地球科学进展 ›› 2016, Vol. 31 ›› Issue (4): 377 -390. doi: 10.11867/j.issn.1001-8166.2016.04.0377.

上一篇    下一篇

西南天山柯坪推覆系西段全新世构造活动特征和古地震
李安 1( ), 冉勇康 2, 刘华国 3, 徐良鑫 4   
  1. 1.中国地震局地壳应力研究所 地壳动力学重点实验室,北京 100085
    2.中国地震局地质研究所活动构造与活动火山重点实验室,北京 100029
    3.中国地震灾害防御中心,北京 100029
    4.陕西省地震局,陕西 西安 710068
  • 收稿日期:2016-02-18 修回日期:2016-03-17 出版日期:2016-04-20
  • 基金资助:
    国家自然科学基金青年科学基金项目“冲积扇形态发育对逆断层—褶皱带构造活动的地貌响应”(编号:41402185);中国地震局地壳应力研究所中央级公益性科研院所基本科研业务专项资助项目“祁连山北缘玉门断裂带晚第四纪构造活动的地貌响应”(编号:ZDJ2014-12)资助

Active Characteristics and Paleoearthquakes in the West Kalpin Nappe Since the Holocene, SW Tianshan Mountain

An Li 1( ), Yongkang Ran 2, Huaguo Liu 3, Liangxin Xu 4   

  1. 1.Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
    2.Key Laboratory of Active Tectonics and Volcano, Institute of Geology, China Earthquake Administration, Beijing 100029,China
    3.China Earthquake Disaster Prevention Center, Beijing 100029, China
    4.Earthquake Administration of Shaanxi Province, Xi'an 710068, China
  • Received:2016-02-18 Revised:2016-03-17 Online:2016-04-20 Published:2016-04-10
  • About author:

    First author:Li An (1983- ), male, Changsha City, Hu’nan Province, Research assistant.Research areas include the active tectonic and paleoseismology.E-mail:antares_lee@163.com

  • Supported by:
    Project supported by the Young Scientists Fund of the National Natural Science Foundation of China “The topography of alluvial fans and their geomorphic response of the structure activity of the thrust fault-fold belt” (No.41402185);The Institute of Crustal Dynamics, China Earthquake Administration Research Fund “the Geomorphic response of the structure activity of the Yumen fault belt since the late Quaternary in the north Qilian Mountains ” (No.ZDJ2014-12)

柯坪推覆系是南天山重要的多排逆断裂推覆系,研究其活动性对讨论天山新生代构造具有重要意义。讨论柯坪推覆系全新世以来的活动特征和古地震情况可以对其最新活动性特点做出评价。通过对柯坪推覆系西段三排褶皱冲断带山前地貌面上断层陡坎的精确测量和典型地点的古地震探槽研究,并通过10Be宇宙成因核素方法确定地貌面时代和古地震发生时间。获得的结果表明全新世以来柯坪推覆系西段的西柯坪塔格断裂、奥兹塔格断裂和托克塔格断裂的活动速率分别为1.45(+1.68/-0.44)mm/a,0.81(+0.35/-0.19)mm/a和(0.3±0.05)mm/a。表现出天山多排逆断层前展模式中活动强度由后排构造向前排构造转移的特点;古地震的位移量和复发周期特点与活动速率相似,前排古地震活动性强于后排,产生较大地表破裂的强震多出现在第一排的柯坪塔格断裂上。其中第一排西柯坪塔格断裂2次地震复发间隔约4 ka,单次地震位移量约3 m;第二排奥兹塔格断裂4次地震复发间隔约2 ka,单次地震位移量约1 m;第三排托克塔格断裂7 ka来仅发生过1次地震。皮羌捩断层是柯坪推覆系东西段前展推覆速率差异的构造结果。推覆系西段的变形速率明显强于东段,造成推覆系统整体沿皮羌捩断层撕裂。同时由于前展模式的构造特点,目前皮羌断裂两侧的后排断层已经存在近20 km的巨大错距,而随着活动速率向前排的转移,前排两侧4 km左右的错距正在增大。

