地球科学进展 ›› 2012, Vol. 27 ›› Issue (5): 515 -528. doi: 10.11867/j.issn.1001-8166.2012.05.0515

综述与评述 上一篇    下一篇

长江沉积物源示踪研究进展
范代读,王扬扬,吴伊婧   
  1. 1.同济大学海洋地质国家重点实验室,上海200092; 
    2.同济大学长江水环境教育部重点实验室,上海200092
  • 收稿日期:2011-10-31 修回日期:2012-03-20 出版日期:2012-05-10
  • 通讯作者: 范代读(1972-),男,福建大田人,教授,博士,主要从事海洋地质学、沉积学研究. E-mail:ddfan@tongji.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“长江中下游新生代沉积物源示踪及其环境演化意义”(编号:40830107);国家自然科学基金面上项目“冰后期长江水下三角洲高分辨率层序地层学与古环境研究”(编号:41076016);教育部高等学校博士学科点专项科研基金项目“长江河流沉积物物源示踪的定量分析方法研究”(编号:20090072110004)资助.

Advances in Provenance Studies of Changjiang Riverine Sediments

Fan Daidu 1, 2, Wang Yangyang 1, Wu Yijing 1   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China;
    2.Key Laboratory of the Yantze River Water Environment, MOE, Tongji University, Shanghai200092, China
  • Received:2011-10-31 Revised:2012-03-20 Online:2012-05-10 Published:2012-05-10

近期物源分析方法发展较快,包括稀土元素、同位素地球化学与单颗粒碎屑矿物微区分析方法的广泛运用,以及分不同粒级组分或根据需要选择特定粒级组分进行物源分析逐渐代替了全样分析法,物源示踪效果得到明显的提高。长江作为连接青藏高原与西太平洋边缘海的最重要水系,河流沉积物从源到汇的现代与历史过程备受关注。长江沉积物源示踪研究进展包括:①建立和运用河流入海沉积物示踪端元模型,定性或定量地分析长江沉积物在海域的扩散与沉积分布规律,倾向于运用细颗粒组分矿物学、元素与同位素地球化学等方法,研究程度较高,今后需注意各端元值的时空变化,及受沉积过程的分异作用与早期成岩作用的影响;②建立和运用不同支流的物源示踪模型,研究晚新生代以来长江水系的演化历史,倾向于运用粗颗粒组分的物源分析方法,尤其是单颗粒碎屑矿物微区分析。由于长江流[JP2]域面积巨大、区域地质复杂,建立支流域的精细物源分析指纹特征尚处在探索阶段,需注意运用碎屑锆石U-Pb定年与稀土元素、Hf同位素组成的综合物源分析法。综合运用多种物源分析法于长江中下游和三角洲盆地若干钻孔地层的研究,已较好地限定长江贯通的时间约在上新世晚期—早更新世之间,但仍存在较大争议,今后需在一些关键区域开展更多的深钻研究,提高物源精细示踪的效果、晚新生代地层测年的精度,并加强钻孔间的的对比研究。

The methods of provenance analysis have recently developed very rapidly with obvious increase in the effectiveness of the provenance discrimination. The trend development of the methodology includes wide usage of geochemical compositions of rare earth elements and isotopes and micro-analyses of single-grain detrital minerals to trace sediment source, and the replacement of traditional analysis of bulk samples by different-sized subsamples or typicalsized subsamples. Provenance studies of the Changjiang reverine sediments from their source to the sink system have recently attracted great interest, especially due to its highest importance in the linkage of the Tibet Plateau with the marginal seas along the West Pacific. Most of provenance studies of the Changjiang riverine sediments focus on two aspects. One is the attempt to construct the sediment-source discrimination model of the Changjiang River from others (typically the Huanghe River), and apply the model to trace transportation and distribution pattern of the Changjiang-sourced sediment in the East China marginal seas. The other is the attempt to set up the provenance distinguishing models of different tributaries or tectonic provinces within the Changjiang drainage basin, using the model to study the spatio-temperal variation in sediment delivery processes within the drainage system, and decode the evolution history of the Changjiang River network since the Late Cenozoic and its relationship with the uplift of the Tibet Plateau, gigantic geomorphological changes in East Asia, and evolving Asian monsoon system.
