地球科学进展 ›› 2018, Vol. 33 ›› Issue (7): 675 -686. doi: 10.11867/j.issn.1001-8166.2018.07.0675

生态水文学与水安全 上一篇    下一篇

河流梯级开发生态环境效应与适应性管理进展
李哲 1( ), 陈永柏 2, 李翀 2, 郭劲松 3, 肖艳 1, 鲁伦慧 1   
  1. 1.中国科学院重庆绿色智能技术研究院,中国科学院水库水环境重点实验室,重庆 400714
    2.中国长江三峡集团有限公司,北京 100038
    3.重庆大学,城市建设与环境工程学院,重庆 400045
  • 收稿日期:2018-03-30 修回日期:2018-05-08 出版日期:2018-07-20
  • 基金资助:
    *国家自然科学基金项目“碳在金沙江梯级水库过坝下泄中的迁移转化及其通量研究”(编号:51679226);中国长江三峡集团重点科研项目“三峡水库温室气体源汇通量监测与分析研究”资助.

Advances of Eco-environmental Effects and Adaptive Management in River Cascading Development

Zhe Li 1( ), Yongbai Chen 2, Chong Li 2, Jinsong Guo 3, Yan Xiao 1, Lunhui Lu 1   

  1. 1.Key Laboratory of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714,China
    2.China Three Gorges Corporation, Beijing 100038,China
    3.College of Urban Construction and Environmental Engineering, Chongqing University, Chonging 400045,China
  • Received:2018-03-30 Revised:2018-05-08 Online:2018-07-20 Published:2018-08-30
  • About author:

    First author:Li Zhe(1981-), male, Zhangzhou City, Fujian Province, Professor. Research areas include reservoir aquatic environment. E-mail:lizhe@cigit.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Fate and transport of carbon and its flux during dam discharge in cascade reservoirs in Jinsha River”( No.51679226);The Key Research Project granted by China Three Gorges Corporation “Monitoring and analysis of greenhouse gas fluxes in the Three Gorges Reservoir”.

筑坝蓄水将迫使淹没区陆生生态系统退化消失,改变其下游受影响河段的环境与生态,破坏自然河流连续性与连通性,是影响河流生态系统显著且强烈的人类活动。河流梯级开发对其生态系统的影响可能存在“累积效应”,即将大坝拦截阻隔对河流生态系统的影响逐级“放大”。然而,“累积效应”的作用对象、途径与水文生态机制目前仍不明晰。不仅如此,河流梯级开发的适应性管理的对象、目标、时空范围与作用途径等已不能简单地参照或套用当前以恢复水文自然情势来修复河流生态系统为主线的实践模式,其适应性管理取决于对河流—水库系统生态结构功能、演替规律的科学认识,也受到多利益主体的制约和影响。长江上游梯级开发在全球大河流域开发中独树一帜,将深刻改变长江上游河流生态格局。对长江上游梯级开发的适应性管理应以优化河流—水库生态结构功能、维持河流—水库生态系统健康为目标。揭示长江上游梯级开发“累积效应”的作用对象与形式,通过优化提升生态系统服务以权衡多利益主体诉求,构建长江上游绿色水电运营管理新体系,值得进一步探索。

As a kind of anthropogenic activity with significant impact on river ecosystem, dam construction and reservoir creation will result in the degradation and disappearance of terrestrial ecosystem in its flooded area. It will cause the significant change of downstream eco-environment and disrupt the continuity and connectivity of natural rivers. There may be “accumulative effects” on the impact of river cascading development on its ecosystems, which is to “amplify” the impact of damming on river ecosystems step by step. However, the role, approach, and hydro-ecological mechanisms of the “accumulation effect” are still not clear. Additionally, this will also result in the uncertainty in the objective, targets, spatio-temporal scope and action path of adaptive management of river cascading development. In river cascading development, the current adaptive practice on restoring natural hydrological processes and river ecosystem may no longer be effective. There is need to understand the function and structure of river-reservoir system and its succession. The trade-offs between multi-stakeholders of river-reservoir system shall be also taken into consideration. The upper Yangtze River has experienced intensive cascading development, which is unique among the world’s rivers and will profoundly change the ecosystem in the upper Yangtze. The adaptive management of upper Yangtze should aim at optimizing the ecological structure of rivers and reservoirs and maintaining the health of river-reservoir ecosystems. Future research could be focused on the role and form of “accumulative effects” in upper Yangtze, and the trade-offs among multiple stakeholders. These will construct a new paradigm for the operation and management of green hydropower in the upper Yangtze.