the Kalpin nappe is an important multiple thrust system. It is important to study the Cenozoic tectonic of the Tianshan Mountain. Holocene active characteristics and paleoearthquake of the Kalpin nappe can be used to evaluate the neotectonic of this area. In this paper, we accurately measured the fault scarp in the front of three thrust-fold faults and analyzed paleoearthquake events in the trenches of the Kalpin nappe. Using the 10Be exposure age, we obtained those geomorphic surface ages and paleoearthquake times. The result showed that the slip rates of the west Kalpintag fault, aozitag fault and the tuoketag fault were 1.45(+1.68/-0.44) mm/a, 0.81(+0.35/-0.19) mm/a and (0.3±0.05) mm/a, respectively since the Holocene. The slip rate indicated that the increased activity transferred from back-row fault to front-row fault and accorded with the piggy-back propagation model in the Tianshan Mountain. Displacements and recurrence intervals of paleoearthquakes was similar to the slip rate characteristics. It also showed paleoearthquakes in the front row fault were stronger than paleoearthquakes of the back row fault. The strong paleoearthquake which caused the highest surface rupture happened in the Kalpintag fault. The interval of paleoearthquakes was about 4 ka and the displacement of every paleoearthquake was about 3 m in the west Kalpintag fault; the interval of paleoearthquakes was about 2 ka and the displacement of every paleoearthquake was about 1m in the aozitag fault; the tuoketag fault ruptured only one paleoearthquake since 7 ka. The Piqiang tear fault was the tectonic result of different shortening rate between the west Kalpin system and the east Kalpin system. The shortening rate of west Kalpin system was obviously stronger than the east Kalpin system. The huge separation distance was near 20 km between the east and the west back-row fault. Because the slip rate of system transferred to the front-row fault in the piggy-back propagation model, the separation distance (~4 km) between the east and the west front-row fault was increasing.

中图分类号: 

