地球科学进展 ›› 2015, Vol. 30 ›› Issue (9): 1050 -1062. doi: 10.11867/j.issn.1001-8166.2015.09.1050

所属专题: IODP研究

上一篇    下一篇

南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系
张江勇( ), 王志敏, 廖志良, 王金莲, 李小穗   
  1. 国土资源部海底矿产资源重点实验室,广州海洋地质调查局,广东 广州 510760
  • 收稿日期:2015-04-02 修回日期:2015-07-30 出版日期:2015-09-20
  • 基金资助:
    国家自然科学基金项目“南海晚第四纪沉积物磁性变化机制研究”(编号:41306042);同济大学海洋地质国家重点实验室开放基金项目“利用指标Uk37 研究南海深海平原晚第四纪地层学”(编号:MJK414)资助

The Relationship among Magnetic Susceptibility, Grain Size, Anhysteretic Remanent Magnetization and Clastic Mineral Abundance in Core QD189 Retrieved from Abyssal Plain of the South China Sea

Jiangyong Zhang( ), Zhimin Wang, Zhiliang Liao, Jinlian Wang, Xiaosui Li   

  1. Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou 510760, China
  • Received:2015-04-02 Revised:2015-07-30 Online:2015-09-20 Published:2015-09-20

磁学可能是南海深海平原古环境研究取得突破的关键方面之一。众多磁学参数中,磁化率是最基本、最综合反映沉积物磁性矿物总体状况的参数,非磁滞剩磁对单畴颗粒含量敏感,而且单畴颗粒是剩磁的主要携带者,结合粒度、碎屑矿物丰度等数据探索南海深海平原柱状样QD189磁化率和非磁滞剩磁地质含义。在磁化率大于45×10-5层位和481 cm以浅的磁化率小于45×10-5的层段,磁化率、2~5 ϕ粒级含量、ARM和ARM@20mT变化一致性较好,2~5 ϕ粒级软磁性多畴颗粒含量变化可能是这些层位磁化率变化的主要原因。在808~488 cm层段内,小于45×10-5的磁化率与2~5 ϕ粒级含量、ARM和ARM@20mT变化总体上一致性较差,磁化率变化机制有待进一步研究。2~5 ϕ粒级是QD189重要的较粗粒级组分,大体上以深度350 cm为界具有下层段含量较高且粒度变化大、上层段含量较低且粒度变化小的特点。ARM@20mT比ARM更加真实地表示QD189单畴颗粒含量,除了单畴颗粒外,9~12 ϕ粒级假单畴、多畴颗粒矿物对665~48 cm层段的ARM可能有一定贡献,其中,层段548~310 cm的ARM中可能还有6~9 ϕ粒级多畴颗粒的贡献。通过碎屑矿物丰度、火山玻璃丰度和(或)磁化率异常峰值的对应关系识别出6次火山活动,火山玻璃丰度的分布特点还揭示出QD189中普遍发生生物扰动作用。

Magnetism is probably one of key disciplines for breakthrough of paleoenvironment studies in abyssal plain of the South China Sea. Magnetic susceptibility is the most basic and general parameter reflecting information of magnetic minerals in sediment, while ARM is sensitive to the concentration of singe domain particles which is main carrier of remanent magnetization. In this study, we explore the geological implications of magnetic susceptibility and Anhysteretic Remanent Magnetization (ARM) in core QD189 retrieved from abyssal plain of the South China Sea integrating the data of grain size and clastic mineral abundance. In the segments with magnetic susceptibility great than 45×10-5 or the segments with depth less than 481 cm and magnetic susceptibility less than 45×10-5, there are similar fluctuations among magnetic susceptibility, the contents of 2~5 ϕ grain size range, ARM, and ARM@20mT , and the magnetic susceptibility changes in these segments is probably due to the fluctuations of contents of the soft magnetic multidomain grains within 2~5 ϕ grain size range. In the segments with depth from 808 cm to 488 cm and magnetic susceptibility less than 45×10-5, the coherences among the changes of magnetic susceptibility, the contents of 2~5 ϕ grain size range, ARM, and ARM@20mT are poor, and the mechanism of magnetic susceptibility changes is pending further research. 2~5 ϕ grain size range is an important coarse grain size component in QD189, and generally have a higher contents and bigger change ranges below the depth of 350 cm than above the depth of 350 cm. ARM@20mT can more accurately indicate the concentration of singe domain particles in QD189 than ARM, and except single-domain particles, the particles of the pseudo-single-domain and multidomain within 9~12 ϕ grain size range probably make some indispensablet contributions to ARM in the segment with 665~48 cm depth, and a part of ARM in segment with 548~310 cm depth is also derived from multidomain within 6~9 ϕ grain size range. Six volcanic actions are recognized by the corresponds among the extreme peak values of clastic mineral abundance, volcanic glass abundance and magnetic susceptibility. The distribution pattern of volcanic glass abundance reveals the prevalence of bioturbation in QD189.