中图分类号: 

图1 水库生态系统各要素的纵向变化概念性模型(据参考文献[ 9 ]修改)
Fig.1 Conceptual framework of longitudinal gradients of reservoir ecosystem(modified after reference[9])
图1 水库生态系统各要素的纵向变化概念性模型(据参考文献[ 9 ]修改)
Fig.1 Conceptual framework of longitudinal gradients of reservoir ecosystem(modified after reference[9])
图2 河流连续性概念(RCC)和序列非连续性概念(SDC)(据参考文献[41,47]修改)
Fig.2 Conceptual model of River Continuum Concept (RCC) and Serial Discontinuity Concept (SDC) (modified after references[41,47])
图2 河流连续性概念(RCC)和序列非连续性概念(SDC)(据参考文献[41,47]修改)
Fig.2 Conceptual model of River Continuum Concept (RCC) and Serial Discontinuity Concept (SDC) (modified after references[41,47])
图3 变化水文环境对河流—水库系统结构、功能影响的示意图
Fig.3 River-reservoir ecosystem structure and functioning in changing water environment
图3 变化水文环境对河流—水库系统结构、功能影响的示意图
Fig.3 River-reservoir ecosystem structure and functioning in changing water environment
图4 长江上游水电站分布(装机容量大于0.3万kW)
Fig.4 Distributions of hydropower plant in the upstream of Yangtze (Installed capacity > 3MW)
图4 长江上游水电站分布(装机容量大于0.3万kW)
Fig.4 Distributions of hydropower plant in the upstream of Yangtze (Installed capacity > 3MW)
图5 溪洛渡—向家坝梯级水库近岸的人为活动(拍摄:李哲;时间:2016年) (a)脐橙种植;(a,b)水产养殖;(c)亲水旅游;(d)港航设施
Fig.5 Anthropogenic activities along the Xiluodu and Xiangjiaba cascade reservoirs (photo taken by Li Zhe, 2016) (a) Naval fruits; (a,b) Fish farming; (c) Tourism; (d) Facilities of ports
图5 溪洛渡—向家坝梯级水库近岸的人为活动(拍摄:李哲;时间:2016年) (a)脐橙种植;(a,b)水产养殖;(c)亲水旅游;(d)港航设施
Fig.5 Anthropogenic activities along the Xiluodu and Xiangjiaba cascade reservoirs (photo taken by Li Zhe, 2016) (a) Naval fruits; (a,b) Fish farming; (c) Tourism; (d) Facilities of ports
图6 长江上游河流—水库系统“径流调节—水力发电—环境保护”互馈关系
Fig.6 The nexus of “river runoff regulation-hydropower production-environmental protection” in the upstream of the Yangtze
图6 长江上游河流—水库系统“径流调节—水力发电—环境保护”互馈关系
Fig.6 The nexus of “river runoff regulation-hydropower production-environmental protection” in the upstream of the Yangtze
[1] Nilsson C, Reidy C A, Dynesius M, et al. Fragmentation and flow regulation of the world’s large river systems[J]. Science, 2005,308(5 720):405-408.
doi: 10.1126/science.1107887     URL    
Nilsson C, Reidy C A, Dynesius M, et al. Fragmentation and flow regulation of the world’s large river systems[J]. Science, 2005,308(5 720):405-408.
doi: 10.1126/science.1107887     URL    
[2] Lehner B, Liermann C R, Revenga C, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management[J]. Frontiers in Ecology and the Environment, 2011,9(9):494-502.
doi: 10.1890/100125     URL    
Lehner B, Liermann C R, Revenga C, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management[J]. Frontiers in Ecology and the Environment, 2011,9(9):494-502.
doi: 10.1890/100125     URL    
[3] The World Commission on Dams. Dams and Development: A New Framework for Decision-Making[M]. UK: Earthscan Publications Ltd., 2000.
