地球科学进展 ›› 2005, Vol. 20 ›› Issue (10): 1089 -1094. doi: 10.11867/j.issn.1001-8166.2005.10.1089

学术论文 上一篇    下一篇

利用航磁、重力资料研究川滇地区大陆变形特征
钟锴,徐鸣洁,王良书,丁增勇,徐震   
  1. 南京大学地球科学系,江苏 南京 210093
  • 收稿日期:2004-11-02 修回日期:2005-04-07 出版日期:2005-10-25
  • 通讯作者: 钟锴
  • 基金资助:

    国家自然科学基金重点项目“滇西特提斯造山带地壳上地幔结构研究”(编号:40034010);中国科学院兰州地质研究所科技创新基金项目“西部塔里木盆地及邻区深部构造研究和地球动力学”(编号:03-12)资助.

STUDY ON CONTINENTAL DEFORMATION FEATURES IN SICHUAN-YUNNAN REGION FROM AEROMAGNETIC AND GRAVITY DATA

ZHONG Kai; XU Ming-jie; WANG Liang-shu; DING Zeng-yong; XU Zhen   

  1. Department of Earth Sciences, Nanjing University, Nanjing 210093,China
  • Received:2004-11-02 Revised:2005-04-07 Online:2005-10-25 Published:2005-10-25

利用航磁、重力资料对川滇地区大陆变形特征进行了研究。航磁异常揭示了研究区内的基底性质及其横向差异,研究区内的强烈地震主要集中在航磁异常突变带上,基底性质横向差异有利于应力的相对集中,成为地震孕育和发生的有利部位。康定—绵阳一带刚性基底的阻挡造成了青藏高原下地壳物质向东的塑性流动被迫转向南东—南南东方向,进而造成了川滇菱形块体内广泛的地壳增厚,布格重力异常等值线呈向南东伸出的舌状是其地壳增厚作用的直观反映。川滇地区的大陆变形特征既存在广泛的地壳增厚现象,同时在下地壳塑性流动的驱动下,中、上地壳破碎成大小不一的块体,变形特征表现出整体刚性,因而不能简单地套用“地壳增厚”或“大陆逃逸”模式。

Based on aeromagnetic and gravity data, continental deformation features in Sichuan-Yunnan Region(SYR) have been studied. We get the characteristics of basement and its lateral heterogeneity beneath SYR from aeromagnetic data. The eastward viscosity lower crustal flow of Tibet was blocked by the rigid basement near Kangding-Mianyang area, and turn to SE-SSE direction. Most strong earthquakes occurred on the large areomagnetic variation belts. The lateral heterogeneity of basement, which inferred by large areomagnetic variation, vailed stress concentration, earthquakes preparation and occurrence. We also get distribution of crustal thickness and continental deformation features in SYR from gravity data. On the background of collision between India plate and Eurasia plate and uplifting of Tibet, the viscosity lower crustal flow induced crust thicken extensively, and driven upper middleup crust break into some big and small sub-blocks. The continental deformation features in SYR, including remotion of rigid sub-block through the movement of huge slip faults and extensive crustal thickening, are not fit “Crustal thickening” mode or “Continental extrusion” mode.

中图分类号: 