The end-member model of the Changjiangsourced sediments has been extensively studied in the last  few decades through employing the methods of detrital mineral assemblages, elemental and isotopic composition, etc., typically on the finegrained fraction. Most of the effort is put on the discrimination between the Changjinag and the Huanghe riverine sediments. It is recommended that future studies should pay more attention to the impact of the spatio-temperal change in the endmember characters, transported fraction, and early diagensis on the end-member modeling discrimination of river-sourced sediments in the marginal seas. It is more effective to fingerprint the sediment source from different tributaries or tectonic units with the drainage basin through using the discrimination methods on the coarse-grained fraction, typically the micro-analysis of the single detrital mineral grains. It is very complex and still under its early stage to set up fingerprinting model for the discrimination of individual tributaries or tectonic units within the Changjiang river basin due to its huge drainage area, numerous tributary networks, and various geological and climatic environments. The effort in the near future is suggested to build up a bigger database, especially to synthesize data of detrital zircon U-Pb ages, REE and Hf isotopic compositions. The recent research  tend to constrain the Changjiang runningthrough time on a narrower period of the Pliocene and the Early Pleistocene based on integrated provenance study of the Late Cenozoic sediments of several deep cores in the Changjiang middlelowerreach and deltaic basins. The controversies are still significant on the sediment source discrimination and the timing of the Changjiang formation.
Therefore, it  still needs to refine the sediment fingerprinting methodology for the higher resolution, drill more deep cores typically in some key districts of the basins at the Changjiang middle and lower reaches and the surrounded seas, improve the dating accuracy and resolution of the ages of the Late Cenozoic strata, and promote comparison studies of the provenance analysis and chronological stratigraphy among the cores.

中图分类号: 

[1]Wang Pinxian. Cenozoic deformation and history of sea-land interactions in Asia[J]. Earth Science—Journal of China University of Geosciences, 2005, 30(1):1-18.[汪品先.新生代亚洲形变与海陆相互作用[J].地球科学——中国地质大学学报,2005, 30(1):1-18.]
[2]Syvitski J P M, Kettner A. Sediment flux and the Anthropocene[J]. Philosophical Transactions of the Royal Society (A), 2011, 369(1 938): 957-975.
[3]Métivier F, Gaudemer Y, Tapponnier P, et al. Mass accumulation rates in Asia during the Cenozoic[J]. Geophysical Journal  International, 1999, 137(2): 280-318.[4]Raymo M E, Ruddiman W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6 391): 117-122.
[5]Yang Shouye. Advances in sedimentary geochemistry and tracing applications of Asian rivers[J]. Advances in Earth Science, 2006,21(6):648-655.[杨守业.亚洲主要河流的沉积地球化学示踪研究进展[J].地球科学进展,2006,21(6):648-655.]
[6]Gao Shu. Comments on the “NSF Margins Program Science Plans 2004”[J]. Marine Geology & Quaternary Geology, 2005,25(1):119-123.[高抒.美国《洋陆边缘科学计划2004》述评[J].海洋地质与第四纪地质,2005,25(1):119-123.]
[7]Crossland C J, Kremer H H, Lindeboom H J, et al. Coastal Fluxes in the Anthropocene[M]. New York: Springer, 2005.
[8]Foufoula-Georgiou E, Syvitski J, Paola C, et al. International year of deltas 2013: A proposal[J]. Eos Transactions American Geophysical Union, 2011, 92(40): 340-341.
[9]Fan Daidu, Li Congxian. Reviews on researches of timing of the Yangtze draining the Tibet Pleteau to the East China Sea[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 121-131. [范代读,李从先.长江贯通时限研究进展[J].海洋地质与第四纪地质,2007,27(2): 121-131.]
[10]Zheng Hongbo, Wang Pinxian, Liu Zhifei, et al. Carving the history of East Asia′ east-tilting topography and East Asian Monsoon—An introduction to IODP Proposal 683[J]. Advances in Earth Science, 2008,23(11): 1 150-1 160.[郑洪波,汪品先,刘志飞,等.东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介[J].地球科学进展,2008,23(11): 1 150-1 160.]
[11]Stone R. Three Gorges Dam: Throw into the unkown[J]. Science, 2008, 321: 628-632.
[12]Gao Shu. Changjiang Delta sedimentation in response to catchment discharge changes: Progress and problems[J]. Advances in Earth Science, 2010,25(3):233-241.[高抒.长江三角洲对流域输沙变化的响应:进展与问题[J].地球科学进展,2010,25(3):233-241.]
[13]Zhou M J, Shen Z L, Yu R C. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang(Yangtze) River[J]. Continental Shelf Research, 2008, 28(12): 1 483-1 489.
[14]Li Congxian, Yang Shouye, Fan Daidu, et al. The change in Changjiang suspended load and its impact on the delta after completion of Three-Gorges Dam[J]. Quaternary Sciences, 2004, 24(5):495-500. [李从先,杨守业,范代读,等.三峡大坝建成后长江输沙量的减少及其对长江三角洲的影响[J].第四纪研究,2004,24(5):495-500.]
