地球科学进展 ›› 2016, Vol. 31 ›› Issue (4): 365 -376. doi: 10.11867/j.issn.1001-8166.2016.04.0365.

上一篇    下一篇

植被物候观测与指标提取方法研究进展
曹沛雨 1, 2( ), 张雷明 1,,A; *( ), 李胜功 1, 张军辉 3   
  1. 1.中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京 100101
    2.中国科学院大学,北京 100049
    3.中国科学院沈阳应用生态研究所,辽宁 沈阳 110016
  • 收稿日期:2016-01-04 修回日期:2016-03-15 出版日期:2016-04-20
  • 通讯作者: 张雷明 E-mail:caopy.13s@igsnrr.ac.cn;zhanglm@igsnrr.ac.cn
  • 基金资助:
    国家自然科学基金项目“植被冠层对温带和亚热带成熟林生态系统碳交换的调控作用研究”(编号:31570446);中国科学院战略性先导科技专项项目“中国森林生态系统固碳现状、机制和潜力”(编号:XDA05050208)资助

Review on Vegetation Phenology Observation and Phenological Index Extraction

Peiyu Cao 1, 2( ), Leiming Zhang 1, *( ), Shenggong Li 1, Junhui Zhang 3   

  1. 1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049,China
    3.Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016,China
  • Received:2016-01-04 Revised:2016-03-15 Online:2016-04-20 Published:2016-04-10
  • Contact: Leiming Zhang E-mail:caopy.13s@igsnrr.ac.cn;zhanglm@igsnrr.ac.cn
  • About author:

    First author:Cao Peiyu(1991-), male, Panzhihua City, Sichuan Province, Master student. Research areas include phenology and terrestrial ecosystem productivity.E-mails:caopy.13s@igsnrr.ac.cn

    Corresponding author:Zhang Leiming(1974-), male, Kaifeng City, He’nan Province, Associate Professor. Research areas include carbon, nitrogen and water cycle of terrestrial ecosystem and global change.E-mails:zhanglm@igsnrr.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Regulation of vegetation canopy on ecosystem carbon exchange of temperate and subtropical mature forests in China”(No.31570446);Strategic Priority Research Program of the Chinese Academy of Sciences “Status, rate, mechanism and potential of ecosystem carbon sequestration by forest in China”(No.XDA05050208)

植被物候直接反映了植被生理生态过程对环境变化的响应,在气候变化研究中受到了越来越多的关注,并形成了不同的物候观测技术和指标提取方法。基于文献调研,首先分类评述了当前常用的植被物候观测技术,其次系统介绍了基于不同类型观测数据的植被物候指标提取方法,最后基于实测数据综合比较了多源数据和多种提取方法获取的植被物候指标之间的差异。分析表明,不同植被物候观测技术具有各自适宜的时间和空间尺度,而各种方法的相互补充将有助于完善植被物候观测体系;同时,利用不同观测技术和提取方法所获取的植被物候指标之间存在明显差异,尤其是对于植被秋季物候指标。因此,合理评估多源数据和多种方法间植被物候的差异,并建立可相互比较与转换的处理方法体系,对于改进和完善植被物候观测具有重要的意义。

Vegetation phenology directly reflects the response of ecosystem physiological and ecological processes to environmental changes and has received increasing attention in climate change, which leads to the development of various phenology monitoring techniques and methods of extracting the phenological index. Based on relevant literatures, the monitoring techniques of vegetation phenology were reviewed. Second, the methods of extracting phenological index using different techniques were introduced systematically. Thirdly, the differences from multi-source data and from multi-methods were evaluated based on ground phenology record, flux observation and vegetation index. Although various methods have been adopted in current vegetation phenological studies, it should be aware of their appropriately spatiotemporal scales for different methods, and the mutual complementation will help to improve the system for phenology monitoring. Meanwhile, the comparison indicated the obvious differences in derived vegetation phenological index using various observation techniques and extraction methods, especially for the autumn vegetation phenological index. Such results highlight the importance to assess reasonably these differences from multi-source data and from multi-methods, and to establish a rational processing system for the mutual comparison and conversion from different methods.

