地球科学进展 ›› 2020, Vol. 35 ›› Issue (6): 581 -593. doi: 10.11867/j.issn.1001-8166.2020.054

综述与评述 上一篇    下一篇

南海碳源汇的区域与季节变化特征及控制因素研究进展
张晓辉( ),彭亚兰,黄根华( )   
  1. 国家海洋局珠海海洋环境监测中心站, 广东 珠海 519015
  • 收稿日期:2020-04-20 修回日期:2020-05-20 出版日期:2020-06-10
  • 通讯作者: 黄根华 E-mail:273941175@qq.com;hgenhua@163.com
  • 基金资助:
    自然资源部南海局海洋科学技术局长基金项目“珠江口邻近海域海—气界面碳通量的季节变化及控制因素”(1729)

Advances in Seasonal Variations and Controls of the Air-sea CO2 Flux in the South China Sea

Xiaohui Zhang( ),Yalan Peng,Genhua Huang( )   

  1. Marine Environmental Monitoring Central Station of the State Oceanic Administration, Zhuhai Guangdong 519015, China
  • Received:2020-04-20 Revised:2020-05-20 Online:2020-06-10 Published:2020-07-06
  • Contact: Genhua Huang E-mail:273941175@qq.com;hgenhua@163.com
  • About author:Zhang Xiaohui (1980-), female, Qingdao City, Shandong Province, Engineer. Research areas include marine biogeochemistry. E-mail: 273941175@qq.com
  • Supported by:
    the Marine Science and Technology Director’s Foundation of the South China Sea Bureau of the Ministry of Natural Resources "Carbon chemistry parameters and air-sea CO2 flux in the adjacent sea area of Pearl River Estuary: Variations and controls"(No.1729)

南海碳循环是全球碳循环的重要组成部分。厘清南海CO2通量问题,对阐明全球碳循环过程,完善全球碳循环数据库具有重要意义。对南海4个典型特征区域(北部陆架、北部陆坡及海盆、吕宋海峡西侧海域和中南部海盆)的海表CO2分压、CO2通量和控制因素的研究进展进行了归纳总结。结果显示,南海北部陆架海表CO2分压区域差异显著,珠江冲淡水上游低盐区为强碳源,海表CO2分压常年处于超饱和状态,最高值达405.3~810.6 Pa,下游离岸开阔海域(盐度大于33.7)冬季海表CO2分压低至35.2~37.0 Pa,为弱的碳汇。南海北部陆坡、海盆受温度调控,暖季是碳源,冷季是碳汇,夏季海表CO2分压最高达45.0 Pa,冬季海表CO2分压最低为34.7 Pa。吕宋海峡西侧海域碳源/汇受温度、季风和水团等因素影响较大,春季海表CO2分压与大气CO2分压接近于平衡状态,冬季升高至38.4~47.5 Pa,高于大气CO2分压。中南部海盆表现为大气CO2弱或中等强度的源,海表CO2分压年均值为41.0 Pa。总体上,南海大部分海域在全年尺度上表现为弱的碳源,每年向大气释放(18±10) Tg C的CO2。虽然南海碳循环研究已取得了一定进展,但仍缺少长期的现场观测与数据积累。今后应进一步加强海—气CO2分压时间序列研究和海—气CO2交换通量的遥感研究。