[15]Huo Miao, Fan Daidu, Lu Qi, et al. Decadal variations in the erosion/deposition pattern of Nanhui muddy bank and their mechanism in the Changjiang Delta[J]. Acta Oceanologica Sinica, 2010, 32(5): 41-51.[火苗,范代读,陆琦,等.长江口南汇边滩冲淤变化规律与机制[J].海洋学报,2010, 32(5): 41-51.]
[16]Hu Dunxin, Yang Zuosheng. Key Processes of Flux in the East China Sea[M]. Beijing: Ocean Press, 2001. [胡敦欣,杨作升.东海海洋通量关键过程[M].北京:海洋出版社,2001.]
[17]Wang Lachun, Chen Xiaoling, Chu Tongqing. A contrast analysis on the loads character of the Changjiang River and the Yellow River[J]. Geographical Research, 1997,16(4):71-79.[王腊春,陈晓玲,储同庆.黄河、长江泥沙特性对比分析[J].地理研究,1997,16(4):71-79.]
[18]Chen Lirong. Sedimentary Mineralogy of the China Sea[M]. Beijing: Ocean Press, 2008. [陈丽蓉.中国海沉积矿物学[M].北京:海洋出版社,2008.]
[19]Sun Baiyun. Detrital mineral assemblages in the Huanghe, Changjiang and Zhujiang River Detla sediments[J]. Marine Geology & Quaternary Geology, 1990,10(3):23-34.[孙白云.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J].海洋地质与第四纪地质,1990,10(3):23-34.]
[20]Zhang Jiaqiang, Li Congxian, Cong Youzi.Hydrodynamic environment and source of the old tidal sand body in the coastal plain of the northern Jiangsu[J].Acta Oceanologica Sinica, 1998,20(3):82-90.[张家强,李从先,丛友滋.苏北陆区古潮成沙体沉积动力环境及物源[J].海洋学报,1998,20(3):82-90.]
[21]Yang Shouye, Li Congxian, Zhu Jinchu, et al. Provenance indicator of chemical fingerprint of magnetite in the Yangtze and Yellow River sediments[J]. Geochimica, 2000,29(5):480-484.[杨守业,李从先,朱金初,等.长江与黄河沉积物中磁铁矿成分标型意义[J].地球化学,2000,29(5):480-484.]
[22]Chen Lirong. A study on mineral assemblages in sediments of the Bohai Sea, the Huanghai Sea and the East China Sea[J]. Marine Sciences, 1989,(2): 1-8.[陈丽蓉.渤海、黄海、东海沉积物中矿物组合的研究[J].海洋科学,1989,(2): 1-8.]
[23]Wang Ying. Radiative Sandy Ridge Field on Continental Shelf of the Yellow Sea[M]. Beijing: Chinese Environmental Science Press, 2002.[王颖.黄海陆架辐射沙脊群[M].北京:中国环境科学出版社,2002.]
[24]Yin Xiuzhen, Liu Wanzhu, Lan Xianhong, et al. Detrital minerals and geochemistry of the surface soft sediments and their province, South Yellow Sea, China[J]. Journal of Jilin University (Earth Science Edition), 2007,37(3):491-499.[尹秀珍,刘万洙,蓝先洪,等.南黄海表层沉积物的碎屑矿物、地球化学特征及物源分析[J].吉林大学学报:地球科学版,2007,37(3):491-499.]
[25]Li C X, Zhang J Q, Fan D D, et al. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, East China[J]. Marine Geology, 2001, 173(1/4): 97-120.
[26]Milliman J D, Beardsley R, Yang Z S, et al. Modern Huanghe-derived muds on the outer shelf of the East China Sea: Identification and potential transport mechanisms[J]. Continental Shelf Research, 1985, 4(1/2): 175-188.
[27]Yang Shouye, Li Congxian. Characteristic element compositions of the Yangtze and the Yellow River sediments and their geological background[J]. Marine Geology & Quaternary Geology, 1999,19(2):19-26.[杨守业,李从先.长江与黄河沉积物元素组成及地质背景[J].海洋地质与第四纪地质,1999,19(2):19-26.]
[28]Zhao Yiyang, Yan Mingcai.Abundance of chemical elements in sediments from the Huanghe River, the Changjiang River and the continental shelf of China[J].Chinese Science Bulletin,1992, 37(23): 1 991-1 994.
[29]Liu Ming, Fan Dejiang. Comparison of the element compositions between the sediments entered into the seas from the Changjiang and the Huanghe Rivers[J]. Advances in Marine Science, 2009,27(1):42-50.[刘明,范德江.长江、黄河入海沉积物中元素组成的对比[J].海洋科学进展,2009,27(1):42-50.]