中图分类号: 

表1 不同植被物候观测技术及其观测指标
Table 1 Observation techniques of phenology and their observation indexes
表2 物候指标提取拟合及滤波方法
Table 2 Fitting and filtering functions of deriving Phenological index
图1 采用4种不同观测数据获取的长白山温带针阔混交林生态系统2007年的春季物候和秋季物候
(a) 通量观测( GEPNEP);(b)遥感观测( NDVI)和温度阈值( Ta)。其中日尺度 GEPNDVI采用双逻辑斯特拟合—动态阈值提取物候指标;日尺度 NEPTa采用15天滑动平均,0值阈值提取物候指标。○代表SOS;▽代表SUP;△代表碳EUP;□代表EOS
Fig.1 Spring and autumn phenology of temperate broad-leaved Korean pine forest at Changbai Mountain
图2 通过不同方法提取的长白山温带森林春季物候和秋季物候
(a)SOS;(b)EOS。虚线之间为地面人工观测的7种树种物候信
Fig.2 Spring and autumn phenology of temperate forest in Changbai Mountain derived from different methods
(a)SOS; (b)EOS.The phenology of 7 species were presented between two dashed lines
[1] White M A, De Beurs K M, Didan K, et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006[J].Global Change Biology,2009, 15(10):2 335-2 359.
[2] Visser M E, Caro S P, van Oers K, et al. Phenology, seasonal timing and circannual rhythms: Towards a unified framework[J]. Philosophical Transactions of the Royal Society of London Series B:Biological Sciences,2010, 365(1 555):3 113-3 127.
[3] Niinemets Ü, Tamm Ü.Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands[J].Tree Physiology,2005, 25(8):1 001-1 014.
[4] Richardson A D, Keenan T F, Migliavacca M, et al.Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J].Agricultural and Forest Meteorology,2013, 169:156-173,doi: 10.1016/j.agrformet.2012.09.012.
[5] Cleland E E, Chiariello N R, Loarie S R, et al.Diverse responses of phenology to global changes in a grassland ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America,2006, 103(37):13 740-13 744.
[6] Piao S, Fang J, Zhou L, et al.Variations in satellite-derived phenology in China’s temperate vegetation[J]. Global Change Biology,2006, 12(4):672-685.
[7] Zhu Mingjia, Zhao Qianyi, Liu Shaomin, et al.Analysis of the characteristics of turbulent flux and its footprint climtology at an agricultural site[J]. Advances in Earth Science,2013, 28(12): 1 313-1 325.
[朱明佳, 赵谦益, 刘绍民, 等. 农田下垫面观测通量的变化特征及其气候学足迹分析[J]. 地球科学进展, 2013,28(12):1 313-1 325.]
[8] Estiarte M, Penuelas J.Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Effects on nutrient proficiency[J].Global Change Biology,2015, 21(3):1 005-1 017.
[9] Wang Lianxi, Chen Huailiang, Li Qi, et al.Research advances in plant phenology and climate[J].Acta Ecologica Sinica,2010, 20(2):447-454.
[王连喜, 陈怀亮, 李琪, 等. 植物物候与气候研究进展[J]. 生态学报, 2010, 20(2):447-454.]
[10] Li Rongping, Zhou Guangsheng, Zhang Huiling.Research advances in plant phenology[J].Chinese Journal of Applied Ecology,2006, 17(3):541-544.
[李荣平, 周广胜, 张慧玲. 植物物候研究进展[J]. 应用生态学报, 2006, 17(3):541-544.]
[11] Fang Xiuqi, Yu Weihong.Progress in the studies on the phenological responding to global warming[J].Advances in Earth Science,2002, 17(5):714-719.
[方修琦, 余卫红.物候对全球变暖响应的研究综述[J]. 地球科学进展, 2002, 17(5):714-719.]
[12] Schwartz M D, Ahas R, Aasa A.Onset of spring starting earlier across the Northern Hemisphere[J]. Global Change Biology,2006, 12(2):343-351.
[13] Ge Quansheng, Zheng Jingyun, Zhang Xuexia, et al.Study of Chinese climate and phenology change in past 40 years[J].Progress in Nature Science,2003, 12(10):1 048-1 053.
[葛全胜, 郑景云, 张学霞, 等. 过去40年中国气候与物候的变化研究[J]. 自然科学进展, 2003, 13(10) : 1 048-1 053.]
[14] Primack R B, Higuchi H, Miller-Rushing A J. The impact of climate change on cherry trees and other species in Japan[J].Biological Conservation,2009, 142(9):1 943-1 949.
[15] Zhong Shuying, Zheng Jingyun, Ge Quansheng.Change of autumnal leaf coloring of woody plants in Eastern China for the last 40 years[J].Chinese Journal of Agrometeorology,2010,31(1):1-4.