Marine carbon cycle of the South China Sea is an important part of global carbon cycle. Researches on the air-sea CO2 flux in the South China Sea will help us understand the global carbon cycle and improve the global carbon system parameter database. This paper concisely summarized the changes of partial pressure of CO2 (pCO2), air-sea CO2 fluxes (FCO2), and related environmental factors in four regions in domains in the South China Sea. The low-salinity area of the upper reaches of the Pearl River estuary in the northern of South China Sea shelf area acted as a strong source of atmospheric CO2, with high pCO2(405.3~810.6 Pa)all year round. The lower area of the Pearl River estuary (salinity > 33.7) acted as a weak sink of CO2 in winter, with relatively low pCO2 (35.2~37.0 Pa). The northern slope/basin in the South China Sea acted as a source of CO2 in warm seasons with a relatively high pCO2 (45.0 Pa), and acted as a sink of CO2 in cold seasons with a relatively low pCO2 (34.7 Pa). The west of the Luzon Strait acted as a sink of CO2 in spring, while it acted as a source of CO2 in other seasons, with relative high pCO2 (38.4~47.5 Pa) in winter. The central/southern basin in the South China Sea acted as sources of CO2, with relative high pCO2 (41.0 Pa) all the year. Generally, the estimation of annual sea-air CO2 fluxes showed that most domains in the South China Sea served as weak sources of atmospheric CO2. In the future, more researches should be focused on the time-series of sea surface pCO2 and the remote sensing of the sea-air CO2 fluxes.

中图分类号: 