图1 柯坪褶皱冲断带地貌、地质及典型构造剖面图 [ 20 ~ 22 ]
F1.东柯坪塔格断裂;F2.西柯坪塔格断裂;F3.萨尔干塔格断裂;F4.奥兹塔格断裂;F5.托克塔格断裂;F6.皮羌断裂;F7.满古特断裂;F8.卡拉布克塞断裂
Fig.1 Geological map of Kalpin thrust tectonics [ 20 ~ 22 ]
F1.East Kalpintag fault; F2.West Kalpintag fault; F3.Saergan fault; F4.Aozitag fault; F5.Tuoketag fault;F6.Piqiang fault; F7.Mangute fault; F8.Kalabukesai fault
图2 断层滑动速率计算 [ 23 ]
Fig.2 Calculation of the fault slip rate [ 23 ]
表1 10Be宇成核素测年结果
Table 1 The result of 10Be cosmogenic nuclide dating
图3 西柯坪塔格断裂探槽点
(a)探槽点照片;(b)实测地形;(c)&(d)实测地形剖面
Fig.3 Trench site of the west Kalpintag fault
(a)The site photograph; (b)The measurement topography; (c)&(d)The topography profile
图4 奥兹塔格断裂探槽点
(a)地貌照片(镜向北);(b)实测地形;(c)&(d)断层陡坎测量剖面
Fig.4 Trench site of the Aozitag fault
(a)The Geomorphic photograph (directionto north); (b)The measurement topography; (c)&(d)The topography profile of the fault scarp
图5 西柯坪塔格断裂TC1探槽
Fig.5 TC1 trench of the west Kalpintag fault
图6 西柯坪塔格断裂滑动速率计算和古地震位移
Fig.6 The slip rate and paleoearthquake displacements of the west Kalpintag fault
图7 奥兹塔格断裂的TC2探槽
黄线:F1断层U2变形量;绿线:F1断层U3变形量;粉红线:F2断层U2层位移量;橙线:F2断层U4变形量;蓝线:F2断层U5变形量
Fig.7 TC2 trench of the aozitag fault
Yellow line: The U2 displacement in F1 fault; Green line: The U3 displacement in F1 fault; Pink line: The U2 displacement in F2 fault;Orange line: The U4 displacement in F2 fault; Blue line: The U5 displacement in F2 fault
图8 奥兹塔格滑动速率和古地震位移
Fig.8 The slip rate and paleoearthquake displacements of the Aozitag fault
图9 托克塔格断裂照片和地貌测量
Fig.9 The photograph and the measurement topograhy of the Tuoketag fault
图10 托克塔格古地震探槽照片和解译
Fig.10 The trench profile of the Tuoketag fault
[1] Feng Xianyue.Seismogeological characteristics of the Xinjiang area[J].Seismology and Geology,1985, 7(2):35-44.
[冯先岳. 论新疆地震地质特征[J].地震地质, 1985, 7(2):35-44.]
[2] Avouac J P, Tapponnier P T, Bai M, et al.Active thrusting and folding along the northern Tienshan, and Late Cenozoic rotation of the Tarim relative to Dzhungaria and Kazakhstan[J].Journal of Geophysical Research,1993, 98:6 755-6 840.
[3] Herdrix M S, Dumitru T A, Graham S A.Late Oligocene early Miocene unroofing in the Chinese Tianshan: An early effect of the India Asia collision[J]. Geology,1994, 22:487-490.
[4] Deng Qidong, Feng Xianyue, Zhang Peizhen, et al.Reverse fault and fold zone in the Urumqi rang front depression of the northern Tianshan and its genetic mechanism[J]. Earth Science Frontier,1999,6(4):191-201.
[邓起东,冯先岳,张培震,等.乌鲁木齐山前坳陷逆断裂—褶皱带及其形成机制[J].地学前缘, 1999,6(4): 191-201.]
[5] Li Yongjun, Yang Gaoxue, Zhang Tianji, et al.Definition of the major fold episode Shanshan movement in Yinning Massif, western Tianshan Mountains, and its geological significance[J]. Advances in Earth Scinece,2009,24(4):420-427.
[李永军, 杨高学,张天继,等. 西天山伊宁地块主褶皱幕鄯善运动的确立及地质意义[J]. 地球科学进展, 2009, 24(4):420-427.]
[6] Thompson C B, Welson R J, Rubin C M, et al.Late Quaternary slip rates across the central Tienshan, Kyrgyzstan, central Asia[J].Journal of Geophysical Research,2002, 107(B9): 2 203.
[7] Yang Xiaoping, Ran Yongkang, Cheng Jianwu, et al.Measurement of terrace deformation and crustal shortening of some renascent fold zones within Kalpin nappe structure[J].Science in China (Series D),2007,50(1):33-42.
[8] Ran Yongkang, Yang Xiaoping, Xu Xiwei, et al.Deformation pattern and shortening rates in the east part of Kalpin thrust system in southwest Tianshan during late Quaternary[J].Seismology and Geology,2006,28(2):179-193.
