进展, 1995, 10(4): 348-352.
[13] 朱岳年. 天然气中非烃组分地球化学研究进展[J]. 地球科学进展, 1994, 9(4): 50-57.
[14] 储雪蓄. 稳定同位素交换反应动力学[J]. 地球科学进展, 1994, 9(1): 69-70.
[15] 卫克勤. 同位素水文地球化学[J]. 地球科学进展, 1992, 7(5): 67-.
阅读次数
全文


摘要