[仲舒颖,郑景云,葛全胜.近40年中国东部木本植物秋季叶全变色期变化[J].中国农业气象,2010,31(1):1-4.]
[16] Guy R D.The early bud gets to warm[J]. New Phytologist,2014, 202(1):7-9.
[17] Yang Y, Guan H, Shen M, et al.Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010[J].Global Change Biology,2015, 21(2):652-665.
[18] Sonnentag O, Hufkens K, Teshera-Sterne C, et al.Digital repeat photography for phenological research in forest ecosystems[J].Agricultural and Forest Meteorology,2012, 152(1):159-177.
[19] Gonsamo A, Chen J M, Wu C, et al.Predicting deciduous forest carbon uptake phenology by upscaling FLUXNET measurements using remote sensing data[J].Agricultural and Forest Meteorology,2012, 165:127-135, doi:10.1016/j.agrformet.2012.06.006.
[20] Che M, Chen B, Innes J L, et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011[J].Agricultural and Forest Meteorology,2014, 189/190:81-90.
[21] Cong N, Piao S, Chen A, et al.Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis[J].Agricultural and Forest Meteorology,2012, 165:104-113.
[22] Zheng Jingyun, Liu Yang, Ge Quansheng, et al.Spring phenodate records derived from historical documents and reconstruction on temperature change in Central China during 1850-2008[J]. Acta Geographica Sinica,2015, 70(5):696-704.
[郑景云, 刘洋, 葛全胜, 等. 华中地区历史物候记录与1850—2008年的气温变化重建[J]. 地理学报, 2015, 70(5):696-704.]
[23] Margary I D.The marsham phenological record in Norfolk, 1736-1925, and some others[J]. Quarterly Journal of the Royal Meteorological Society,1926, 52(217):27-54.
[24] Aono Y, Kazui K.Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century[J].International Journal of Climatology,2008, 28(7):905-914.
[25] Cleland E E, Chuine I, Menzel A, et al.Shifting plant phenology in response to global change[J]. Trends in Ecology and Evolution,2007, 22(7):357-365.
[26] Garrity S R, Bohrer G, Maurer K D, et al.A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange[J].Agricultural and Forest Meteorology,2011, 151(12):1 741-1 752.
[27] Picard G, Quegan S, Delbart N, et al.Bud-burst modelling in Siberia and its impact on quantifying the carbon budget[J].Global Change Biology,2005, 11(12):2 164-2 176.
[28] Piao S, Ciais P, Friedlingstein P, et al.Net carbon dioxide losses of northern ecosystems in response to autumn warming[J].Nature,2008, 451(7 174):49-52.
[29] Lü Bing, Wang Na, Liu Shuju, et al.Reproductive phenological characteristics of Hainan coastal vatica mangachapoi forest[J].Acta Ecological Sinica,2015, 35(2): 416-423.
[吕冰, 王娜, 刘淑菊, 等. 海南海岸青皮林繁殖物候特征[J]. 生态学报, 2015, 35(2):416-423.]
[30] Xu Yunjia, Dai Junhu, Wang Huanjiong, et al.Variations of main phenophases of natural calendar and analysis of responses to climate change in Harbin in 1985-2012[J].Geographical Research,2015, 34(9): 1 662-1 674.
[徐韵佳, 戴君虎, 王焕炯, 等. 1985—2012年哈尔滨自然历主要物候期变动特征及对气温变化的响应[J]. 地理研究, 2015, 34(9):1 662-1 674.]
[31] Wu Dongxiu, Wei Wenshan, Zhang Shumin, et al.Protocols for Standard Biological Observation and Measurement in Terrestrial Ecosystems[M]. Beijing: China Environmental Science Press, 2007:70-75.
[吴东秀,韦文珊,张淑敏, 等. 陆地生态系统生物观测规范[M]. 北京: 中国环境科学出版社, 2007:70-75.]
[32] Miller-Rushing A J, Primack R B. Global warming and flowering times in thoreau’s concord: A community perspective[J]. Ecology,2008, 89(2):332-341.
[33] Ge Q, Wang H, Rutishauser T, et al.Phenological response to climate change in China: A meta-analysis[J].Global Change Biology,2015, 21(1):265-274.
[34] Chen Xiaoqiu, Pang Cheng, Xu Lin, et al.Spatiotemporal response of Salix matsudana’s phenophases to climate change in China’s temperate zone[J]. Acta Ecological Sinica,2015, 35(11):3 625-3 635.
