地球科学进展 ›› 2016, Vol. 31 ›› Issue (5): 481 -493. doi: 10.11867/j.issn.1001-8166.2016.05.0481.

上一篇    下一篇

新疆和田南部地区岩石磁化率变化特征研究
侯征 1, 2( ), 于长春 1, 吴彦旺 1, 熊盛青 1, 郭鸿军 3, 贾琦 3   
  1. 1.中国国土资源航空物探遥感中心,北京 100083
    2.河北地质大学勘查技术与工程学院,河北 石家庄 050031
    3.天津华北地质勘查局,天津 300170
  • 收稿日期:2016-02-25 修回日期:2016-04-02 出版日期:2016-05-20
  • 基金资助:
    *国家高技术研究发展计划项目“航空地球物理遥感综合探测技术与解释系统研究”(编号:2013AA063905);中国地质调查局和天津华北地质勘查局矿业产业援疆项目所属工作项目“新疆和田东三县1∶ 5万航磁调查”(编号:12120113072800)资助

Research of the Rock Magnetic Susceptibility Characteristics in Southern Hotan Region in Xinjiang

Zheng Hou 1, 2( ), Changchun Yu 1, Yanwang Wu 1, Shengqing Xiong 1, Hongjun Guo 3, Qi Jia 3   

  1. 1.China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
    2.School of Exploration Technology and Engineering, Hebei GEO University, Shijiazhuang 050031, China
    3.Tianjin North China Geological Exploration Bureau, Tianjin 300170, China
  • Received:2016-02-25 Revised:2016-04-02 Online:2016-05-20 Published:2016-05-10
  • About author:

    First author:Hou Zheng(1980-),male, Hohhot City, Inner Mongolia, Lecturer. Research areas include the aeromagnetic data processing and interpretation, geophysical nonlinear joint inversion.E-mail:hou_zheng@163.com

  • Supported by:
    Project supported by the National High Technology Research and Development Program of China “The research of aviation geophysical remote sensing comprehensive detection technology and interpretation system” (No.2013AA063905);The China Geological Survey and Tianjin North China Geological Exploration Bureau Industry Supporting Xinjiang Project belongs to the Work Project of “ 1∶ 50000 aeromagnetic survey in the three Counties of Northeast Hotan in Xinjiang” (No.12120113072800)

为配合新疆和田南部地区1∶ 5万航磁调查工作,掌握该区岩石磁性特征,填补这一地区缺少岩石磁化率资料空白,2013—2015年在该地区开展了区域性岩石磁化率调查工作,完成331处物性点测量,获得有效体积磁化率数据10 256个,采集岩石样品270块。对实测资料进行了详细地分类统计,进一步分析发现该区岩石磁化率主要受岩石中矿物成分、结构以及岩石时空分布影响。中、酸性侵入岩磁化率主要由岩石中黑云母的含量决定,黑云母对中、酸性侵入岩磁化率的贡献要高于其他超顺磁性矿物的贡献。对于相同岩性的岩石磁化率具有沿深大断裂分布的磁化率值高,沿次级断裂分布的磁化率值相对低的空间分布特点和早古生代中、酸性侵入岩磁化率高于晚古生代中、酸性侵入岩的时间分布特点。研究结果为航磁资料解释、地质找矿、构造演化研究提供了重要依据。

In order to cooperate with 1∶ 50000 aeromagnetic survey work, master the rock magnetic characteristics and fill in the material blank of rock magnetic susceptibility data in southern Hotan Region in Xinjiang, we carried out regional rock magnetic susceptibility investigation work in the region from 2013 to 2015 years, completed properties measurement work of 331 points, obtained 10 256 effective volume magnetic susceptibility data and collected 270 pieces of rock samples. According to classified statistics in detail for the measured data and further analysis, we found that the magnetic susceptibility of this region rocks was mainly influenced by the mineral composition of rocks, structure and space-temporal distribution. The magnetic susceptibility of acid or medium-acid intrusive rocks was mainly decided by the content of the biotite in rocks, and the contribution of biotite to the magnetic susceptibility of acid or medium-acid intrusive rocks was higher than other super paramagnetic minerals. The magnetic susceptibility of the same lithology rocks was high along the distribution of deep fault, and was relatively low along the secondary fracture distribution. The magnetic susceptibility of acid or medium-acid intrusive rocks in early Paleozoic was higher than the magnetic susceptibility of acid or medium-acid intrusive rocks in the late Paleozoic. This research work can provide an important basis for the aeromagnetic data interpretation, geological prospecting and tectonic evolution research.