[30]Qu Cuihui, Zheng Jianxun, Yang Shaojin, et al. Study on chemical composition and its controlling factors of suspended sediments from stations in the lower reaches of the Yellow River, Yangtze River and Pear River [J]. Chinese Science Bulletin, 1984,17:1 063-1 066.[屈翠辉,郑建勋,杨绍晋,等.黄河、长江、珠江下游控制站悬浮物的化学成份及其制约因素的研究[J].科学通报,1984,17:1 063-1 066.]
[31]Yang Shouye, Jung H S, Li Congxian, et al. Major element geochemistry of sediments from Chinese and Korean rivers[J]. Geochimica, 2004,33(1): 99-105.[杨守业,Jung H S, 李从先,等.黄河、长江与韩国Keum、Yeongsan江沉积物常量元素地球化学特征[J].地球化学,2004,33(1): 99-105.]
[32]Guo Zhigang, Yang Zuosheng, Qu Yanhui, et al. Study on comparison sedimentary geochemistryof mud area on East China Sea continental shelf[J]. Acta Sedimentologica Sinica, 2000,18(2):284-289.[郭志刚,杨作升,曲艳慧,等.东海陆架泥质区沉积地球化学比较研究[J].沉积学报,2000,18(2):284-289.]
[33]Fan Dejiang, Sun Xiaogong, Yang Zuosheng, et al. A mathematical model on the quantitative provenance identification—Take the identification of the surface sediment sources from ECS as example[J]. Acta Sedimentologica Sinica, 2002,20(1):30-33.[范德江,孙效功,杨作升,等.沉积物物源定量识别的非线性规划模型——以东海陆架北部表层沉积物物源识别为例[J].沉积学报,2002,20(1):30-33.]
[34]Fan Dejiang, Yang Zuosheng, Sun Xiaogong, et al. Quantitative evaluation of sediment provenance on the north area of the East China Sea shelf[J]. Journal of Ocean University of Qingdao, 2002, 32(5):748-756.[范德江,杨作升,孙效功,等.东海陆架北部长江、黄河沉积物影响范围的定量估算[J].青岛海洋大学学报,2002, 32(5):748-756.]
[35]Yang Shouye, Li Congxian, Zhang Jiaqiang. Palaeogeographic evolution of coastal plain and provenance study of postglacial sediments in northern Jiangsu province[J]. Journal of Palaeogeography, 2000,2(2):65-72.[杨守业,李从先,张家强.苏北滨海平原冰后期古地理演化与沉积物物源研究[J].古地理学报,2000,2(2):65-72.]
[36]Xiong Yingqian, Liu Zhenxia, Du Dewen, et al. Variation and its implication of major and trace elements of EA01 from the continent shelf of the East China Sea[J]. Acta Sedimentologica Sinica, 2006,24(3):356-364.[熊应乾,刘振夏,杜德文,等.东海陆架EA01孔沉积物常微量元素变化及其意义[J].沉积学报,2006,24(3):356-364.]
[37]Yang S Y, Jung H S, Choi M S, et al. The rare Earth element compositions of the Changjiang(Yangtze) and Huanghe(Yellow) River sediments[J]. Earth and Planetary Science Letter, 2002, 201(2): 407-419.
[38]Qiao Shuqing, Yang Zuosheng.Comparison of rare Earth element compositions in different grain-size fractions of sediments from the Yangtze and Yellow Rivers and the sea[J].Marine Geology & Quaternary Geology, 2007, 27(6): 9-16.[乔淑卿,杨作升.长江和黄河入海沉积物不同粒级组分中稀土元素的比较[J].海洋地质与第四纪地质,2007, 27(6): 9-16.]
[39]Lan Xianhong, Zhang Xianjun, Zhao Guangtao, et al. Distributions of rare earth elements in sediments from core NT1 of the South Yellow Sea and their provenance discrimination[J]. Geochimica, 2009, 38(2):123-132. [蓝先洪,张宪军,赵广涛,等.南黄海NT1孔沉积物稀土元素组成与物源判别[J].地球化学,2009,38(2):123-132.]
[40]Yang Shouye, Jiang Shaoyong, Ling Hongfei, et al. Sr-Nd isotopic compositions of the Changjiang sediments: Implications for tracing sediment sources[J]. Science in China (Series D), 2007,50(1):1 556-1 565.
[41]Meng Xianwei, Du Dewen, Chen Zhihua, et al. Factors controlling spatial variation of 87Sr/86Sr in the fine-grained sediments from the overbanks of the Yellow River and Yangtze River and its implication for provenance of marine sediments[J]. Geochimica, 2000,29(6): 562-570.[孟宪伟, 杜德文,陈志华,等. 长江、黄河流域细粒沉积物的87Sr/86Sr 空间变异的制约因素及其物源指示意义[J]. 地球化学, 2000,29(6): 562-570.]