[陈效逑, 庞程, 徐琳, 等. 中国温带旱柳物候期对气候变化的时空响应[J]. 生态学报, 2015, 35(11):3 625-3 635.]
[35] Wang Tao, Ottle Catherine, Peng Shushi, et al.The influence of local spring temperature variance on temperature sensitivity of spring phenology[J].Global Change Biology,2014, 20(5):1 473-1 480.
[36] Chen X, Hu B, Yu R.Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China[J].Global Change Biology,2005, 11(7):1 118-1 130.
[37] White M A, Thornton P E, Running S W.A continental phenology model for monitoring vegetation responses to interannual climatic variability[J].Global Biogeochemical Cycles,1997, 11(2):217-234.
[38] Schwartz M D, Hanes J M, Liang L.Comparing carbon flux and high-resolution spring phenological measurements in a northern mixed forest[J].Agricultural and Forest Meteorology,2013, 169:136-147.
[39] Zhou Lei, He Honglin, Zhang Li,et al.Simulations of phenology in alpine grassland communities in Damxung, Xizang, based IB digital camera images[J]. Chinese Journal of Plant Ecology,2012, 36(11): 1 125-1 135.
[周磊, 何洪林, 张黎, 等. 基于数字相机图像的西藏当雄高寒草地群落物候模拟[J]. 植物生态学报, 2012, 36(11): 1 125-1 135.]
[40] Linkosalo T, Lappalainen H K, Hari P.A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations[J].Tree Physiology,2008, 28:1 873-1 882.
[41] Wu C, Chen J M, Gonsamo A, et al.Interannual variability of net carbon exchange is related to the lag between the end-dates of net carbon uptake and photosynthesis: Evidence from long records at two contrasting forest stands[J].Agricultural and Forest Meteorology,2012, 164:29-38.
[42] Zhang X Y, Tarpley D, Sullivan J T.Diverse responses of vegetation phenology to a warming climate[J]. Geophysical Research Letters,2007, 34(19):255-268.
[43] Shen M G, Piao S L, Cong N, et al.Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology,2015, 21(10), doi: 10.1111/gcb.12961.
[44] Xu L K, Baldocchi D D.Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California[J].Agricultural and Forest Meteorology,2004, 123(1/2):79-96.
[45] Gonsamo A, Chen J M, D’Odorico P. Deriving land surface phenology indicators from CO2 eddy covariance measurements[J].Ecological Indicators,2013, 29:203-207.
[46] Muraoka H, Noda H M, Nagai S, et al.Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest[J].Journal of Plant Ecology,2012, 6(5):393-407.
[47] Richardson A D, Black T A, Ciais P, et al.Influence of spring and autumn phenological transitions on forest ecosystem productivity[J]. Philosophical transactions of the Royal Society of London Series B: Biological Sciences,2010, 365(1 555):3 227-3 246.
[48] Xia J, Niu S, Ciais P, et al.Joint control of terrestrial gross primary productivity by plant phenology and physiology[J]. Proceedings of the National Academy of Sciences of the United States of America,2015, 112(9):2 788-2 793.
[49] Ahrends H E, Etzold S, Kutsch W L, et al.Tree phenology and carbon dioxide fluxes: Use of digital photography for process-based interpretation at the ecosystem scale[J]. Climate Research,2009, 39(3):261-274.
[50] Richardson A D, Jenkins J P, Braswell B H, et al.Use of digital webcam images to track spring green-up in a deciduous broadleaf forest[J].Oecologia,2007, 152(2):323-334.
[51] Saitoh T M, Nagai S, Saigusa N, et al.Assessing the use of camera-based indices for characterizing canopy phenology in relation to gross primary production in a deciduous broad-leaved and an evergreen coniferous forest in Japan[J]. Ecological Informatics,2012, 11(11):45-54.
[52] Graham E A, Yuen E M, Robertson G F, et al.Budburst and leaf area expansion measured with a novel mobile camera system and simple color thresholding[J].Environmental and Experimental Botany,2009, 65(2/3):238-244.