中图分类号: 

图1 研究区所处大地构造单元位置示意图 [ 17 ]
I.古亚洲构造域;I 1.塔里木陆块;I 1-1.塔里木盆地;I 1-2.铁克里克断隆带;I 1-3.柯岗晚古生代裂谷带;I 2.昆仑造山带;I 2-1.北昆仑(北祁漫塔格)早古生代岩浆弧带;I 2-2.库地—其曼于特早古生代结合带;I 2-3.中昆仑微地块;I 2-4.乌妥—诺木洪—柳什塔格中新元古—早古生代蛇绿构造混杂岩带;I 2-5.昆南早古生代增生楔杂岩带;Ⅱ.昆南—羌塘缝合系;Ⅱ 1.康西瓦—木孜塔格—阿尼玛卿晚古生代结合带;Ⅱ 2.可可西里—巴颜喀拉中生代浊积盆地褶断带;Ⅱ 3.郭扎错—西金乌兰—金沙江晚古生代缝合带;Ⅱ 4.北羌塘—唐古拉地块;Ⅱ 5.龙木错—双湖晚古生代结合带;Ⅱ 6.南羌塘地块;Ⅲ. 冈瓦纳大陆; Ⅲ 1.斑公湖—怒江结合带
Fig.1 Location map of West Kunlun and its adjacent areas in which tectonic unit [ 17 ]
I.Paleo-Asian tectonic;I 1.Tarim landmass; I 1-1.Tarim Basin;I 1-2.Tiklik fault uplift zone;I 1-3.Kogan late Paleozoic rift zone;I 2.The Kunlun orogenic belt;I 2-1.North Kunlun (north Qi Tager) early Paleozoic magmatic arc belt;I 2-2.Kudi-Qimanyute early Paleozoic junction;I 2-3.Micro-massif of Kunlun;I 2-4.Wutuo-Nuomuhong-Liushitage Meso-Neoproterozoic-early palaeozoic ophiolite tectonic melange belt;I 2-5.Southern Kunlunearly Paleozoic accretionary wedge of mixed rock zone;Ⅱ.South Kunlun-Qingtang suture zone;Ⅱ 1.KSTB-Muztag-ANEMAQEN late Paleozoic junctional zone; Ⅱ 2.Hoh Xil-Bayan Har Mesozoic turbidite basin fold fault belt;Ⅱ 3.Guozhacuo-Xijir Ulan-Jinsha riverlate Paleozoic suture zone;Ⅱ 4.North Qiangtang-Tangula plot;Ⅱ 5.Longmu Co-Shuanghu late Paleozoic belt;Ⅱ 6.South Qiangtang massif;Ⅲ.Gondwanaland; Ⅲ 1.Bangonghu-Nujiang juncture zone
图2 研究区岩石磁化率实测路线图
Fig.2 Magnetic susceptibility of rocks in the study area measuring line
表1 研究区岩石磁化率统计表
Table 1 The results of rock magnetic susceptibility
岩性 时代 岩石名称 测量
点数
测量
次数
磁化率/10-5SI 测量地点
变化范围 平均值


K1S,C2H 凝灰岩 2 30 0~40 8.8 昂格提勒克库勒、冬艾格力
P1-2a 安山岩 2 60 17~1 273 415.2 普鲁、阿依耐克
P1-2a 英安岩 2 60 297~532 417.7 苦阿
C 杏仁状橄榄玄武岩 2 61 3~1 821 390.2 昂格提勒克库勒
JxA,Pz1s,(C-P)T,
P1-2a
玄武岩 26 782 2~22 032 2 442.4 黄羊滩、塔木其、英其格、硝尔库勒、苦阿、阿拉叫依、独木村、阿羌、普鲁