[42]Meng Xianwei, Du Dewen, Wu Jinlong. Quantitative partition of mixed surface sediments from the middle Okinawa trough into their end-members using Sr-Nd isotope[J]. Oceanogia et Limnologia Sinica, 2001,32(3):319-326.[孟宪伟,杜德文,吴金龙.冲绳海槽中段表层沉积物物质来源的定量分离:Sr-Nd同位素方法[J].海洋与湖沼,2001,32(3):319-326.]
[43]Yang Zuosheng. Mineralogical assemblages and chemical characteristics of clays from sediments of the Huanghe, Changjiang, Zhujiang Rivers and their relationship to the climate enivonment in their sediment source areas[J]. Oceanologia et Limnologia Sinica, 1988,19(4):336-346.[杨作升.黄河、长江、珠江沉积物中黏土的矿物组合化学特征及其与物源区气候环境的关系[J].海洋与湖沼,1988,19(4):336-346.]
[44]Fan Dejiang, Yang Zuosheng, Mao Deng, et al. Clay minerals and geochemistry of the sediments from the Yangtze and Yellow Rivers[J]. Marine Geology & Quaternary Geology, 2001,21(4): 7-12.[范德江,杨作升,毛登,等.长江与黄河沉积物中黏土矿物及地化成分的组成[J].海洋地质与第四纪地质,2001,21(4): 7-12.]
[45]Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research,2009, 29: 2 240-2 256.
[46]Xu Gang, Liu Jian, Wen Chun, et al. Sedimentary characteristics and provenance of surficial sediments in the west South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2010,30(4):49-56.[徐刚,刘健,温春,等.南黄海西部陆架区表层沉积特征与物源分析[J].海洋地质与第四纪地质,2010,30(4):49-56.]
[47]Zhou Xiaojing, Li Anchun, Wan Shiming, et al. Clay minerals in surficial sediments of the East China Sea shelf: Distribution and provenance[J]. Oceanologia et  Limnologia Sinica, 2010,41(5):667-675.[周晓静,李安春,万世明,等.东海陆架表层沉积物粘土矿物组成分布特征及来源[J].海洋与湖沼,2010,41(5):667-675.][48]Lü Quanrong. Mineral characteristics of fine-grain sediment and its sedimentary differentiation in Changjiang Estuary[J]. Shanghai Geology, 1992,43(3):18-25.[吕全荣.长江口细颗粒沉积物的矿物特征和沉积分异[J].上海地质,1992,43(3):18-25.]
[49]Zhou Xiaojing, Gao Shu, Jia Jianjun. Preliminary evaluation of the stability of Changjiang clay minerals as fingerprints for material source tracing[J]. Oceanologia et  Limnologia Sinica, 2003,34(6):683-692.[周晓静,高抒,贾建军.长江黏土矿物示踪标记稳定性的初步研究[J].海洋与湖沼,2003,34(6):683-692.]
[50]Zhang Weiguo, Yu Lizhong. Magnetic properties of tidal flat sediments of the Yangtze estuary and its relationship with particle size[J]. Science in China (Series D), 2003, 46(9): 954-966. 
[51]Oldfield F, Yu L. The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea[J]. Sedimentology, 1994, 41(6): 1 093-1 108.
[52]Wang Yonghong, Shen Huanting, Zhang Weiguo. A preliminary comparison of magnetic properties of sediments from the Changjiang and the Huanghe Estuaries[J].Acta Sedimentologica Sinica, 2004,22(4):658-663.[王永红,沈焕庭,张卫国.长江与黄河河口沉积物磁性特征对比的初步研究[J].沉积学报,2004,22(4):658-663.]
[53]Niu Junli, Yang Zuosheng, Li Yunhai, et al. The characteristics of the environmental magnetism in sediment from the river mouths of the Changjiang River and the Huanghe River and their comparison study[J].Marine Science, 2008, 32(4):24-30.[牛军利,杨作升,李云海,等.长江与黄河河口沉积物环境磁学特征及其对比研究[J].海洋科学,2008, 32(4):24-30.]
[54]Zhang W G, Xing Y, Yu L Z, et al. Distinguishing sediments from the Yangtze and Yellow Rivers, China: A mineral magnetic approach[J]. The Holocene, 2008, 18(7): 1 139-1 145.
[55]Wang Y H, Yu Z G, Li G X, et al. Discrimination in magnetic properties of different-sized sediments from the Changjiang and Huanghe Estuaries of China and its implication for provenance of sediment on the shelf[J]. Marine Geology, 2009, 260: 121-129.