表1 南海表层海水 pCO2的区域和季节分布
Table 1 Spatial and seasonal distribution of sea surface pCO 2 in the South China Sea
调查区域 调查航次时间 pCO2测定 海表pCO2/Pa 大气pCO2/Pa FCO2/[mmol/(m2·d)] 源/汇 资料来源
南海北部陆架(112°~118°E,21°~23°N) 珠江冲淡水影响区域(盐度小于33.7) 春季 2001-05-24 连续走航观测 22.9(18.2~25.3) 37.7 -14.6 [25]
2007-04-21/04-27 连续走航观测 746.4±36.9(655.1~847.5) 38.9 112.41±5.74(97.94~128.25) [29]1
2007-04-21/04-27 连续走航观测 639.3±76.1(413.3~737) 38.9 346.27±44.96(214.93~403.85) [29]2
2007-04-21/04-27 连续走航观测 182.2±133.4(62.1~608.9) 38.9 79.35±75.67(12.22~322.53) [29]3
2007-04-21/04-27 连续走航观测 57.8±21.8(36.3~148.2) 38.9 12.17±15.63(-2.38~63.55) [29]4
2011-05 连续走航观测 30.4±4.3 38.9 -3.37 [38]
2012-05 连续走航观测 21.7~717.2 39.9 [37]
2014-03-08 多参数计算 -28.3±1.5 [39]
2015-05 连续走航观测 29±9.6 39.1 -5.70 [38]
夏季 2000-07-19 连续走航观测 44(40.5~60.8) 35.4 8.2 [25]
2005-08-01/08-08 连续走航观测 536.9±64.9(395.2~672.6) 38.2 347.23±219.88(145.17~801.35) [29]1
2005-08-01/08-08 连续走航观测 541.9±99.5(212.4~773.4) 38.2 342.21±206.38(16.69~2293.58) [29]2
2005-08-01/08-08 连续走航观测 120±83.2(32.6~466.1) 38.2 108.23±96.24(-2.78~398.54) [29]3
2005-08-01/08-08 连续走航观测 36.1±7.2(25.9~50.8) 38.2 5.27±15.74(-12.39~45.39) [29]4
2005-08-01/08-08 连续走航观测 42.4±6.2(34.6~67.7) 38.2 10.77±11.22(-3.67~54.88) [29]5
2005-08-01/08-08 连续走航观测 65.8±30.5(38.3~154.6) 38.2 60.01±84.36(-0.14~304.97) [29]6
2005-08-01/08-08 连续走航观测 222.9±81.9(105.6~363.7) 38.2 249.57±127.36(48.84~515.91) [29]7
2005-08-01/08-08 连续走航观测 25.7±6(17~37.7) 38.2 -13.30±6.81(-25.82~1.50) [29]8
2014-08-16 多参数计算 -8.4±7.1 [39]
2011-08 连续走航观测 16.5~173.4 39.3 [37]
秋季 2002-11-05/11-11 连续走航观测 382.2±121.2(138.4~556) 37.8 99.60±52.09(23.46~252.86) [29]1
2002-11-05/11-11 连续走航观测 122.1±60(54~295.8) 37.8 24.88±30.24(1.39~123.39) [29]2
南海北部陆架(112°~118°E,21°~23°N) 珠江冲淡水影响区域(盐度小于33.7) 秋季 2002-11-05/11-11 连续走航观测 49±9.9(41.4~78.3) 37.8 15.37±10.52(5.94~52.12) [29]3
2002-11-05/11-11 连续走航观测 41.6±1.9(33.3~47.7) 37.8 10.11±7.00(2.56~51.32) [29]4
2011-11 连续走航观测 34.0~542.8 39.6 [37]
2014-10-17 多参数计算 -21.7±2.1 [39]
冬季 2004-02-12/02-16 连续走航观测 676.5±54(540~756.4) 38.3 66.62±76.61(0.02~273.46) 源/汇 [29]1
2004-02-12/02-16 连续走航观测 328.2±133.2(125.4~617.2) 38.3 47.69±44.44(0.06~228.50) [29]2
2004-02-12/02-16 连续走航观测 118.3±37.7(52.3~178.7) 38.3 37.92±44.27(0.13~178.49) [29]3
2004-02-12/02-16 连续走航观测 43.4±6.1(31.8~61.2) 38.3 1.33±4.09(-9.96~18.90) [29]4
2004-02-12/02-16 连续走航观测 33.5±2.4(29.3~38.9) 38.3 -11.36±3.58(-22.72~-5.02) [29]5
2004-02-12/02-16 连续走航观测 43.2±6.6(30.2~63.5) 38.3 -0.14±3.82(-22.24~7.53) [29]6
2004-02-12/02-16 连续走航观测 32.4±1(30.9~35.9) 38.3 -5.07±4.49(-17.59~-0.42) [29]8
2005-01-18/01-25 连续走航观测 524.3±38.6(396.7~618.2) 38.4 337.85±241.63(35.10~907.71) [29]1
2005-01-18/01-25 连续走航观测 257.2±140.5(113.8~686.5) 38.4 120.34±64.75(9.67~289.08) [29]2
2005-01-18/01-25 连续走航观测 78.3±32.8(36.7~166.3) 38.4 22.60±23.23(-3.04~23.23) [29]3
2005-01-18/01-25 连续走航观测 41±3.5(35.2~46.4) 38.4 -1.09±0.92(-4.05~0.12) [29]4
2005-01-18/01-25 连续走航观测 40.1±3.5(33.7~52.1) 38.4 -0.37±3.02(-10.47~9.97) [29]5
2005-01-18/01-25 连续走航观测 44.2±9.1(32~67.8) 38.4 6.15±16.07(-8.25~75.44) [29]6
2005-01-18/01-25 连续走航观测 77.3±8.5(57.5~97.8) 38.4 66.83±47.60(9.82~177.61) [29]7
2012-02 连续走航观测 32.8~581.0 39.8 [37]
2014-12-11 多参数计算 -31.4±3.6 [39]
珠江口外离岸海域(盐度大于33.7) 春季 2001-05-24/05-25 连续走航观测 40.4±1.5 37.7 3.2 [25]
2004-05 连续走航观测 38.4±0.3(37.9~38.9) 36.5±0.1 1.80 [22]
2011-05 连续走航观测 39.1±1.3 38.9 0.09 [38]
2015-05 连续走航观测 42.7±0.9 39.1 1.92 [38]
夏季 2000-07-19/07-21 连续走航观测 41.7±1.1(36.5~45.6) 35.4 7.5 [25]
2004-07 连续走航观测 36.8±2.6(31.6~40.5) 36.7±0.8 0.17 [22]
秋季 2002-11-13/11-14 连续走航观测 39.7±1.7 36.8 1.4 [25]
2007-09 连续走航观测 38.8±0.5(37.4~40.1) 37.2±0.2 3.02 [22]
2004-09 连续走航观测 36.5±0.5(35.5~36.9) 36.3±0.1 2.49 [22]
冬季 2006-02 连续走航观测 36±0.4(35.2~37) 37.5 -4.16 [22]
2006-12-22/12-23 连续走航观测 38.2±1.8(35~42) 38.7±0.2 -1.55 [22]