[冉勇康,杨晓平,徐锡伟, 等. 西南天山柯坪推覆构造东段晚第四纪变形样式与缩短速率[J]. 地震地质,2006, 28(2):179-193.]
[9] Brown E T, Bourlès D L, Burchfiel B C, et al.Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans[J]. Geological Society of American Bulletin,1998,110:337-386.
[10] Yin A, Nie S, Craig P, et al.Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J].Tectonics,1998, 17(1): 1-27.
[11] Allen M B, Vincent S J, Wheeler P J.Late Cenozoic tectonics of the Kepingtage thrust zone: Interactions of the Tien Shan and Tarim Basin, northwest China[J].Tectonics,1999,18(4):639-654.
[12] Yang S M, Li J, Wang Q.The deformation pattern and fault rate in the Tian-shan Mountains inferred from GPS observations[J]. Sciences in China (Series D),2008, 51(8):1 064-1 080.
[13] Burchfiel B C, Brown E T, Deng Q D, et al.Crustal shortening on the margins of the Tienshan, Xinjiang, China[J]. International Geology Review,1999, 41:665-700.
[14] Yang Xiaoping, Zhou Bengang, Li Jun, et al.Shortening and uplift of the active Yaken anticline, southern Tianshan, China since late Pleistocene[J].Seismology and Geology,2001, 23(4):501-509.
[杨晓平,周本刚,李军,等.新疆南天山亚肯背斜晚更新世以来的隆起和缩短[J]. 地震地质, 2001, 23(4):501-509.]
[15] Wang Xin, Jia Chenzao, Yang Shufeng, et al.Geometry and kinematics of the Kuqa fold-and-thrust belt in the southern Tianshan[J].Chinese Journal of Geology,2002,37(3):372-384.
[汪新,贾承造,杨树锋,等.南天山库车褶皱冲断带构造几何学和运动学[J]. 地质科学, 2002, 37(3):372-384.]
[16] Wang Xin.Geometry and kinematics of complex folds, illustrated with examples from Quilitake anticline of Kuqa and Bapanshuimo anticline of Keping, southern Tianshan[J]. Geological Journal of China Universities,2005, 11(4):568-576.
[汪新. 南天山山前复杂褶皱的构造形态分析:以库车秋里塔克背斜和柯坪八盘水磨背斜为例[J]. 高校地质学报, 2005, 11(4):568-576.]
[17] Yang Xiaoping, Deng Qidong, Zhang Peizhen, et al.Crustal shortening of major nappe structures on the front margins of the Tianshan[J].Seismology and Geology,2008,30(1):111-131.
[杨晓平,邓起东,张培震,等.天山山前主要推覆构造区的地壳缩短[J].地震地质, 2008,30(1):111-131.]
[18] China Earthquake Directory Edited Group. China Earthquake Directory from BC 780 to AD 1986[M]. Beijing: Earthquake Press,2000.
[中国地震简目编辑组.中国地震简目公元前780—公元1986年[M]. 北京: 地震出版社,2000.]
[19] Zhou Hongjian, Wang Dandan, Yuan Yi, et al.New advances in statistics of large-scale natural disasters damage and loss: Explanation of “Statistical System of Large-scale Natural Disasters”[J]. Advances in Earth Science,2015, 30(5):530-538.
[周洪建, 王丹丹, 袁艺, 等. 中国特别重大自然灾害损失统计的最新进展——《特别重大自然灾害损失统计制度》解析[J]. 地球科学进展, 2015, 30(5):530-538.]
[20] Qu Guosheng, Chen Jie, Chen Xinfa, et al.A study on the back-thrusting system at Atushi-Bapanshuimo in Tarim Basin[J].Seismology and Geology,2001, 23(1):1-14.
[曲国胜,陈杰,陈新发,等.阿图什—八盘水磨塔里木盆地反冲构造系统研究[J].地震地质,2001,23(1):1-14.]
[21] Yang Haijun, Li Yuejun, Shi Jun, et al.Tectonic characteristics of the late Cenozoic south Tianshan fold-thrust belt[J].Quaternary Sciences,2010, 30(5):1 030-1 043.
[杨海军,李曰俊,师骏,等.南天山晚新生代褶皱冲断带构造特征[J].第四纪研究, 2010,30(5):1 030-1 043.]
[22] Liu Huaguo.A Study on the Tectonic Deformation of the Kalpin Thrust Tectonic System based on High-resolution Satellite Images[D].Beijing:Institute of Geology, China Earthquake Administration,2011.
[刘华国. 基于高分辨率遥感影像的柯坪推覆构造系的构造变形研究[D]. 北京:中国地震局地质研究所,2011.]