[56]Wang Y H, Dong H L, Li G X, et al. Magnetic properties of muddy sediments on the northeastern continental shelves of China: Implication for provenance and transportation[J]. Marine Geology, 2010, 274(1): 107-119.
[57]Horng C S, Huh C A. Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait[J]. Earth and Planetary Science Letters, 2011, 309(1/2): 141-152.
[58]Changjiang Water Resources Committee. Atlas of the Changjiang River Basin[M]. Beijing: Chinese Atlas Press, 1999.[长江水利委员会.长江流域地图集[M].北京:中国地图出版社,1999.]
[59]Wang Zhongbo, Yang Shouye, Li Ping, et al. Detrital mineral compositions of the Changjiang River sediments and their tracing implications[J]. Acta Sedimentologica Sinica, 2006,24(4):570-578.[王中波,杨守业,李萍,等.长江水系沉积物碎屑矿物组成及其示踪意义[J].沉积学报,2006,24(4):570-578.]
[60]Kang Chunguo, Li Chang′an, Shao Lei. Heavy mineral characteristics of river sediments in Jianghan Plain and its response to provenance rock types[J]. Quaternary Sciences, 2009,29(2):334-342.[康春国,李长安,邵磊.江汉平原主要河流沉积物重矿物特征[J].第四纪研究,2009,29(2):334-342.]
[61]Shao Lei, Li Chang′an, Zhang Yufen, et al. Heavy mineral assemblages in modern sediments of the Chuanjiang River[J]. Geological Science and Technology Information, 2010,29(3): 49-54.[邵磊,李长安,张玉芬,等.长江川江段现代沉积物的重矿物组合特征[J].地质科技情报,2010,29(3): 49-54.]
[62]Xu Jiongxin. Sediment deposition in Yichang-Hankou reach of Changjiang River as influencedby sediment yield from different source areas[J].Journal of Sediment Research,2007,(1): 36-43.[许炯心.长江上游不同水沙来源区产沙量变化对宜昌—汉口河段泥沙冲淤量的影响[J].泥沙研究,2007,(1): 36-43.]
[63]Mei Hui, Ma Zhendong, Li Chang′an. Analysis on elementary composition of sediments in the Yangtze River and the Hanjiang River[J]. Global Geology, 2007,26(2):208-212.[梅惠,马振东,李长安.长江与汉江现代沉积物元素组成分析[J].世界地质,2007,26(2):208-212.]
[64]Yang Shouye, Wang Zhongbo.Rare Earth element compositions of the sediments from the majortributaries and the main stream of the Changjiang River[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011,30(1): 31-39.[杨守业,王中波.长江主要支流与干流沉积物的REE组成[J] .矿物岩石地球化学通报,2011,30(1): 31-39.]
[65]He Mengying, Zheng Hongbo, Huang Xiangtong, et al. Clay mineral assemblages in the Yangtze drainage and provencance implications[J]. Acta Sedimentologica Sinica, 2011,29(3):544-551.[何梦颖,郑洪波,黄湘通,等.长江流域沉积物黏土矿物组合特征及物源指示意义[J].沉积学报,2011,29(3):544-551.]
[66]Zhou Limin, Zheng Xiangmin, Wang Hui, et al. Magnetic properties of sediments in the middle and lower reaches of the Yangtze River[J]. Journal of East China Normal University (Natural Science), 2008,(6):24-31.[周立旻,郑祥民,王辉,等.长江中下游河流沉积物磁性特征初探[J].华东师范大学学报:自然科学版,2008,(6):24-31.]
[67]Wang Zhongbo, Yang Shouye, Wang Rucheng, et al.Magnetite compositions of Changjiang River sediments and their tracing implications[J].Geochimica, 2007, 36(2): 176-184.[王中波,杨守业,王汝成,等.长江河流沉积物磁铁矿化学组成及其物源示踪[J].地球化学,2007, 36(2): 176-184.]
[68]Yang J, Gao S, Yuan H, et al. Detrital zircon ages of Hanjiang River: Constraints on evolution of Northern Yangtze Craton, South China[J]. Journal of China University of Geosciences, 2007, 18(3): 210-222.
[69]Yang Rong, Seward D, Zhou Zuyi. Provenance study by U-Pb dating of the detrital zircons in theYangtze River[J]. Marine Geology & Quaternary Geology, 2010,30(6): 73-83.[杨蓉,Seward D, 周祖翼.长江流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J].海洋地质与第四纪地质,2010,30(6): 73-83.]
[70]Fan Daidu, Li Congxian, Yokoyama Kazumi. Constraint of Th(U)-Pb age of estuarine monazites on the Changjiang run-through time[J].Marine Geology Letters, 2006, 22(7): 11-15. [范代读,李从先,Yokoyama Kazumi.河口地层独居石Th(U)-Pb年龄对长江贯通时限的约束[J].海洋地质动态,2006, 22(7): 11-15.]