南海北部陆坡、海盆

(112°~118°E,18°~21°N)

春季 1999—2003 定点连续周日观测 34.5~40.5 37.6 0.04±0.34 [30]
2004-05 连续走航观测 39.1±0.9(37.4~40.3) 36.2±0.2 2.57 [22]
2005-04 连续走航观测 39.2±1.5(36.8~45) 37.8±0.3 1.26 [22]
夏季 1999—2003 定点连续周日观测 34.5~40.5 37.6 1.02±0.02 [30]
2001-07 双参数遥感算法 40.9 37.5 6.7 [28]
2004-07-10/07-11 定点连续周日观测 37.5~38.5 38.1 [24]
2004-07-13/07-14 定点连续周日观测 39.6~41.2 38.1 [24]
2004-07 连续走航观测 38.8±1.1(35.8~42.3) 36.2±0.1 3.92 [22]
2007-07 连续走航观测 40.9±0.6(39.7~42.7) 37.2±0.2 3.51 [22]
秋季 1999—2003 定点连续周日观测 34.5~40.5 37.6 0.10±0.66 [30]
2006-10 连续走航观测 37.4±0.9(35~39) 36.6±0.1 1.42 [22]
2006-11 连续走航观测 37.5±0.5(36.3~38.5) 37.5±0.2 -0.07 [22]
2007-09 连续走航观测 39.9±0.8(38.1~41.6) 36.9±0.1 4.83 [22]
2012-09-26/10-03 连续走航观测 41.3±1.7(38.3~46.2) 38.1±0.2 2.9(0.2~7.34) [34]
冬季 1999—2003 定点连续周日观测 34.5~40.5 37.6 -1.21±0.43 [30]
2006-02 连续走航观测 37.2±1.1(34.7~40.3) 37.8±0.3 -1.28 [22]
2006-12 连续走航观测 38.1±0.9(36.2~39.8) 38.0 0.53 [22]

吕宋海峡西侧海域

(118°~121°E,18°~22°N)

春季 2008-04 连续走航观测 37.5±1.3(36~40.2) 38.4±0.2 -1.24 [22]
2013-04-06/04-27 连续走航观测 42.5(31.9~53.7) 38.5~41.1 2.41 [33]
夏季 2007-07 连续走航观测 40.5±0.6(36.9~42.3) 37.1±0.2 2.95 [22]
2007-07-06/07-07 定点连续周日观测 40.4~42.0 38.6 [24]
秋季 2004-09 连续走航观测 36.6±0.3(35.9~37.1) 36.2±0.2 0.86 [22]
冬季 2006-12-21/12-22 连续走航观测 41.5±2(38.4~47.5) 38±0.3 28.5 [22]

南海中南部海盆

(110°~117°E,7°~18°N)