The World Commission on Dams. Dams and Development: A New Framework for Decision-Making[M]. UK: Earthscan Publications Ltd., 2000.
[4] Zarfl C, Lumsdon A E, Berlekamp J, et al. A global boom in hydropower dam construction[J]. Aquatic Sciences, 2015,77(1):161-170.
doi: 10.1007/s00027-014-0377-0     URL    
Zarfl C, Lumsdon A E, Berlekamp J, et al. A global boom in hydropower dam construction[J]. Aquatic Sciences, 2015,77(1):161-170.
doi: 10.1007/s00027-014-0377-0     URL    
[5] Hermoso V.Freshwater ecosystems could become the biggest losers of the Paris Agreement[J]. Global Change Biology, 2017,23(9):3 433-3 436.
doi: 10.1111/gcb.13655     URL     pmid: 28181724
Hermoso V.Freshwater ecosystems could become the biggest losers of the Paris Agreement[J]. Global Change Biology, 2017,23(9):3 433-3 436.
doi: 10.1111/gcb.13655     URL     pmid: 28181724
[6] Godshalk G L, Barko J W.Vegetative succession and decomposition in reservoirs[M]//Microbial Processes in Reservoirs. Nether lands: Springer, 1985: 59-77.
Godshalk G L, Barko J W.Vegetative succession and decomposition in reservoirs[M]//Microbial Processes in Reservoirs. Nether lands: Springer, 1985: 59-77.
[7] Teisserenc R, Lucotte M, Canuel R, et al. Combined dynamics of mercury and terrigenous organic matter following impoundment of Churchill Falls Hydroelectric Reservoir, Labrador[J]. Biogeochemistry, 2014,118(1/3):21-34.
doi: 10.1007/s10533-013-9902-9     URL    
Teisserenc R, Lucotte M, Canuel R, et al. Combined dynamics of mercury and terrigenous organic matter following impoundment of Churchill Falls Hydroelectric Reservoir, Labrador[J]. Biogeochemistry, 2014,118(1/3):21-34.
doi: 10.1007/s10533-013-9902-9     URL    
[8] Grimard Y, Jones H.Trophic upsurge in new reservoirs: A model for total phosphorus concentrations[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982,39(11):1 473-1 483.
doi: 10.1139/f82-199     URL    
Grimard Y, Jones H.Trophic upsurge in new reservoirs: A model for total phosphorus concentrations[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982,39(11):1 473-1 483.
doi: 10.1139/f82-199     URL    
[9] Straskraba M, Tundisi J G.Reservoir water quality management[M]//International Lake Environment Committee.Kusatsu, Japan, 1999.
Straskraba M, Tundisi J G.Reservoir water quality management[M]//International Lake Environment Committee.Kusatsu, Japan, 1999.
[10] Kimmel B, Lind O, Paulson L.Reservoir primary production[M]//Reservoir Limnology: Ecological Perspectives. New York: John Wiley & Sons, 1990: 133-193.
Kimmel B, Lind O, Paulson L.Reservoir primary production[M]//Reservoir Limnology: Ecological Perspectives. New York: John Wiley & Sons, 1990: 133-193.