[53] Migliavacca M, Galvagno M, Cremonese E, et al.Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake[J].Agricultural and Forest Meteorology,2011, 151(10):1 325-1 337.
[54] Zhang Xuexia, Ge Quansheng, Zheng Jingyun.Overview on the vegetation phenology using the remote sensing[J]. Advances in Earth Science,2003, 18(4): 534-544.
[张学霞, 葛全胜, 郑景云. 遥感技术在植物物候研究中的应用综述[J]. 地球科学进展, 2003, 18(4):534-544.]
[55] Li Guangyong, Li Xiaoyan, Zhao Guoqin, et al.Characteristics of spatial and temporal phenology under the dynamic variation of grassland in the Qinghai Lake watershed[J].Acta Ecological Sinica,2014, 34(11):3 038-3 047.
[李广泳, 李小雁, 赵国琴, 等. 青海湖流域草地植被动态变化趋势下的物候时空特征[J]. 生态学报, 2014, 34(11):3 038-3 047.]
[56] Yu H, Luedeling E, Xu J.Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,2010, 107(51):22 151-22 156.
[57] Jeong S J, Ho C H, Gim H J, et al.Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008[J].Global Change Biology,2011, 17(7):2 385-2 399.
[58] Liu Shuangyu, Zhang Li, Wang Guizhen, et al.Vegetation phenology in the Tibetan Plateau using MODIS data from 2000 to 2010[J].Remote Sensing Information,2014, 29(6):25-30.
[刘双俞,张丽,王翠珍,等.基于MODIS 数据的青藏高原植被物候变化趋势研究(2000—2010年)[J]. 遥感信息, 2014, 29(6):25-30.]
[59] Xiao X, Boles S, Liu J, et al.Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data[J].Remote Sensing of Environment,2002, 82(2):335-348.
[60] Krinner G, Viovy N, de Noblet-Ducoudré N, et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system[J].Global Biogeochemical Cycles,2005, 19(1),doi:10.1029/2003GB002199.
[61] Thornton P E, Law B E, Gholz H L, et al.Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J].Agricultural and Forest Meteorology,2002, 113(1/4):185-222.
[62] Jolly W M, Nemani R, Running S W.A generalized, bioclimatic index to predict foliar phenology in response to climate[J].Global Change Biology,2005, 11(4):619-632.
[63] Sitch S, Smith B, Prentice I C, et al.Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model[J].Global Change Biology,2003, 9(2): 161-185.
[64] Tian H, Chen G, Liu M, et al.Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007[J].Forest Ecology and Management,2010,259(7):1 311-1 327.
[65] Melaas E K, Richardson A D, Friedl M A, et al. Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems[J]. Agricultural and Forest Meteorology,2013, 171/172:46-56.
[66] Shen M, Zhang G, Cong N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2014, 189/190:71-80.
[67] Lu Peiling, Yu Qiang, He Qingtang.Responses of plant phenology to climatic change[J].Acta Ecologica Sinica, 2006, 26(3):923-929.
[陆佩玲, 于强, 贺庆棠. 植物物候对气候变化的响应[J]. 生态学报, 2006, 26(3):923-929.]
[68] Richardson A D, Anderson R S, Arain M A, et al.Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis[J].Global Change Biology,2012, 18(2):566-584.
[69] Baldocchi D, Falge E, Gu L H, et al.FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J].Bulletin of the American Meteorological Society,2001, 82(11): 2 415-2 434.
[70] Fan Deqin, Zhu Wenquan, Pan Yaozhong,et al.Identifying an optimal method for estimating green-up date of Kobresia pygmaea alpine meadow in Qinghai-Tibetan Plateau[J].Journal of Remote Sensing,2014, 18(5): 1 117-1 127.
[范德芹, 朱文泉, 潘耀忠, 等. 青藏高原小嵩草高寒草甸返青期遥感识别方法筛[J]. 遥感学报, 2014, 18(5):1 117-1 127.]
[71] Kross A S E, Roulet N T, Moore T R, et al. Phenology and its role in carbon dioxide exchange processes in northern peatlands[J].Biogeosciences,2014, 119(11):1 370-1 384.