春季 2004-05 连续走航观测 39.1±0.7(36.5~41) 36.1±0.2 3.10 [22]
2005-04 连续走航观测 41.7±1.4(38.8~46.9) 37.2±0.2 3.42 [22]
夏季 2007-07 连续走航观测 40.9±0.6(39.8~42) 37.2±0.2 5.64 [22]
2007-08 连续走航观测 41.5±1.4(38.5~44.6) 36.9±0.2 9.58 [22]
秋季 2003-10 连续走航观测 37.2±0.9(35.5~39) 35.9±0.3 1.85 [22]
2007-09 连续走航观测 40.9±1(38.1~44.2) 36.9±0.2 6.59 [22]
2012-10-13/10-23 连续走航观测 44.2±2.3(40~51.5) 38±0.1 1.7(0.04~7.94) [34]
2012-09-26/10-03 连续走航观测 42.2±3.2(38.8~57.9) 38.5±0.2 0.9(0.03~6.83) [34]
2012-10-13/10-23 连续走航观测 46.4±1.8(43.2~50.8) 38.2±0.1 1.1(0.06~3.27) [34]
冬季 2006-01-23/02-25 定点连续周日观测 18.9~95.4 38.0 [24]
2006-12-01/12-11 连续走航观测 38.8±0.5(37.3~40.9) 38.0 2.18 [22]
图1 南海位置及典型特征区域
根据南海的物理—生物地球化学特征,将南海划分为:A.南海北部陆架,B.南海北部陆坡及海盆,C.吕宋海峡西侧海域,D.南海中南部海盆;南海实体曲线代表冬季整个流域的气旋环流,虚线代表夏季反气旋环流,吕宋海峡周围的实体曲线代表黑潮及其入侵进入南海北部 [ 22 ]
Fig.1 Location and typical characteristic region division of the South China Sea
Framed areas indicate four physical-biogeochemical domains in the South China Sea:A. The northern shelf in the South China Sea,B. The northern basin and slope in the south China sea, C. The west of the Luzon Strait, D. The central and southern basin in the South China Sea. Solid curves in the South China Sea represent the basin-wide cyclonic gyre in winter, dashed curve in the South China Sea represents the anticyclonic gyre over the southern half of the sea during the summer, and solid curves around the Luzon Strait into the northern South China Sea represent the Kuroshio and its intrusions [ 22 ]
图2 海表pCO2和大气pCO2的季节变化
Fig.2 Seasonal distributions of sea surface pCO2 and atmospheric pCO2
图3 海—气FCO2的季节变化
Fig.3 Seasonal distributions of sea-air FCO2
1 Zhang Han. A Modeling Study of Interactive Feedbacks Between Carbon Dioxide, Global Warming, Ocean Acidification, and the Ocean Carbon Cycle[D]. Hangzhou: Zhejiang University, 2018.
张含.大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州: 浙江大学, 2018.
2 Song Jinming, Wang Qidong, Zhang Run,et al. Main progress on chemical oceanography in China over the past 70 years[J]. Acta Oceanologica Sinica, 2019, 41(10):65-80.
宋金明, 王启栋, 张润, 等. 70年来中国化学海洋学研究的主要进展[J]. 海洋学报, 2019, 41(10): 65-80.
3 Song Jinming, Qu Baoxiao, Li Xuegang, et al. Carbon sinks/sources in the Yellow and East China Seas—Air-sea interface exchange,dissolution in seawater, and burial in sediments[J]. Science China Earth Sciences, 2018, 61(11): 1 583-1 593.
宋金明, 曲宝晓, 李学刚, 等. 黄东海的碳源汇:大气交换、水体溶存与沉积物埋藏[J]. 中国科学: 地球科学, 2018, 48(11): 1 444-1 455.
4 Jiao Nianzhi, Li Chao, Wang Xiaoxue. Response and feedback of marine carbon sink climate change[J]. Advances in Earth Science, 2016, 31(7): 8-21.
焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 8-21.
5 Liu Qian, Guo Xianghui, Yin Zhiqiang, et al. Carbon fluxes in the China Seas: An overview and perspective[J]. Science China Earth Sciences, 2018, 61(11): 1 564-1 582.
刘茜, 郭香会, 尹志强, 等. 中国邻近边缘海碳通量研究现状与展望[J]. 中国科学:地球科学, 2018, 48(11): 1 422-1 443.
6 Zhang Chuanlun, Sun Jun, Liu Jihua, et al. Advances in microbial carbon pump and prospects for its future[J]. Scientia Sinica Terrae, 2019, 49(12): 1 933-1 944.
张传伦,孙军,刘纪化,等.海洋微型生物碳泵理论的发展与展望[J]. 中国科学:地球科学, 2019, 49(12): 1 933-1 944.