中图分类号: 

图1 QD189站位图 QD189站位由白色五角星表示;深海平原主要的3 500 m水深等值线由黑色粗线表示;白色虚线表示皮纳图博火山(由白色三角标示)1991年喷发火山灰厚度等值线[27],等值线标注单位为毫米
Fig.1 Site of QD189 White five-fointed star indicates site of QD189, contour line of 3500 m water depth in the abyssal plain of the South China Sea is indicated by black thick line, white dash lines show the contour lines of ash fall deposit thickness of the 1991 eruption of Mount Pinatubo in the South China Sea[ 27 ], and the unit of contour labels is millimeter
图2 柱状样QD189磁化率,ARM,ARM @20mT,ARM @20mT/ARM以及0~1 ϕ,2~5 ϕ,6~9 ϕ,9~12 ϕ粒级含量随深度的变化 (a)中短横条表示肉眼观察到的特殊岩性层段;(a),(c)中垂直虚线分别指示磁化率45×10-5,2~5 ϕ粒级含量20%,磁化率小于45×10-5的曲线进一步由图(d)表示,2~5 ϕ粒级含量小于20%的曲线进一步由插图(i)表示,(d)~(i)中水平灰色条带表示磁化率大于45×10-5的层段
Fig.2 Changes of magnetic susceptibility, ARM, ARM @20mT, ARM @20mT/ARM and the contents of 0~1 ϕ, 2~5 ϕ, 6~9 ϕ, 9~12 ϕ grain size range with depth in core QD189 The horizontal bars in A denote the special lithological layers; The vertical dash lines in (a) and (c) denote magnetic susceptibility equal to 45×10-5, The contents of 2~5 ϕ grain size range equal to 20%, respectively; The magnetic susceptibility less than 45×10-5 is further showed by the curve in (d); The contents of 2~5 ϕ grain size range less than 20% is further showed by the curve in (i); The horizontal gray bands denote magnetic susceptibility greater than 45×10-5
图3 柱状样QD189关键粒级间粒度组成(a)以及各关键粒级含量(b~h)随深度的变化
Fig.3 key grain size components of core QD189 (a) and the changes of the contents of these grain size components with depth (b~h)
图4 changes of magnetic susceptibility, the contents of 2~5 ϕ grain size range, the clastic mineral abundances, volcanic glass abundances, heavy mineral abundances, light mineral abundances, and relative contents of heavy mineral with depth In (a), the horizontal bars denote the special lithological layers and the vertical dash lines denote magnetic susceptibility equal to 45×10-5; The vertical dash lines in C denote the contents of 2~5 ϕ grain size range equal to 20%; Mineral grains in (c)~(g) all belong to clastic mineral of 0.063~0.25 mm grain size range in the 5 g of dry samples; The vertical dash lines in C and D denote the 0.07g/5g dry sample of clastic mineral abundance and 55 grains/5g dry samples, respectively; The horizontal gray bands denote the corresponds of clastic mineral abundances to peak values of magnetic susceptibility
[1] Wang P,Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports, 184[R/OL]. College Station, TX (Ocean Drilling Program). 2000. [2015-02-12].
URL    
[2] Liu Q, Jiang X, Xie S, et al.A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability[J]. Journal of Geophysical Research,2004, 109: C7012, doi: 7010. 1029/2003JC002179.
[3] Milliman J D, Meade R H.World-wide delivery of river sediment to the oceans[J].Journal of Geology,1983, 91: 1-21.
[4] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. Journal of Geology, 1992, 100(5): 525-544.
[5] Wang Pinxian.Cenozoic deformation and history of sea-land interactions in Asia[J].Earth Science—Journal of China University of Geosciences, 2005, 30(1): 1-18.
[汪品先. 新生代亚洲变形与海陆相互作用[J]. 地球科学——中国地质大学学报, 2005, 30(1): 1-18.]