[71]Jia Juntao, Zheng Hongbo, Yang Shouye. Rock types in Yangtze drainage and their implications for zircon U-Pb provenance study of Yangtze sediments[J]. Journal of Tongji University (Natural Science), 2010,38(9):1 375-1 380.[贾军涛,郑洪波,杨守业.长江流域岩体的时空分布与碎屑锆石物源示踪[J].同济大学学报:自然科学版,2010,38(9):1 375-1 380.]
[72]Sun Xilin, Li Chang′an. 40Ar-39Ar age tracing of detrital muscovites and its application in Yangtze River runnigh-though time[J]. Geological Science and Technology Information, 2010,29(6):121-127.[孙习林,李长安.碎屑白云母40Ar-39Ar示踪及在长江贯通研究中的应用探讨[J].地质科技情报,2010,29(6):121-127.]
[73]Wang Yangyang, Fan Daidu. Crystalline Zircon U-Pb ages and Hf isotopic composition in the Changjiang drainage basin and its provenance implications[J]. Chinese Science Bulletin, 2013(In press).[王扬扬,范代读.长江流域岩体锆石U-Pb年龄、Hf同位素特征与精细物源示踪意义[J] .科学通报,2013,待刊.]
[74]Xiang Fang, Wang Chengshan, Li Guozhong, et al. Character of heavy minerals in Quaternary sediments in Yichang area and its relationship with cut-through of the Yangtze Three Gorges, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006,33(2):117-121.[向芳,王成善,李国忠,等.宜昌地区第四纪沉积物重矿物特征及其与三峡贯通的关系[J].成都理工大学学报:自然科学版,2006,33(2):117-121.]
[75]Xiang Fang, Zhu Lidong, Wang Chengshan, et al. Character of basaltic gravels in Quaternary sediments in Yichang area and its relationship with formation of Yangtze Three Gorges[J]. Journal of Earth Sciences and Environment, 2006,28(2):6-10.[向芳,朱利东,王成善,等.宜昌地区第四纪沉积物中玄武岩砾石特及其与长江三峡贯通的关系[J].地球科学与环境学报,2006,28(2):6-10.]
[76]Xiang Fang, Yang Dong, Tian Xin, et al. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei province and its provenance significance[J]. Journal of Mineral Petrology, 2011,31(2):106-114.[向芳,杨栋,田馨,等.湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J].矿物岩石,2011,31(2):106-114.]
[77]Zhang Yufen, Li Chang′an, Wang Qiuliang, et al. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(4): 584-590.
[78]Wang Qiuliang, Hu Sihui, Li Chang′an. Heavy mineral characteristics of gravel layers in the Zhoulao Town borehole[J]. Geology in China, 2009,36(4):878-884.[王秋良,胡思辉,李长安.周老镇钻孔砾石层重矿物特征及地质意义[J].中国地质,2009,36(4):878-884.]
[79]Wang Qiuliang, Li Chang′an. Sedimentary environment evolution of the Jianghan Plain and its significance to the formation of Three Gorges[J]. Quaternary Sciences, 2009,29(2):352-360.[王秋良,李长安.江汉平原沉积环境演化及对三峡贯通的指示[J].第四纪研究,2009,29(2):352-360.]
[80]Kang Chunguo, Li Chang′an, Wang Jietao, et al. Heavy minerals characteristics of sediments in Jianghan Plain and its indication to the forming of the Three Gorges[J]. Earth Science—Journal of China University of Geosciences, 2009,34(3):419-427.[康春国,李长安,王节涛,等.江汉平原沉积物重矿物特征及其对三峡贯通的指示[J].地球科学——中国地质大学学报,2009,34(3):419-427.]
[81]Wang J T, Li C A, Yang Y, et al. Detrital zircon geochronology and provenance of core sediments in Zhoulao Town, Jianghan Plain, China[J]. Journal of Earth Science, 2010, 21(3): 257-271.
[82]Liu Yindi, Li Chang′an, Yuan Shengyuan. Geochemistry of REE and provenance of sediments from 0-108 m Zhoulao Borehole in Jianghan Plain[J]. Geological Science and Technology Information, 2011,30(1):47-50.[刘引迪,李长安,袁胜元.江汉盆地周老孔0~108 m沉积物的稀土元素特征及其物源判别[J].地质科技情报,2011,30(1):47-50.]