[11] Xu X, Tan Y, Yang G.Environmental impact assessments of the Three Gorges Project in China: Issues and interventions[J]. Earth-Science Reviews, 2013,124:115-125.
doi: 10.1016/j.earscirev.2013.05.007     URL    
Xu X, Tan Y, Yang G.Environmental impact assessments of the Three Gorges Project in China: Issues and interventions[J]. Earth-Science Reviews, 2013,124:115-125.
doi: 10.1016/j.earscirev.2013.05.007     URL    
[12] Renofalt B M, Jansson R, Nilsson C.Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems[J]. Freshwater Biology, 2010,55(1):49-67.
doi: 10.1111/fwb.2009.55.issue-1     URL    
Renofalt B M, Jansson R, Nilsson C.Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems[J]. Freshwater Biology, 2010,55(1):49-67.
doi: 10.1111/fwb.2009.55.issue-1     URL    
[13] Ellis L E, Jones N E.Longitudinal trends in regulated rivers: A review and synthesis within the context of the serial discontinuity concept[J]. Environmental Reviews, 2013,21(3):136-148.
doi: 10.1139/er-2012-0064     URL    
Ellis L E, Jones N E.Longitudinal trends in regulated rivers: A review and synthesis within the context of the serial discontinuity concept[J]. Environmental Reviews, 2013,21(3):136-148.
doi: 10.1139/er-2012-0064     URL    
[14] Young P S, Cech J J Jr, Thompson L C. Hydropower-related pulsed-flow impacts on stream fishes: A brief review, conceptual model, knowledge gaps, and research needs[J]. Reviews in Fish Biology and Fisheries, 2011,21(4):713-731.
doi: 10.1007/s11160-011-9211-0     URL    
Young P S, Cech J J Jr, Thompson L C. Hydropower-related pulsed-flow impacts on stream fishes: A brief review, conceptual model, knowledge gaps, and research needs[J]. Reviews in Fish Biology and Fisheries, 2011,21(4):713-731.
doi: 10.1007/s11160-011-9211-0     URL    
[15] Poff N L, Schmidt J C.How dams can go with the flow[J]. Science, 2016,353(3 604):1 099-1 100.
doi: 10.1126/science.aah4926     URL     pmid: 27609876
Poff N L, Schmidt J C.How dams can go with the flow[J]. Science, 2016,353(3 604):1 099-1 100.
doi: 10.1126/science.aah4926     URL     pmid: 27609876
[16] Carriquiry J D, Villaescusa J A, Camacho-Ibar V, et al. The effects of damming on the materials flux in the Colorado River delta[J]. Environmental Earth Sciences, 2011,62(7):1 407-1 418.
doi: 10.1007/s12665-010-0626-z     URL    
Carriquiry J D, Villaescusa J A, Camacho-Ibar V, et al. The effects of damming on the materials flux in the Colorado River delta[J]. Environmental Earth Sciences, 2011,62(7):1 407-1 418.
doi: 10.1007/s12665-010-0626-z     URL    
[17] Winemiller K O, McIntyre P B, Castello L, et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong[J]. Science, 2016,351(6 269):128-129.
doi: 10.1126/science.aac7082     URL    
Winemiller K O, McIntyre P B, Castello L, et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong[J]. Science, 2016,351(6 269):128-129.
doi: 10.1126/science.aac7082     URL    
[18] Grumbine R E, Dore J, Xu J.Mekong hydropower: Drivers of change and governance challenges[J]. Frontiers in Ecology and the Environment, 2012,10(2):91-98.
doi: 10.1890/110146     URL    
Grumbine R E, Dore J, Xu J.Mekong hydropower: Drivers of change and governance challenges[J]. Frontiers in Ecology and the Environment, 2012,10(2):91-98.
doi: 10.1890/110146     URL    
[19] Stefan H G.Surface Water Impoundments[M]. New York: Smerican Society of Cilil Engineers, 1981.
Stefan H G.Surface Water Impoundments[M]. New York: Smerican Society of Cilil Engineers, 1981.
[20] Straskraba M, Tundisi J G, Duncan A.Comparative Reservoir Limnology and Water Quality Management[M]. Netherlands: Springer Netherlands, 1993.
Straskraba M, Tundisi J G, Duncan A.Comparative Reservoir Limnology and Water Quality Management[M]. Netherlands: Springer Netherlands, 1993.
[21] Thornton K W, Kimmel B L, Payne F E.Reservoir Limnology: Ecological Perspectives[M]. New York: John Wiley & Sons, 1990.
Thornton K W, Kimmel B L, Payne F E.Reservoir Limnology: Ecological Perspectives[M]. New York: John Wiley & Sons, 1990.