[6] Chen Ronghua, Xu Jian, Meng Yi, et al.Microorganisms and carbonate lysocline depth and CCD in surface sediment of the northeastern South China Sea[J]. Acta Sedimentologica Sinica, 2003, 25(2): 48-56.
[陈荣华, 徐建, 孟翊, 等. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度[J]. 海洋学报, 2003, 25(2): 48-56.]
[7] Wang Yongjun, Chen Muhong, Lu Jun, et al.Distribution of calcareous nannofossils in surface sediments of South China Sea[J]. Journal of Tropical Oceanography, 2007, 26(5): 26-34.
[王勇军, 陈木宏, 陆钧, 等. 南海表层沉积物中钙质超微化石分布特征[J]. 热带海洋学报, 2007, 26(5): 26-34.]
[8] Zhang Lanlan, Chen Muhong, Chen Zhong, et al.Distribution of calcium carbonate and its controlling factors in surface sediments of the South China Sea[J].Earth Science—Journal of China University of Geosciences, 2010, 35(6): 891-898.
[张兰兰, 陈木宏, 陈忠, 等. 南海表层沉积物中的碳酸钙含量分布及其影响因素[J]. 地球科学——中国地质大学学报, 2010, 35(6): 891-898.]
[9] Imbrie J, Hays J D, Martinson D G, et al.The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[M]∥Berger A, et al, eds. Milankovitch and Climate. Dordrecht: D. Reidel Publishing Company, 1984: 269-305.
[10] Martinson D G, Pisias N G, Hays J D, et al.Age dating and the orbital theory of the ice age: Development of a high-resolution 0 to 300,000-year chronostratigraphy[J].Quaternary Research, 1987, 27: 1-29.
[11] Verosub K L, Roberts A P.Environmental magnetism—Past, present, and future[J]. Journal of Geophysical Research,1995, 100(B2): 2 175-2 192.
[12] Liu Q, Roberts A P, Larrasoaña J C,et al. Environmental magnetism: Principles and applications[J].Reviews of Geophysics,2012, 50: RG4002, doi:10.1029/2012RG000393.
[13] Tauxe L.Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice[J]. Reviews of Geophysics, 1993, 31(3): 319-354.
[14] Guyodo Y, Valet J.Global changes in intensity of the Earth’s magnetic field during the past 800kyr[J]. Nature, 1999, 399: 249-252.
[15] Ge Shulan, Shi Xuefa, Zhang Weibin.General review for methods of relative geomagnetic paleointensity study[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 65-70.
[葛淑兰, 石学法, 张伟滨. 地磁场相对强度研究方法[J]. 海洋地质与第四纪地质, 2007, 27(2): 65-70.]
[16] Tauxe L. Lectures in Paleomagnetism[M/OL].2005.[2015-01-10]..
URL    
[17] Liu Qingsong,Deng Chenglong.Magnetic susceptibility and its environmental significances[J].Chinese Journal of Geophysics,2009, 52(4): 1 041-1 048.
[刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4): 1 041-1 048.]
[18] Zhang Jiangyong, Gao Hongfang, Peng Xuechao, et al.Magnetic susceptibility comparison of late Quaternary sediment derived from slopes in the South China Sea and implication for paleoceanography[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 151-164.
[张江勇, 高红芳, 彭学超, 等. 南海陆坡晚第四纪沉积物磁化率的对比及其古海洋学意义[J]. 海洋地质与第四纪地质, 2010, 30(4): 151-164.]
[19] Kissel C, Laj C, Clemens S, et al.Magnetic signature of environmental changes in the last 1.2 My at ODPSite 1146, South China Sea[J]. Marine Geology, 2003, 201: 119-132.
[20] Yang X, Heller F, Wu N, et al.Geomagnetic paleointensity dating of South China Sea sediments for the last 130 kyr[J]. Earth and Planetary Science Letters, 2009, 284: 258-266.