[72] Liu Ya’nan, Xiao Fei, Du Yun.Improved logistic model for fitting time-series NDVI data[J].Remote Sensing Technology and Application,2015, 30(4):737-743.
[刘亚南, 肖飞, 杜耘. Logistic函数方法拟合多时序NDVI数据的改进研究[J]. 遥感技术与应用, 2015, 30(4):737-743.]
[73] Zhang X, Friedl M A, Schaaf C B, et al.Monitoring vegetation phenology using MODIS[J].Remote Sensing of Environment,2003, 84(3):471-475.
[74] Song Chunqiao, Ke Linghong, You Songcai, et al.Comparison of three NDVI time-series fitting methods based on TIMESAT—Taking the grassland in Northern Tibet as case[J]. Remote Sensing Technology and Application,2011, 26(2):147-155.
[宋春桥, 柯灵红, 游松财, 等. 基于TIMESAT的3种时序NDVI拟合方法比较研究——以藏北草地为例[J]. 遥感技术与应用, 2011, 26(2):147-155.]
[75] Yan Huimin, Cao Mingkui, Liu Jiyuan, et al.Characterizing spatial patterns of multiple cropping system in China from multi-temporal remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering,2005, 21(4): 85-90.
[闫慧敏, 曹明奎, 刘纪远, 等. 基于多时相遥感信息的中国农业种植制度空间格局研究[J]. 农业工程学报, 2005, 21(4):85-90.]
[76] Fan Deqin, Zhu Wenquan, Pan Yaozhong, et al.Noise detection for NDVI time series based on Dixon’s test and application in data reconstruction[J].Journal of Remote Sensing,2013, 17(5):1 158-174.
[范德芹, 朱文泉, 潘耀忠, 等. 基于狄克松检验的NDVI时序数据噪声检测及其在数据重建中的应用[J]. 遥感学报, 2013, 17(5):1 158-1 174.]
[77] Cong N, Wang T, Nan H, et al.Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis[J].Global Change Biology,2013, 19(3):881-891.
[78] Ma M, Veroustraete F.Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China[J]. Advances in Space Research,2006, 37(4):835-840.
[79] Wu C, Gough C M, Chen J M, et al.Evidence of autumn phenology control on annual net ecosystem productivity in two temperate deciduous forests[J]. Ecological Engineering,2013, 60:88-95, doi: 10.1016/j.ecoleng.2013.07.019.
[80] Shen M, Tang Y, Chen J, et al.Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau[J].Agricultural and Forest Meteorology,2011, 151(12):1 711-1 722.
[81] Ivits E, Cherlet M, Toth G, et al. Combining satellite derived phenology with climate data for climate change impact assessment[J].Global and Planetary Change, 2012, 88/89:85-97.
[82] Chen J, Jönsson P, Tamura M, et al.A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J].Remote Sensing of Environment,2004, 91(3/4):332-344.
[83] Mou Minjie, Zhu Wenquan, Wang Lingli, et al.Evaluation of remote sensing extraction methods for vegetation phenology based on flux tower net ecosystem carbon exchange data[J].Chinese Journal of Applied Ecology,2012, 23(2):319-327.
[牟敏杰, 朱文泉, 王伶俐, 等. 基于通量塔净生态系统碳交换数据的植被物候遥感识别方法评价[J]. 应用生态学报, 2012, 23(2):319-327.]
[84] Zhang G, Zhang Y, Dong J, et al.Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J].Proceedings of the National Academy of Sciences of the United States of America,2013, 110(11):4 309-4 314.
[1] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[2] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[5] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[6] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[7] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[8] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[9] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[10] 马学成, 巩杰, 柳冬青, 张金茜. 社会生态系统研究态势:文献计量分析视角[J]. 地球科学进展, 2018, 33(4): 435-444.
[11] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[12] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[13] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[14] 孟伟庆, 胡蓓蓓, 刘百桥, 周俊. 基于生态系统的海洋管理:概念、原则、框架与实践途径[J]. 地球科学进展, 2016, 31(5): 461-470.
[15] 潘根兴, 陆海飞, 李恋卿, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 郑金伟. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951.
阅读次数
全文


摘要