7 Nie Hongtao, Wang Rui, Zhao Wei, et al. Key scientific problems and challenges of studying carbon cycle mechanism in Pacific sector of the Arctic[J]. Advances in Earth Science, 2017, 32(10): 1 084-1 092.
聂红涛, 王蕊, 赵伟, 等. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1 084-1 092.
8 Dai Minhan, Zhai Weidong, Lu Zhongming, et al. Regional studies of carbon cycles in China:Progress and perspectives[J]. Advances in Earth Science, 2004, 19(1): 120-130.
戴民汉, 翟惟东, 鲁中明, 等. 中国区域碳循环研究进展与展望[J]. 地球科学进展, 2004, 19(1): 120-130.
9 Jiao Nianzhi, Liang Yantao, Zhang Yongyu, et al. Carbon pools and fluxes in the China Seas and adjacent oceans[J]. Science China Earth Sciences, 2018, 61(11): 1 535-1 563.
焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学:地球科学, 2018, 48(11): 1 393-1 421.
10 Borges A V. Present day carbon fluxes in the coastal ocean and possible feedbacks under global change[M]//Duarte P, Santana-Casiano J M. Oceans and the Atmospheric Carbon Content. Dordrecht: Springer, 2011: 47-77.
11 Borges A V, Delille B, Frankignoulle M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts[J]. Geophysical Research Letters, 2005, 32(14): L14601. DOI:10.1029/2005GL023053.
doi: 10.1029/2005GL023053    
12 Cai W J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3: 123-145.
13 Cai W J, Dai M H, Wang Y C. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis[J]. Geophysical Research Letters, 2006, 33(12): L12603. DOI:10.1029/2006GL026219.
doi: 10.1029/2006GL026219    
14 Chen C-T A, Borges A V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2[J]. Deep-Sea Research Part II:Topical Studies Oceanography, 2009, 56(8/10): 578-590.
15 Dai M H, Cao Z M, Guo X H, et al. Why are some marginal seas sources of atmospheric CO2?[J]. Geophysical Research Letters, 2013, 40(10): 2 154-2 158.
16 Laruelle G G, Dürr H H, Slomp C P, et al. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves[J]. Geophysical Research Letters, 2010, 37(15): L15607. DOI:10.1029/2010GL043691.
doi: 10.1029/2010GL043691    
17 Laruelle G G, Lauerwald R, Pfeil B, et al. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas[J]. Global Biogeochemical Cycles, 2014, 28(11): 1 199-1 214.
18 Cai W J, Dai M H. Comment on “Enhanced open ocean storage of CO2 from shelf sea pumping”[J]. Science, 2004, 306(5 701): 1 477.
19 Cai W J, Dai M H, Wang Y C. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis[J]. Geophysical Research Letters, 2006, 33(12): L12603. DOI:10.1029/2006GL026219.
doi: 10.1029/2006GL026219    
20 Shim J H, Kim D, Kang Y C, et al. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea[J]. Continental Shelf Research, 2007, 27(20): 2 623-2 636.
21 Chen C-T A, Huang T H, Fu Y H, et al. Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes[J]. Current Opinion in Environmental Sustainability, 2012, 4(2): 179-185.
22 Zhai W D, Dai M H, Chen B S, et al. Seasonal variations of air-sea CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements[J]. Biogeosciences, 2013, 10(11): 7 775-7 791.
23 Han W Y, Lin H Y, Cai Y Y. Study of the carbon flux in the South China Sea[J]. Acta Oceanologica Sinica, 1996, 15(1): 85-92.
24 Dai M H, Lu Z M, Zhai W D, et al. Diurnal variations of surface seawater pCO2 in contrasting coastal envrionments[J]. Limnol Oceanogr, 2009, 54(3): 735-745.