[21] Yang Xiaoqiang, Li Huamei, Zhou Yongzhang.Magnetic susceptibility oscillation and unstable climate events of core NS93-5 from South China Sea[J]. Marine Geology & Quaternary Geology, 2002, 22(1): 31-36.
[杨小强, 李华梅, 周永章. 南海南部NS93-5 孔沉积物磁化率特征及其对全球气候变化的记录[J]. 海洋地质与第四纪地质, 2002, 22(1): 31-36.]
[22] Yang Xiaoqiang, Zhou Wenjuan, Gao Fanglei, et al.Remanence magnetic records from recent 130 000 years in sediments of Nansha area, South China Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 59-66.
[杨小强, 周文娟, 高芳蕾, 等. 近13万年来南沙沉积物中的剩磁记录[J]. 海洋地质与第四纪地质, 2006,26(1): 59-66.]
[23] Day R, Fuller M, Schmidt V A.Hysteresis properties of titanomagnetites: Grain-size and compositional dependence[J]. Physics of the Earth and Planetary Interiors, 1977, 13: 260-267.
[24] Butler R F, Banerjee S K.Theoretical single domain grain-size range in magnetite and titanomagnetite[J].Journal of Geophysical Research, 1975, 80:4 049-4 058.
[25] Maher B A. Magnetic properties of some synthetic sub-micron magnetites[J]. Geophysical Journal, 1988, 94(1): 83-96.
[26] Hunt C P, Banerjee S K, Han J M, et al.Rock-magnetic proxies of climate change in the loess-paleosol sequences of the western loess plateau of China[J].Geophysical Journal of International, 1995, 123: 232-244.
[27] Wiesner M G, Wetzel A, Catane S G, et al.Grain size, area thickness dist ribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea[J].Bulletin of Volcanology, 2004, 66:226-242.
[28] Liu Q S, Yu Y J, Pan Y X, et al.Partial Anhysteretic Remanent Magnetization (pARM) of synthetic single- and multi-domain magnetites and its paleoenvironmental significance[J]. Chinese Science Bulletin, 2005, 50(20): 2 381-2 384.
[29] Wei K, Lee T, Shipboard Scientific Party of IMAGES. Late Pleistocene volcanic ash layers in core MD972142, Offshore from northwestern Palawan, South China Sea: A preliminary report[J]. TAO, 1998, 9(1): 143-152.
[30] Ge Shulan, Shi Xuefa, Wu Yonghua, et al.The rock magnetic behavior of gravity core CSH1 from the northern Okinawa Trough and the effect of early diagenesis[J]. Acta Oceanologica Sinica, 2005, 27(6): 56-64.
[葛淑兰, 石学法, 吴永华, 等. 冲绳海槽北部CSH1孔岩石磁学特征及其早期成岩作用的影响[J]. 海洋学报, 2005, 27(6): 56-64.]
[31] Li Ping, Li Peiying, Xu Xingyong, et al.Environmental magnetism record of volcano ejecting events in the middle Okinawa Trough[J]. Acta Oceanologica Sinica, 2008, 30(1): 100-104.
[李萍, 李培英, 徐兴永, 等. 冲绳海槽中部火山事件的环境磁学记录[J]. 海洋学报, 2008, 30(1): 100-104.]
[32] Chen Guocheng, Zheng Hongbo, Li Jianru, et al.Sedimentary records of volcanic activities in the South China sea over the past 480 ka[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 69-76.
[陈国成, 郑洪波, 李建如, 等. 48万年来南海及周边地区火山喷发作用的沉积学记录[J]. 海洋地质与第四纪地质, 2007, 27(4): 69-76.]
[33] King J, Banerjee S K, Marvin J, et al.A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments[J]. Earth and Planetary Science Letters, 1982, 59: 404-419.
[34] Dearing J A, Dann R J L, Hay K, et al. Frequency-dependent susceptibility measurements of environmental materials[J]. Geophysical Journal International, 1996, 124(1): 228-240.