O,S,C-P 花岗岩、黑云二长花岗岩 20 699 0~3 160 198.4 塔木齐、包斯塘、特日格勒、喀尔萨依、阿克来克、阿拉玛斯、布雅
∈-O,S,C-P,P 花岗闪长岩 10 321 4~5 609 257.9 奇阿勒克、克拉布拉克、苏盖特、塔木齐、特日格勒、布藏、空阿于孜
Z,O,S,C,
C-P,P
闪长岩、石英闪长岩、英云闪长岩、闪长玢岩、石英二长闪长岩、角闪闪长岩 38 1 145 0~7 224 794.9 苏盖特、吐木亚、阿依耐克、巴西其其干、乌兹塔格、阿拉叫依、奇阿勒克、苦阿、皮什盖、布藏、卡其空其、琼萨依、塔木齐、库马特
Z-∈,∈-O,
C,C-P,P
辉长岩、辉绿岩、辉绿玢岩 19 581 0~11 452 818.6 巴西其其干、阿克来克、阿依耐克、塔木齐、包斯塘、苦阿、奇阿勒克、琼萨依
C-P 辉石岩 2 62 31~4 434 997 黄羊滩西、阿依耐克
C,C-P,P 蛇纹石化橄榄岩、蛇纹岩 11 332 397~92 395 11 019 黄羊滩、阿依耐克、阿拉叫依、乌兹塔格


Pt1A,ChK,Qns,
Pz1s,C2H,P1-2p,
P1-2a
灰岩、粉晶灰岩、亮晶砂屑生屑灰岩 17 524 0~51 3.5 普鲁、阿羌、黄羊滩、塔木齐、昂格提勒克库勒、坡柯尔玛、阿凡多、卡其空其、卡羌、包萨提、奇阿勒克
P1-2p 泥质白云岩 2 62 5~12 6.8 阿其克
(Z-∈)A,ChS.,Pz1s,
D3q,C1T,C2H,PK,
P1-2p,P1-2a,P2d,
Plss,K1S,N1p
砂岩、不等粒岩屑砂岩、长石砂岩、砂砾岩、砾岩、石英砂岩、长石石英砂岩 38 1156 0~462 13.8 苏纳克、卡其空其、塔木齐、阿拉叫依、民丰煤矿、黄羊滩、硝尔库勒、阿依耐克、玉如克塔什、塔塞
P1-2a 泥岩 4 121 0~437 21.4 吐朗乌吉能库纳吐格曼
P1-2a 细砂岩 4 119 3~582 208.9 苦阿