[1]Wang Liangshu, Liu Shaowen, Li Cheng,et al. The continental dynamics related to the thermal-rheological structure of the Lithosphere[J].Advances in Earth Science,2004, 19(3):382-336.[王良书,刘绍文,李成,等.岩石圈热—流变结构与大陆动力学[J].地球科学进展,2004,19(3):382-336.]
[2]Wang Qi, Zhang Peizhen, Niu Zhijun,et al. Present-day crustal movement and tectonic deformation in China continent[J]. Science in China(D), 2002, 45(10): 865-874.
[3]Ma Zongjin, Zhang Peizhen, Ren Jinwei, et al. New cognitions on the global and Chinese continental crustal movements from GPS horizontal vector fields[J]. Advances in Earth Science,2003, 18(1):4-11.[马宗晋,张培震,任金卫,等.从GPS矢量场对中国及全球地壳运动的新认识[J].地球科学进展,2003,18(1):4-11.]
[4]Deng Qidong, Zhang Peizhen, Rang Yongkang, et al. Basic characteristics of active tectonics of China[J]. Science in China (D),2003,46(4):356-372.[5]Xu Xiwei, Wen Xueze, Zheng Rongzhang, et al. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region in China[J]. Science in China(D),2003,46(suppl.Ⅱ):210-226.
[6]Zhang Peizhen, Deng Qidong, Zhang Guomin, et al. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China(D),2003,46(suppl,Ⅱ):15-24.
[7]Su Youjin, Qin Jiazheng. Strong earthquake activity and relation to regional neotectonic movement in Sichuan-Yunnan region[J]. Earthquake Research in China, 2001,17(1):24-34.[苏有锦,秦嘉政.川滇地区强震活动与区域新构造运动的关系[J].中国地震,2001,17(1):24-34.]
[8]Petar Stavrev, Daniela Gerovska. Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity[J]. Geophysical Prospecting, 2000, 48: 317-340.
[9]Xu Mingjie, Wang Liangshu, Hu Dezhao,et al. Aeromagnetic data transforming and basement faults analysis in the western Tarim basin[J]. Chinese Journal of Geophysics,2002,45(suppl.):157-164.[徐鸣洁,王良书,胡德昭,等.塔里木盆地西部航磁数据变换处理与基底断裂分析[J]. 地球物理学报, 2002, 45(增刊):157-164.]
[10]Luo Zhili. New recognition of basement in sichuan basin[J]. Journal of Chengdu University of Technology, 1998, 25(2): 191-200.[罗志立.四川盆地基底结构的认识[J].成都理工大学学报,1998,25(2):191-200.]
[11]Zhong Kai, Xu Mingjie, Wang Liangshu,et al. Geophysical evidences of two-segmeng tectonic evolution of the western Sichuan foreland basin[J].Acta Petrolei Sinica,2004,25(6):29-32,37.[钟锴,徐鸣洁,王良书,等. 川西两期前陆盆地南北两段构造演化的地球物理特征[J].石油学报, 2004,25(6):29-32,37.]
[12]Wang Chunyong, Mooney W D, Wang Xili,et al. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region, China[J]. Acta Seismologica Sinica, 2002,24(1): 1-16.[王椿镛, Mooney W D,王溪莉,等.川滇地区地壳上地幔三维速度结构[J].地震学报, 2002,24(1):1-16.]
[13]Teng Jiwen. Physics and Dynamics of Lithosphere in Kangdian Structural Belt[M]. Beijing: Science Press,1994.41-50. [滕吉文主编.康滇构造带岩石圈物理与动力学[M].北京:科学出版社, 1994.41-50.]
[14]Zhong Kai, Xu Mingjie, Wang Liangshu, et al. Study on characteristics of gravity field and crustal deformation in Sichuan-Yunnan region[J]. Geological Journal of China Universities,2005,11(1):111-117.[钟锴,徐鸣洁,王良书,等. 川滇地区重力场特征与地壳变形研究[J].高校地质学报,2005, 11(1):111-117.]
[15]Hu Shengbiao, He Lijuan, Wang Jiyang,et al. Compilation of heat flow data in the China  continental area(3rd)[J]. Chinese Journal of Geophysics, 2001,44(5): 611-626.[胡圣标,何丽娟,汪集旸,等.中国大陆地区大地热流数据汇编(第三版)[J].地球物理学报,2001,44(5):611-626.]
[16]Xu Mingjie, Wang Liangshu, Liu Jianhua,et al. Study on crust and upper mantle structure in Ailaoshan-Honghe faults zone from receiver functions[J].Science in China(D),2005,35(8):729-737.[徐鸣洁,王良书,刘建华,等.利用接收函数研究哀牢山—红河断裂带地壳上地幔特征[J].中国科学D辑,2005,35(8):729-737.]
[17]Tapponnier P, Peltzer G, Dain A Y, et al. Propagating extrusion Tectonics in Asia: New insights from simple experiments with plasticine[J].Geology, 1982,10: 611-616.
[18]England P, McKenzie. A thin viscous sheet model for continental deoformation[J]. Geophysics Journal Research,1982,70: 295-321.

[1] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[2] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[3] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[4] 毛经伦, 祝意青. 地面重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展, 2018, 33(3): 236-247.
[5] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[6] 周晓成, 石宏宇, 陈超, 曾令华, 孙凤霞, 李静, 陈志, 吕超甲, 黄丹, 杜建国. 汶川 M S8.0地震破裂带土壤气中H 2浓度时空变化[J]. 地球科学进展, 2017, 32(8): 818-827.
[7] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[8] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[9] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[10] 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
[11] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[12] 魏晓琛, 李琦, 邢会林, 李霞颖, 宋然然. 地下流体注入诱发地震机理及其对CO 2地下封存工程的启示[J]. 地球科学进展, 2014, 29(11): 1226-1241.
[13] 夏阳,张立飞. 中源地震脱水脆变机制的岩石学研究进展[J]. 地球科学进展, 2013, 28(9): 997-1006.
[14] 李永祥,鄢全树,赵西西,全体船上科学家. 剥蚀型汇聚板块边缘大地震成因机理研究:来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728-736.
[15] 荆 凤,申旭辉,康春丽,熊 攀,孙 珂. 2010年新西兰M7.1地震前的长波辐射变化特征[J]. 地球科学进展, 2012, 27(9): 979-986.
阅读次数
全文


摘要