25 Zhai Weidong. Air-sea Fluxes of Carbon Dioxide and Upper Ocean Biogeochemical Processes in the Northern South China Sea and the Pearl River Estuary[D]. Xiamen: Xiamen University, 2003.
翟惟东. 南海北部与珠江河口水域CO2通量及其调控因子[D]. 厦门:厦门大学, 2003.
26 Zhai Weidong. Sea surface partial pressure of CO2 and its control in the northern South China Sea in the non-bloom period in spring[J]. Acta Oceanologica Sinica, 2015, 37(6): 31-40.
翟惟东. 南海北部春季非水华期的CO2分压及其调控[J]. 海洋学报, 2015, 37 (6): 31-40.
27 Lu Zhongming. Diurnal Variations of Sea Surface pCO2 and the Controls in Coastal Seas[D]. Xiamen: Xiamen University, 2007.
鲁中明. 近海环境表层海水pCO2周日变化及控制过程[D]. 厦门: 厦门大学, 2007.
28 Zhu Yu. Surface Water pCO2 and Air-sea CO2 Fluxes in the South China Sea in Summer-estimations by Using Remote Sensing Data[D]. Xiamen: Xiamen University, 2008.
朱钰. 南海夏季海表pCO2及海—气二氧化碳通量遥感研究[D]. 厦门:厦门大学, 2008.
29 Guo X H, Dai M H, Zhai W D, et al. CO2 flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary,China[J]. Journal of Geophysical Research, 2009, 114(G3): G03013. DOI:10.1029/2008JG000905.
doi: 10.1029/2008JG000905    
30 Tseng C M, Wong G T F, Chou W C, et al. Temporal variations in the carbonate system in the upper layer at the SEATS station[J]. Deep-Sea Research PartⅡ:Topical Studies in the Oceanography, 2007, 54(14/15): 1 448-1 468.
31 Yan H Q, Yu K F, Shi Q, et al. Air-sea?CO2 fluxes and spatial distribution of seawater?pCO2 in Yongle Atoll, northern-central South China?Sea[J].Continental Shelf Research, 2018, 165: 71-77.
32 Yan Hongqiang, Yu Kefu, Shi Qi, et al. Coral reef ecosystems in the South China Sea as a source of atmospheric CO2 in summer[J]. Chinese Science Bulletin, 2011, 56(6): 414-422.
严宏强,余克服,施祺,等.南海珊瑚礁夏季是大气CO2的源[J]. 科学通报, 2011, 56(6): 414-422.
33 Jiang Yifei, Wang Hui, Qiao Ran, et al. The distribution of pCO2 in surface water and CO2 flux at air-sea interface in northeast part of the South China Sea in spring[J]. Acta Oceanologica Sinica, 2014, 36(6): 18-24.
姜亦飞, 王辉, 乔然, 等. 南海东北部春季海表pCO2分布及海—气CO2通量[J]. 海洋学报, 2014, 36(6): 18-24.
34 Xu Xin, Yu Peisong, Cai Xiaoxia, et al. Distribution of partial pressure of carbon dioxide and sea-air CO2 flux in the western South China Sea in autumn[J]. Journal of Tropical Oceanography, 2016, 3(3): 55-64.
许欣, 于培松, 蔡小霞, 等. 南海西部秋季海表pCO2 分布与海—气CO2通量[J]. 热带海洋学报, 2016, 3(3): 55-64.
35 Hangyu Lü. Remote Sensing of the Partial Pressure of Aquatic CO2 in the South China Sea[D]. Nanjing: Nanjing University, 2018.
吕航宇. 基于遥感的南海海水CO2分压[D]. 南京: 南京大学,2018.
36 Li Shuiqing, Zhao Dongliang, Ma Xin, et al. A study on air-sea CO2 flux from a fixed observation platform in the South China Sea[J]. Marine Science Bulletin, 2014, 33(6): 637-646.
李水清, 赵栋梁, 马昕, 等. 基于南海观测平台的CO2通量研究[J]. 海洋通报, 2014, 33(6): 637-646.
37 Ma Yu, Gao Quanzhou, Li Tuanjie, et al. The spatial and seasonal variations of partial pressure of carbon dioxide in surface water in Pearl River Estuary[J].Acta Scientiarum Naturalium Universitatls Sunyatseni, 2016, 55(3): 39-46.
马玉, 高全洲, 李团结, 等. 珠江口表层水体CO2分压的空间和季节变化[J]. 中山大学学报, 2016, 55(3): 39-46.
38 Ma Yu, Gao Quanzhou, Li Tuanjie, et al. Thechanges of partial pressure of carbon dioxide in surface water in the northern South China Sea under the influence of EI Ni?o in spring[J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3 581-3 588.