Pt1A,ChS.,JxS 石英岩、二云长石石英岩、绿泥石英岩 7 220 0~42 13.3 栏杆、格塔孜提、雨盖牙克、尼萨、阿克来克
Pt1A,Pt1M,ChS.,
JxS,(Z-∈)A,C1T
变粒岩、二云方解变粒岩、绿泥二长变粒岩、黑云变粒岩、千枚岩 22 686 0~104 21.2 提孜塔格、杜瓦、阿凡多、阿拉叫依、阿克来克、普鲁
Pt1M,JxS,Pz1s ,C1T,
P1-2a
板岩、绢云钙质板岩、绢云绿泥砂质板岩、长英质板岩 11 341 0~464 26 阿克来克、以色克阿特赛、杜瓦、阿依耐克
Qns,C2H,P1-2a 糜棱岩、碱流岩、石英角斑岩 18 588 0~100 36.8 塔木齐、苦阿、普鲁、阿羌
JxS,Qns,Pz1s ,
P1-2a
绿泥石片岩、绢云绿泥片岩 26 789 0~2 419 103 以色克阿特赛、阿依耐克、苦阿、塔木齐、包斯塘、琼萨依、普鲁
Pt1M,(Z-∈)A,
P1-2a
斜长角闪岩 6 183 9~2 237 179.4 吐木亚、卡其空其、尼萨、巴西其其干、塔木齐
JxS,Pz1s,P1-2a,
J1-2Y
绿泥石英片岩、绢云石英片岩、二云石英片岩 33 1 059 0~10 967 190.8 苦阿、巴西其其干、以色克阿特赛、阿克来克、牙门、提孜塔格、乌鲁瓦提、尼萨
Pt1A,Pt1M,JxA,
P1-2a
片麻岩、黑云斜长片麻岩、二云斜长片麻岩、黑云角闪片麻岩 9 275 2~4 933 331.3 栏杆、格塔孜提、克尔阿恰克、塔木齐、苦阿
图3 研究区各类岩石矿物组成显微照片(磁化率单位:10 -5 SI)
(a)杏仁状强蚀变橄榄玄武岩, κ=21.1;(b)杏仁状强蚀变橄榄玄武岩, κ=759.3;(c)变质玄武岩, κ=2 243.0;(d)角闪闪长岩, κ=15.4;(e)角闪闪长岩, κ=414.2;(f)中粒英云闪长岩, κ=24.7;(g)细粒英云闪长岩, κ=1 790.6;(h)亮晶含藻团块藻屑灰岩, κ=0;(i)细中粒长石石英砂岩, κ=12.7;(j)不等粒岩屑砂岩, κ=32.6;(k)细砂岩, κ=359.1; (l)绢云钙质千枚岩, κ=1.3;(m)绿泥石英岩, κ=32.8;(n)斜长角闪岩, κ=117.4;(o)绿帘黑云斜长片麻岩, κ=507.3
Fig.3 Photo plate mineral composition and polarizing microscope pictures of different rocks in study area (unit:10 -5 SI)
(a) Almond-shaped strong alteration olivine basalt, κ=21.1; (b) Almond-shaped strong alteration olivine basalt, κ=759.3;(c)Metabasalt, κ=2 243.0;(d)Hornblende diorite, κ=15.4;(e)Hornblende diorite, κ=414.2;(f)Medium grain tonalite, κ=24.7;(g)Fine grain tonalite, κ=1 790.6;(h)Sparry alga-gobbet limestone, κ=0;(i)Fine-medium grain feldspathic quartz sandstone, κ=12.7;(j)Seriate lithic sandstone, κ=32.6;(k)Packsand, κ=359.1; (l)Sericite calcium phyllite, κ=1.3;(m)Chlorite quartzite, κ=32.8; (n)Amphibolite, κ=117.4;(o)Green biotite plagioclase gneiss, κ=507.3
表2 研究区中、酸性侵入岩矿物成分统计表
Table 2 Statistical results ofintermediate and acid intrusive rock mineral composition of study area
表3 研究区中、酸性侵入岩矿物粒度统计表
Table 3 Statistical results of intermediate and acid intrusive rock grain size of study area
图4 研究区侵入岩磁化率频率分布直方图
Fig.4 Distribution histogram of frequency of bulk magnetic susceptibility of intrusive rocks in study area
图5 研究区变质岩磁化率频率分布直方图
Fig.5 Distribution histogram of frequency of bulk magnetic susceptibility of metamorphic rocks in study area
图6 研究区岩矿石平均磁化率分布图
Fig.6 Location map showing average rock magnetic susceptibility in study area
[1] Dong Yongguan, Guo Kunyi, Xiao Huiliang, et al.Ore prospects of the West Kunlun area in western China[J].Geology in China,2003,30(2): 173-178.
[蕫永观,郭坤一,肖惠良,等.西昆仑地区成矿远景[J].中国地质,2003,30(2):173-178.]
[2] Li Shanglin, Hou Engang, Ji Wenhua, et al.Geological characteristics and prospecting significance of Kalangu zinc-lead deposit of HinduKush-Western Kunlun metallogenic belt[J].Advances in Earth Science,2012, 27(Suppl.):216-220.
[李尚林,侯恩刚,计文化,等.兴都库什—西昆仑成矿带卡兰古铅锌矿成矿地质特征及找矿意义[J].地球科学进展,2012,27(增刊):216-220.]
[3] Xu Zhiqin, Qi Xuexiang, Yang Jingsui, et al.Senses and timings of two kinds of shear in the Kangxiwar str ike- slipshear zone, West Kunlun, and their tectonic significance[J].Geological Bulletin of China, 2007, 26(10):1 252-1 261.