[23] Amos C B, Burbank D W, Read S A.Along-strike growth of the Ostler fault, New Zealand: Consequences for drainage deflection above active thrusts[J].Tectonics,2010, 29(4),doi:10.1029/2009TC002613.
[24] McCalpin. Geological Criteria of Recognition for Individual Paleoseismic Events in Environments[R].USGS Open File Report 87-683, 1987:102-114.
[25] Lal D.Cosmic ray labeling of erosion surfaces in situ nuclide production rates and erosion models[J].Earth and Planetary Science Letters,1991, 104(2/4): 424-439.
[26] Stone J O.Air pressure and cosmogenic isotope production[J].Journal of Geophysical Research,2000, 105(1 310):753-759.
[27] Balco G, Stone J O, Lifton N A, et al.A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements[J].Quaternary Geochronology,2008, 3(3): 174-195.
[28] Song Fangmin, Min Wei, Han Zhujun, et al.Cenozoic deformation and propagation of the Kalpintag fold nappe[J].Seismology and Geology,2006, 28(2):224-233.
[宋方敏, 闵伟, 韩竹军, 等.柯坪塔格推覆体的新生代变形与扩展[J]. 地震地质, 2006, 28(2):224-233.]
[29] Scharer K M, Burbank D W, Chen J, et al.Detachment folding in the Southwestern Tian Shan-Tarim foreland, China: Shortening estimates and rates[J]. Journal of Structural Geology,2004,26:2 119-2 137.
[30] Li T, Chen J, Thompson J A, et al.Quantification of three-dimensional folding using fluvial terraces: A case study from the Mushi anti-cline, northern margin of the Chinese Pamir[J].Journal of Geophysical Research, Solid Earth,2013, 118:4 628-4 647.
[31] Li T, Chen J, Thompson J A, et al.Hinge-migrated fold-scarp model based on an analysis of bed geometry: A study from the Mingyaole anticline, southern foreland of Chinese Tian Shan[J]. Journal of Geophysical Research, Solid Earth,2015, 120:6 592-6 613.
[32] Saint-Carlier D, Charreau J, Lavé J, et al.Major temporal variations in shortening rate absorbed along a large active fold of the southeastern Tianshan piedmont (China)[J]. Earth and Planetary Science Letters,2016, 434:333-348.
[33] Zhao Ruibin, Lu Jingfang, Yang Zhuen, et al.Two-dimentional finite element imitating of Tianshan Tectonic deformation[J].Xinjiang Geology, 2003, 21(2):151-156.
[赵瑞斌,卢静芳,杨主恩,等. 天山构造带新生代构造变形二维有限元模拟[J]. 新疆地质,2003,21(2):151-156.]
[34] Li An, Ran Yongkang, Xu Liangxin, et al.Apreliminary study on the law of recurrence of paleoearthquakes in the eastern Kalpin nappe system, southwestern Tianshan, China[J].Seismology and Geology, 2011, 33(4):752-764.
[李安,冉勇康,徐良鑫,等,西南天山东柯坪推覆系古地震初步研究[J]. 地震地质,2011, 33(4):752-764.]
[35] Li A, Ran Y K, Xu L X, et al.Paleoseismic study of the east Kalpintage fault in southwest Tianshan based on deformation of alluvial fans and 10Be dating[J]. Natural Hazards,2013, 68:1 075-1 087.
[36] Chen Hanlin, Chen Shenqiang, Lin Xiubin.Areview of the Cenozoic Tectonic evolution of Pamir syntax[J].Advances in Earth Science,2014, 29(8):890-902.
[陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902.]
[1] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[2] 张兆永, 吉力力 , 阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616.
[3] 窦燕,陈曦. 基于站点的中国天山山区积雪要素变化研究[J]. 地球科学进展, 2011, 26(4): 441-448.
[4] 李永军,杨高学,张天继,栾新东,王晓刚. 西天山伊宁地块主褶皱幕鄯善运动的确立及地质意义[J]. 地球科学进展, 2009, 24(4): 420-427.
[5] 张新钰,季建清,韩宝福,陈建军,余绍立. 地表剥蚀、下地壳流变与造山作用研究进展[J]. 地球科学进展, 2006, 21(5): 521-531.
[6] 中国科学院学部"西部生态环境建设与可持续发展"西北干旱区咨询组. 绿桥系统——天山北坡与准噶尔荒漠新产业带建设和生态保育[J]. 地球科学进展, 2003, 18(6): 831-836.
[7] 程绍平; 杨桂枝. 古地震学的发展和未来[J]. 地球科学进展, 1993, 8(1): 21-27.
阅读次数
全文


摘要