[22] Tundisi J G, Stra?kraba M.Theoretical Reservoir Ecology and Its Applications[M]. Leiden: Backhuys Publishers,1999.
Tundisi J G, Straškraba M.Theoretical Reservoir Ecology and Its Applications[M]. Leiden: Backhuys Publishers,1999.
[23] Straskraba M, Tundisi J G.Reservoir Water Quality Management[M]. Shiga: International Lake Environment Committee, 1999.
Straskraba M, Tundisi J G.Reservoir Water Quality Management[M]. Shiga: International Lake Environment Committee, 1999.
[24] Yang Kun,Deng Xi,Li Xueling,et al. Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: A review[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1 359-1 367.
URL    
Yang Kun,Deng Xi,Li Xueling,et al. Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: A review[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1 359-1 367.
[杨昆, 邓熙, 李学灵, 等. 梯级开发对河流生态系统和景观影响研究进展[J]. 应用生态学报, 2011,22(5):1 359-1 367.]
URL    
[杨昆, 邓熙, 李学灵, 等. 梯级开发对河流生态系统和景观影响研究进展[J]. 应用生态学报, 2011,22(5):1 359-1 367.]
URL    
[25] Barbosa F A R, Padisak J, Espindola E L G, et al. The Cascading Reservoir Continuum Concept (CRCC) and its application to the river Tiete-basin, Sao Paulo state, Brazil[C]//Workshop on Theoretical Reserivoir Ecology, Saopedro, Brazil,1999.
Barbosa F A R, Padisak J, Espindola E L G, et al. The Cascading Reservoir Continuum Concept (CRCC) and its application to the river Tiete-basin, Sao Paulo state, Brazil[C]//Workshop on Theoretical Reserivoir Ecology, Saopedro, Brazil,1999.
[26] Yi Y, Tang C, Yang Z, et al. Influence of Manwan Reservoir on fish habitat in the middle reach of the Lancang River[J]. Ecological Engineering, 2014,69:106-117.
doi: 10.1016/j.ecoleng.2014.03.026     URL    
Yi Y, Tang C, Yang Z, et al. Influence of Manwan Reservoir on fish habitat in the middle reach of the Lancang River[J]. Ecological Engineering, 2014,69:106-117.
doi: 10.1016/j.ecoleng.2014.03.026     URL    
[27] Li J, Dong S, Liu S, et al. Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River[J]. Ecological Engineering, 2013,60:316-324.
doi: 10.1016/j.ecoleng.2013.07.029     URL    
Li J, Dong S, Liu S, et al. Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River[J]. Ecological Engineering, 2013,60:316-324.
doi: 10.1016/j.ecoleng.2013.07.029     URL    
[28] Fan H, He D, Wang H.Environmental consequences of damming the mainstream Lancang-Mekong River: A review[J]. Earth-Science Reviews, 2015,146:77-91.
doi: 10.1016/j.earscirev.2015.03.007     URL    
Fan H, He D, Wang H.Environmental consequences of damming the mainstream Lancang-Mekong River: A review[J]. Earth-Science Reviews, 2015,146:77-91.
doi: 10.1016/j.earscirev.2015.03.007     URL    
[29] Kang B, He D, Perrett L, et al. Fish and fisheries in the Upper Mekong: Current assessment of the fish community, threats and conservation[J]. Reviews in Fish Biology and Fisheries, 2009,19:465-480.
doi: 10.1007/s11160-009-9114-5     URL    
Kang B, He D, Perrett L, et al. Fish and fisheries in the Upper Mekong: Current assessment of the fish community, threats and conservation[J]. Reviews in Fish Biology and Fisheries, 2009,19:465-480.
doi: 10.1007/s11160-009-9114-5     URL    
[30] Wang F, Cao M, Wang B, et al. Seasonal variation of CO2 diffusion flux from a large subtropical reservoir in East China[J]. Atmospheric Environment, 2015,103:129-137.