[许志琴,戚学祥,杨经绥,等.西昆仑康西瓦韧性走滑剪切带的两类剪切指向、形成时限及其构造意义[J].地质通报, 2007, 26(10):1 252-1 261.]
[4] Yu Xiaofei.Study on Regional Metallogenic Laws in Western Kunlun Orogenic Belt[D].Changchun:Jilin University,2010.
[于晓飞. 西昆仑造山带区域成矿规律研究[D].长春:吉林大学,2010.]
[5] Cai Fenliang, Liang Guoxiang, Lu Shuxin.Application of high precision magnetic surveying to the investigation and assessment of mineral resources in the cold district of the western Kunlun Mountain[J].Geology of Shannxi,2005,23(2):70-75.
[蔡分良,梁国祥,卢树新. 高精度磁测在西昆仑高寒山区矿产资源调查评价中的应用[J].陕西地质,2005,23(2):70-75.]
[6] Chen Chao.The Paleomagnetism Reaearch and the Evolutionary Process of the Arcuate Tectonic Belt in the West Kunlun[D].Hangzhou:Zhejiang University,2014.
[陈超. 西昆仑弧形构造带古地磁研究及演化过程[D].杭州:浙江大学,2014.]
[7] Ubangoh R U, Pacca I G, Nyobe J B, et al.Petromagnetic characterisitics of Gameroon Line volcanic rocks[J]. Journal of Volcanology of Cameroon Reseach, 2005,142:225-241.
[8] Hao Tianyao, Xu Ya, Zhao Baimin, et al.Geophysical research on distribution features of magnetic basements in the South China Sea[J].Chinese Journal of Geophysics, 2009, 52(11):2 763-2 774.
[郝天珧,徐亚,赵百民,等. 南海磁性基底分布特征的地球物理研究[J].地球物理学报, 2009, 52(11):2 763-2 774.]
[9] William W G.Mathematical model of anisotropy of Magnetic Susceptibility(AMS)[J].Journal of Applied Mathematics and Physics,2015,3:399-404.
[10] Zhao Xiangyu, Liu Qingsong.Effects of the grain size distribution on the temperature-dependent magnetic susceptibility of magnetite nanoparticles[J]. Science in China (Series D),2010,53:1 071-1 078.
[赵翔宇,刘青松. 粒径分布对磁铁矿磁化率变温曲线的影响[J].中国科学:D辑, 2010,53:1 071-1 078.]
[11] Balla Ondoa A, Ngos III S, Ndjeng E, et al.Contribution of the magnetic susceptibility to the characterization of the Babouri-Figuil Cretaceous Basin[J]. Open Journal of Soil Science, 2014,4: 272-283.
[12] Aifa T, Zerrouki A A, Baddari K, et al.Magnetic susceptibility and its relation with fractures and petrophysical parameters in the tight sand oil reservoir of hamra quartzites, southwest of the Hassi messaoud oil field, Algeria[J]. Journal of Petroleum Science and Engineering,2014, 123: 120-137.
[13] Guo W W, Li Z X, Dentith M C.Magnetic petrophysical results from the Hamersley Basin and their implications for interpretation of magnetic surveys[J]. Australian Journal of Earth Sciences,2011,58: 317-333.
[14] Gautam P, Blaha U, Appel E.Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu City, Nepal[J]. Atmospheric Environment,2005,39:2 201-2 211.
[15] Yin Gang, Hu Shouyun, Yan Haitao.Magnetic research methods and their application characteristics of different environmental pollution carriers[J].Progress in Geophysics, 2012,27(5):1 947-1 956.
[尹刚,胡守云,闫海涛.不同环境污染载体的磁学研究及其应用特点[J].地球物理学进展,2012,27(5):1 947-1 956.]
[16] Dalan R A.A review of the role of magnetic susceptibility in archaeogeophysical studies in the USA: Recent developments and prospects[J]. Archaeological Prospection, 2008, 15: 1-31.