马玉, 高全洲, 李团结,等. EI Ni?o影响下春季南海北部表层水体CO2分压变化[J]. 环境科学学报, 2016, 36(10): 3 581-3 588.
39 Han Tingting,Qi Zhanhui,Wu Fengxia, et al. Comparative study of dissolved inorganic carbon systems of surface waters in various oceanic functional areas of Daya Bay[J]. Journal of Tropical Oceanography, 2016, 35(2): 57-65.
韩婷婷, 齐占会, 吴风霞, 等. 大亚湾不同海洋功能区表层海水无机碳体系的比较研究[J]. 热带海洋学报, 2016, 35(2): 57-65.
40 Wanninkhof R. Relationship between wind-speed and gas exchange over the ocean[J]. Journal of Geophysical Research, 1992, 97(C5): 7 373- 7 382.
41 Dai M H, Guo X H, Zhai W D, et al. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought[J]. Marine Chemistry, 2006, 102(1/2): 159-169.
42 Dai M H, Wang L, Guo X H, et al. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: The Pearl River Estuary, China[J]. Biogeosciences, 2008, 5(5): 1 227-1 244.
43 Han A, Dai M, Kao S J, et al. Nutrient dynamatics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling[J]. Limnology & Oceanography, 2012, 57(2):486-502.
44 Xia Huayong, Liu Changjian, Wang Dongxiao. The upwelling driven by the Zhujiang River runoff in 2006 summer[J]. Acta Oceanologica Sinica, 2018, 40(7): 43-54.
夏华永, 刘长建, 王东晓. 2006年夏季珠江冲淡水驱动的上升流[J]. 海洋学报, 2018, 40(7): 43-54.
45 Shang S, Li L, Li J, et al. Phytoplankton bloom during the northeast monsoon in the Luzon Strait bordering the Kuroshio[J]. Remote Sensing of Environment, 2012, 124(9): 38-48.
46 Wang Xinxing, Yu Jie, Li Yongzhen, et al. The relationship between major upwelling and the upwelling fishing grounds in the South China Sea[J]. Marine Sciences, 2015, 39(9): 131-137.
王新星, 于杰, 李永振, 等. 南海主要上升流及其与渔场的关系[J]. 海洋科学, 2015, 39(9): 131-137.
47 Lan Jian, Hong Jieli, Li Pixue. Seasonal variability of cool core eddy in the Western South China Sea[J]. Advances in Earth Science, 2006, 21(11): 1 145-1 152.
兰健, 洪洁莉, 李丕学. 南海西部夏季冷涡的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1 145-1 152.
48 Chou W C, Sheu D D, Chen C-T A, et al. Seasonal variability of carbon chemistry at the seats time-series site. Northern South China Sea between 2002 and 2003[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2005, 16(2): 445-465.
49 Sheu D D, Chou W C, Wei C L, et al. Influence of El Ni?o on the sea-to-air CO2 flux at the SEATS time-series site, northern South China Sea[J]. Journal of Geophysical Research, 2010, 115(C10): C10021. DOI:10.1029/2009JC006013.
doi: 10.1029/2009JC006013    
[1] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[2] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[3] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[6] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[7] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[8] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[9] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[10] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[11] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[12] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[13] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[14] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
[15] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
阅读次数
全文


摘要