[83]Wang Jietao, Li Chang′an, Yang Yong, et al. The LA-ICPMS U-Pb detrital zircon geochronology and provenance study of sedimentary core in the Zhoulao Town, the Jianghan Plain, China[J]. Quaternary Sciences, 2009,29(2):343-351.[王节涛,李长安,杨勇,等.江汉平原周老孔中碎屑锆石LA-ICPMS定年及物源示踪[J].第四纪研究,2009,29(2):343-351.]
[84]Shu Qiang, Zhang Maoheng, Zhao Zhijun, et al. Sedimentary record from the XH-1 core in north Jiangsu Basin and its implication on the Yangtze River run-through time[J]. Journal of Stratagraphy, 2008,32(3):308-314. [舒强,张茂恒,赵志军,等.苏北盆地XH-1钻孔晚新生代沉积记录特征及其与长江贯通时间的关联[J].地层学杂志,2008,32(3):308-314.]
[85]Fan Daidu, Li Congxian, Yokoyama Kazumi, et al. Monazite age spectra in the Late Cenozoic of the Changjiang Delta and its implication on the Changjiang run-through time[J]. Science in China (Series D), 2005, 48(10): 1 718-1 727.[范代读,李从先,Kokoyama Kazumi, 等.长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究[J].中国科学:D辑,2004,34(11): 1 015-1 022.]
[86]Fan Daidu, Li Congxian. Timing of the Yangtze initiation draining the Tibetan Plateau throughout to the East China Sea: A review[J]. Frontiers of Earth Science in China,2008, 2(3):302-313.
[87]Yang S Y, Li C X, Yokoyama K. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: Implications for sediment provenance and development history of the Changjiang River[J]. Earth and Planetary Science Letters, 2006, 245(3/4): 762-776.
[88]Yang Shouye, Wei Gangjian, Xia Xiaoping, et al. Provenance study of the Late Cenozoic sediments in the Changjiang Delta: REE and Nd isotopic constraints[J]. Quaternary Sciences, 2007,27(3):339-346.[杨守业,韦刚健,夏小平,等.长江口晚新生代沉积物的物源研究:REE和Nd同位素制约[J].第四纪研究,2007,27(3):339-346.]
[89]Huang Xiangtong, Zheng Hongbo, Yang Shouye, et al. Investigation of sedimentary geochemistryof core DY03 in the Yangtze Delta: Implications to tracing provenance[J]. Quaternary Sciences, 2009,29(2):299-307.[黄湘通,郑洪波,杨守业,等.长江三角洲DY03孔沉积物元素地球化学及其物源示踪意义[J].第四纪研究,2009,29(2):299-307.]
[90]Jia Juntao, Zheng Hongbo, Huang Xiangtong, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze Delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(15): 1 520-1 528.
[91]Zhang Dan, Wang Zhanghua, Wei Wei, et al. Rock magnetic properties and source indications of Late Cenozoic sediments in Yangtze Delta area[J]. Quaternary Sciences, 2009,29(2):308-317.[张丹,王张华,卫巍,等.长江三角洲地区晚新生代沉积物岩石磁学特征及其物源指示意义[J].第四纪研究,2009,29(2):308-317.][92]Chen Jing, Wang Zhe, Wang Zhanghua, et al. Heavy mineral distribution and its provenance implication in Late Cenozoic sediments in western and eastern area of the Changjiang River Delta[J]. Quaternary Sciences, 2007,27(5):700-708.[陈静,王哲,王张华,等.长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J].第四纪研究,2007,27(5):700-708.]
[93]Wang Zhanghua, Zhang Dan, Li Xiao, et al. Magnetic properties and relevant minerals of Late Cenozoic sediments in the Yangtze River delta and their implications[J]. Geology in China, 2008,35(4):670-682.[王张华,张丹,李晓,等.长江三角洲地区晚新生代沉积物磁性和磁性矿物分布特征及其对物源、古地理环境演变的指示意义[J].中国地质,2008,35(4):670-682.]

[1] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[2] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[3] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[4] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[5] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[6] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[7] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[8] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[9] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[10] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[11] 吴伊婧, 范代读, 印萍, 胡虞杨. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6): 567-580.
[12] 姚蓬娟, 王春乙, 张继权. 长江中下游地区双季早稻冷害、热害危险性评价[J]. 地球科学进展, 2016, 31(5): 503-514.
[13] 王文, 孙畅, 蔡晓军, 许金萍. 南亚高压低频振荡与长江中下游地区旱涝的关系[J]. 地球科学进展, 2016, 31(5): 529-541.
[14] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[15] 罗超, 郑洪波, 吴卫华, 杨守业. 长江河水 87Sr/ 86Sr值的季节性变化及其指示意义:以长江大通站为例 1[J]. 地球科学进展, 2014, 29(7): 835-843.
阅读次数
全文


摘要