[17] Han Fanglin,Cui Jiantang,Ji Wenhua, et al.New results and major progress in regional geological survey of the Yutian County and Bolike sheets[J].Geological Bulletion of China,2004,23(5/6):555-559.
[韩芳林,崔建堂,计文化,等.于田县幅、伯力克幅地质调查新成果及主要进展[J].地质通报, 2004,23(5/6):555-559.]
[18] Hu Yi, Wang Liming, Zhong Guicai, et al.Gravity and magnetic characteristics of the Weddell Sea and its tectonic significance[J].Advances in Earth Science,2015,30(11):1 231-1 238.
[胡毅,王立明,钟贵才,等.威德尔海的重磁场特征及其构造意义[J],地球科学进展, 2015,30(11):1 231-1 238.]
[19] Worm H U.On the superparamagnetic-stable single domain transition for magnetite, and frequency dependency of susceptibility[J]. Geophysical Journal International,1998,133:201-206.
[20] Liu Qingsong, Deng Chenglong.Magnetic susceptibility and its environmental significances[J]. Chinese Journal of Geophysics, 2009,52(4):1 041-1 048.
[刘青松,邓成龙.磁化率及其环境意义[J].地球物理学报, 2009,52(4): 1 041-1 048.]
[21] Zhou Xihua, Meng Xiangcong, Wang Jinlong, et al.The developing of intelligent magnetic susceptibility meter[J].Geophysical & Geochemical Exploration,2005,29(5):428-430.
[周锡华,孟祥聪,王金龙,等.智能磁化率仪的研制[J].物探与化探,2005,29(5):428-430.]
[22] Ali A, Eric C F, Zafer A.The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: Example from the Saruhan granitoids, NE Turkey[J]. Tectophysics,2007, 441: 85-95.
[23] Rochette P.Magnetic susceptibility of the rock matrix related to magnetic fabric studies[J]. Journal of Structural Geology, 1987,9:1 015-1 020.
[24] Xiong Shengqing, Yu Changchun.Characteristics and mechanisms of rock magnetic increasing in underground coal spontaneous combustion area—Take Wuda coal mine of Inner Mongolia and Ruqigou coal mine in Ningxia as examples[J]. Chinese Journal of Geophysics,2013,56(8): 2 827-2 836.
[熊盛青,于长春.地下煤层自燃区岩石磁性增强特征及机理研究——以内蒙古乌达和宁夏汝萁沟煤矿为例[J].地球物理学报, 2013,56(8):2 827-2 836.]
[25] Lang Yuanqiang, Hu Daqian, Liu Chang, et al.Mineralogy study of magnetic susceptibility of rocks along the coast of the northern South China Sea[J]. Chinese Journal of Geophyiscs, 2011, 54(2):573-587.
[郎元强,胡大千,刘畅,等.南海北部陆区岩石磁化率的矿物学研究[J]. 地球物理学报,2011, 54(2):573-587.]
[26] Zhang Jiangyong, Wang Zhimin, Liao Zhiliang, et al.The relationship among magnetic susceptibility, grain size, anhysteretic remanent magnetization and clastic mineral abundance in core QD189 retrieved from abyssal plain of the South China Sea[J].Advances in Earth Science,2015, 30(9):1 050-1 062.
[张江勇,王志敏,廖志良,等. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展,2015,30(9):1 050-1 062.]
[1] 侯征, 王天意, 于长春, 熊盛青, 邸龙. 基于航磁数据的三维地质建模研究[J]. 地球科学进展, 2018, 33(3): 257-269.
[2] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[3] 高新勃, 强小科, 赵辉, 陈艇. 风成红黏土序列磁化率各向异性特征对区域应力变化的响应[J]. 地球科学进展, 2014, 29(3): 369-380.
[4] 张风宝;杨明义;赵晓光;刘普灵. 磁性示踪在土壤侵蚀研究中的应用进展[J]. 地球科学进展, 2005, 20(7): 751-756.
[5] 钟锴;徐鸣洁;王良书;丁增勇;徐震. 利用航磁、重力资料研究川滇地区大陆变形特征[J]. 地球科学进展, 2005, 20(10): 1089-1094.
[6] 李雁玲,李杰森. 云南抚仙湖近千年地震事件记录[J]. 地球科学进展, 2003, 18(6): 906-911.
[7] 胡蒙育,B. Maher. 中国黄土堆积的磁性记录与古降雨量重建[J]. 地球科学进展, 2002, 17(3): 320-325.
[8] 旺 罗,刘东生,韩家懋,邓成龙. 中国第四纪黄土环境磁学研究进展[J]. 地球科学进展, 2000, 15(3): 335-341.
阅读次数
全文


摘要