doi: 10.1016/j.atmosenv.2014.12.042     URL    
Wang F, Cao M, Wang B, et al. Seasonal variation of CO2 diffusion flux from a large subtropical reservoir in East China[J]. Atmospheric Environment, 2015,103:129-137.
doi: 10.1016/j.atmosenv.2014.12.042     URL    
[31] Wang F, Wang B, Liu C Q, et al. Changes in nutrient ratios and phytoplankton community structure caused by hydropower development in the Maotiao River, China[J]. Environmental Geochemistry and Health, 2014,36:595-603.
doi: 10.1007/s10653-013-9583-2     URL    
Wang F, Wang B, Liu C Q, et al. Changes in nutrient ratios and phytoplankton community structure caused by hydropower development in the Maotiao River, China[J]. Environmental Geochemistry and Health, 2014,36:595-603.
doi: 10.1007/s10653-013-9583-2     URL    
[32] Wang Lansun, Ping Naifan.Eutrophication caused by river cascading development[J]. Sichuan Enviornment, 1989, 8(4): 105-112.
Wang Lansun, Ping Naifan.Eutrophication caused by river cascading development[J]. Sichuan Enviornment, 1989, 8(4): 105-112.
[汪兰荪, 平乃凡. 梯级开发河流的富营养化探讨. 四川环境, 1989,8(4):105-112.]
[汪兰荪, 平乃凡. 梯级开发河流的富营养化探讨. 四川环境, 1989,8(4):105-112.]
[33] Ma Zelong, Cheng Genwei.Progress in research on impacts of river hydro-power engineering on eco-environment[J]. Advances in Water Science, 2006,17(5): 748-753.
URL    
Ma Zelong, Cheng Genwei.Progress in research on impacts of river hydro-power engineering on eco-environment[J]. Advances in Water Science, 2006,17(5): 748-753.
[麻泽龙, 程根伟. 河流梯级开发对生态环境影响的研究进展[J]. 水科学进展, 2006,17(5): 748-753.]
URL    
[麻泽龙, 程根伟. 河流梯级开发对生态环境影响的研究进展[J]. 水科学进展, 2006,17(5): 748-753.]
URL    
[34] Zhong Huaping, Liu Heng, Geng Leihua.Cumulative effects of Lancang River basin cascade hydropower development on ecology and environment[J]. Shuili Xuebao, 2007,(Suppl.): 577-581.
Zhong Huaping, Liu Heng, Geng Leihua.Cumulative effects of Lancang River basin cascade hydropower development on ecology and environment[J]. Shuili Xuebao, 2007,(Suppl.): 577-581.
[钟华平, 刘恒, 耿雷华. 澜沧江流域梯级开发的生态环境累积效应[J]. 水利学报, 2007,(增刊):577-581.]
[钟华平, 刘恒, 耿雷华. 澜沧江流域梯级开发的生态环境累积效应[J]. 水利学报, 2007,(增刊):577-581.]
[35] Zhong Huaping, Liu Heng, Geng Leihua.Ecology and environment cumulative effects of cascaded hydropower development in Nujiang River[J]. Water Resources and Power, 2008,26(1): 52-55,59.
Zhong Huaping, Liu Heng, Geng Leihua.Ecology and environment cumulative effects of cascaded hydropower development in Nujiang River[J]. Water Resources and Power, 2008,26(1): 52-55,59.
[钟华平, 刘恒, 耿雷华. 怒江水电梯级开发的生态环境累积效应[J]. 水电能源科学, 2008,26(1): 52-55,59.]
[钟华平, 刘恒, 耿雷华. 怒江水电梯级开发的生态环境累积效应[J]. 水电能源科学, 2008,26(1): 52-55,59.]
[36] Wang Zhaosong,Li Lan.Research development of basin cascade hydropower development and environment ecological protection[J]. Water Resources and Power, 2009,27(4):43-45,226.
doi: 10.3969/j.issn.1000-7709.2009.04.015     URL    
Wang Zhaosong,Li Lan.Research development of basin cascade hydropower development and environment ecological protection[J]. Water Resources and Power, 2009,27(4):43-45,226.