[35] Butler R F.Paleomagnetism: Magnetic Domains to Geologic Terranes[M]. Massachussetts: Blackwell Scientific Publications, 1992.
[36] Evans M E, Heller F.Environmental Magnetism: Principles and Applications of Enviromagnetics[M].San Diego, California: Academic Press, 2003.
[37] Xia Dunsheng, Ma Jianying, Wang Guan,et al.Environmental magnetism concepts and their applications to environmental studies in arid regions, Northwest China[J]. Earth Science Frontiers, 2006, 13(3): 168-179.
[夏敦胜, 马剑英, 王冠, 等. 环境磁学及其在西北干旱区环境研究中的问题[J]. 地学前缘, 2006, 13(3): 168-179.]
[38] Williams W, Dunlop D J. Simulation of magnetic hysteresis in pseudo-single-domain grains of magnetite[J]. Journal of Geophysical Research, 1995, 100(B3): 3 859-3 871.
[39] Butler R F, Banerjee S K.Theoretical single-domain grain size range m magnetite and titanomagnetite[J]. Journal of Geophysical Research, 1975, 80: 4 049-4 058.
[40] Derkachev A N, Nikolaeva N A, Gorbarenko S A, et al. Characteristics and ages of tephra layers in the central Okhotsk Sea over the last 350 kyr[J]. Deep-Sea Research II: Topical Studies in Oceanography, 2012, 61/64: 179-192.
[41] Aksu A E, Jenner G, Hiscott R N, et al.Occurrence, stratigraphy and geochemistry of Late Quaternary tephra layers[J]. Marine Geology, 2008, 252: 174-192.
[42] Ton-That T, Singer B, Paterne M.40Ar-39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea[J]. Earth and Planetary Science Letters,2001, 184: 645-658.
[43] Archer D, Maier-Reimer E.Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration[J]. Nature, 1994, 367: 260-263.
[44] Wenzhofer F, Adler M, Kohls O, et al.Calcite dissolution driven by benthic mineralization in the deep-sea: In situ measurements of Ca2+, pH, pCO2 and O2[J].Geochimica et Cosmochimica Acta, 2001, 65:2 677-2 690.
[45] Jahnke R A, Jahnke D B.Calcium carbonate dissolution in deep sea sediments: Reconciling microelectrode, pore water and benthic flux chamber results[J]. Geochimica et Cosmochimica Acta, 2004, 68:47-59.
[46] Jourabchi P, Meile C, Pasion L R, et al.Quantitative interpretation of pore water O2 and pH distributions in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 2009, 72:1 350-1 364.
[47] Verosub K L.Depositional and postdepositional processes in the magnetization of sediments[J]. Reviews of Geophysics and Space Physics, 1977, 15(2):129-143.
[48] Robertsa A P, Winklhoferb M.Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling[J]. Earth and Planetary Science Letters, 2004, 227: 345-359.
[1] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
[2] 侯征, 于长春, 吴彦旺, 熊盛青, 郭鸿军, 贾琦. 新疆和田南部地区岩石磁化率变化特征研究[J]. 地球科学进展, 2016, 31(5): 481-493.
[3] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
[4] 高新勃, 强小科, 赵辉, 陈艇. 风成红黏土序列磁化率各向异性特征对区域应力变化的响应[J]. 地球科学进展, 2014, 29(3): 369-380.
[5] 张风宝;杨明义;赵晓光;刘普灵. 磁性示踪在土壤侵蚀研究中的应用进展[J]. 地球科学进展, 2005, 20(7): 751-756.
[6] 李雁玲,李杰森. 云南抚仙湖近千年地震事件记录[J]. 地球科学进展, 2003, 18(6): 906-911.
[7] 郭正府,刘嘉麒. 火山活动与气候变化研究进展[J]. 地球科学进展, 2002, 17(4): 595-604.
[8] 胡蒙育,B. Maher. 中国黄土堆积的磁性记录与古降雨量重建[J]. 地球科学进展, 2002, 17(3): 320-325.
[9] 旺 罗,刘东生,韩家懋,邓成龙. 中国第四纪黄土环境磁学研究进展[J]. 地球科学进展, 2000, 15(3): 335-341.
[10] 田白. 白云岩化研究的新进展——火山作用与白云岩化的关系[J]. 地球科学进展, 1991, 6(4): 51-52.
阅读次数
全文


摘要