[王赵松, 李兰. 流域水电梯级开发与环境生态保护的研究进展[J]. 水电能源科学, 2009,27(4):43-45,226.]
doi: 10.3969/j.issn.1000-7709.2009.04.015     URL    
[王赵松, 李兰. 流域水电梯级开发与环境生态保护的研究进展[J]. 水电能源科学, 2009,27(4):43-45,226.]
doi: 10.3969/j.issn.1000-7709.2009.04.015     URL    
[37] Kou Xiaomei, Niu Tianxiang, Huang Yusheng, et al. Cumulative effectof water environment of existing cascade stationson the upper Yellow River[J]. Northwest Hydropower, 2009,(6):11-14.
doi: 10.3969/j.issn.1006-2610.2009.06.003     URL    
Kou Xiaomei, Niu Tianxiang, Huang Yusheng, et al. Cumulative effectof water environment of existing cascade stationson the upper Yellow River[J]. Northwest Hydropower, 2009,(6):11-14.
[寇晓梅, 牛天祥, 黄玉胜, 等. 黄河上游已建梯级电站的水环境累积效应[J]. 西北水电, 2009,(6):11-14.]
doi: 10.3969/j.issn.1006-2610.2009.06.003     URL    
[寇晓梅, 牛天祥, 黄玉胜, 等. 黄河上游已建梯级电站的水环境累积效应[J]. 西北水电, 2009,(6):11-14.]
doi: 10.3969/j.issn.1006-2610.2009.06.003     URL    
[38] Chen Junxian,Jiang Renfei,Chen Yan.Evaluation on the health of river ecosystem under the cascade development of reservoirs[J]. Shuili Xuebao, 2015,46(3):334-340.
doi: 10.13243/j.cnki.slxb.2015.03.010     URL    
Chen Junxian,Jiang Renfei,Chen Yan.Evaluation on the health of river ecosystem under the cascade development of reservoirs[J]. Shuili Xuebao, 2015,46(3):334-340.
[陈俊贤, 蒋任飞, 陈艳. 水库梯级开发的河流生态系统健康评价研究[J]. 水利学报, 2015,46(3):334-340.]
doi: 10.13243/j.cnki.slxb.2015.03.010     URL    
[陈俊贤, 蒋任飞, 陈艳. 水库梯级开发的河流生态系统健康评价研究[J]. 水利学报, 2015,46(3):334-340.]
doi: 10.13243/j.cnki.slxb.2015.03.010     URL    
[39] Ji Daobin,Long Lianghong,Xu Hui,et al. Advances in study on cumulative effects of construction of cascaded reservoirs on water environment[J]. Advances in Science and Technology of Water Resources, 2017,37(3):7-14.
doi: 10.3880/j.issn.10067647.2017.03.002     URL    
Ji Daobin,Long Lianghong,Xu Hui,et al. Advances in study on cumulative effects of construction of cascaded reservoirs on water environment[J]. Advances in Science and Technology of Water Resources, 2017,37(3):7-14.
[纪道斌, 龙良红, 徐慧, 等. 梯级水库建设对水环境的累积影响研究进展[J]. 水利水电科技进展, 2017,37(3):7-14.]
doi: 10.3880/j.issn.10067647.2017.03.002     URL    
[纪道斌, 龙良红, 徐慧, 等. 梯级水库建设对水环境的累积影响研究进展[J]. 水利水电科技进展, 2017,37(3):7-14.]
doi: 10.3880/j.issn.10067647.2017.03.002     URL    
[40] Wang Chao.Research conception of ecological protection and restoration of high dams and large reservoirs construction and hydropower cascade development in Southwestern China[J]. Advanced Engineering Sciences, 2017,49(1):19-26.
Wang Chao.Research conception of ecological protection and restoration of high dams and large reservoirs construction and hydropower cascade development in Southwestern China[J]. Advanced Engineering Sciences, 2017,49(1):19-26.
[王超. “西南水电高坝大库梯级开发的生态保护与恢复”研究构想[J]. 工程科学与技术, 2017,49(1):19-26.]
[王超. “西南水电高坝大库梯级开发的生态保护与恢复”研究构想[J]. 工程科学与技术, 2017,49(1):19-26.]
[41] Stanford J A, Ward J V.Revisiting the serial discontinuity concept[J]. Regulated Rivers-Research & Management, 2001,17:303-310.
doi: 10.1002/rrr.659     URL    
Stanford J A, Ward J V.Revisiting the serial discontinuity concept[J]. Regulated Rivers-Research & Management, 2001,17:303-310.
doi: 10.1002/rrr.659     URL    
[42] Li J, Dong S, Peng M, et al. Effects of damming on the biological integrity of fish assemblages in the middle Lancang-Mekong River basin[J]. Ecological Indicators, 2013,34:94-102.
doi: 10.1016/j.ecolind.2013.04.016     URL    
Li J, Dong S, Peng M, et al. Effects of damming on the biological integrity of fish assemblages in the middle Lancang-Mekong River basin[J]. Ecological Indicators, 2013,34:94-102.
doi: 10.1016/j.ecolind.2013.04.016     URL    
[43] Zhai H, Cui B, Hu B, et al. Prediction of river ecological integrity after cascade hydropower dam construction on the mainstream of rivers in Longitudinal Range-Gorge Region (LRGR), China[J]. Ecological Engineering, 2010,36:361-372.
doi: 10.1016/j.ecoleng.2009.10.002     URL    
Zhai H, Cui B, Hu B, et al. Prediction of river ecological integrity after cascade hydropower dam construction on the mainstream of rivers in Longitudinal Range-Gorge Region (LRGR), China[J]. Ecological Engineering, 2010,36:361-372.
doi: 10.1016/j.ecoleng.2009.10.002     URL    
[44] Serafim-Junior M, Lansac-Toha F A, Lopes R M, et al. Continuity effects on rotifers and microcrustaceans caused by the construction of a downstream reservoir in a cascade series (Iguacu River, Brazil)[J]. Brazilian Journal of Biology, 2016,76:279-291.
doi: 10.1590/1519-6984.00314     URL    
Serafim-Junior M, Lansac-Toha F A, Lopes R M, et al. Continuity effects on rotifers and microcrustaceans caused by the construction of a downstream reservoir in a cascade series (Iguacu River, Brazil)[J]. Brazilian Journal of Biology, 2016,76:279-291.
doi: 10.1590/1519-6984.00314     URL    
[45] Lacerda dos Santos N C, de Santana H S, Dias R M, et al. Distribution of benthic macroinvertebrates in a tropical reservoir cascade[J]. Hydrobiologia, 2016,765:265-275.
doi: 10.1007/s10750-015-2419-6     URL    
Lacerda dos Santos N C, de Santana H S, Dias R M, et al. Distribution of benthic macroinvertebrates in a tropical reservoir cascade[J]. Hydrobiologia, 2016,765:265-275.
doi: 10.1007/s10750-015-2419-6     URL    
[46] Wang Guangqian,Fang Hongwei,Ni Guangheng, et al. River networks and runoff characteristics in Tibetan Plateau: Advancements and future strategie[J]. Bulletin of National Natural Science Foundation of China, 2016,(1):27-33.DOI:10.16262/j.cnki.1000-8217.2016.01.007.
Wang Guangqian,Fang Hongwei,Ni Guangheng, et al. River networks and runoff characteristics in Tibetan Plateau: Advancements and future strategie[J]. Bulletin of National Natural Science Foundation of China, 2016,(1):27-33.DOI:10.16262/j.cnki.1000-8217.2016.01.007.
[王光谦, 方红卫, 倪广恒, 等. 大江大河源区河网结构与径流特性研究前沿和重要基础科学问题[J]. 中国科学基金, 2016,(1):27-33.DOI:10.16262/j.cnki.1000-8217.2016.01.007.]
[王光谦, 方红卫, 倪广恒, 等. 大江大河源区河网结构与径流特性研究前沿和重要基础科学问题[J]. 中国科学基金, 2016,(1):27-33.DOI:10.16262/j.cnki.1000-8217.2016.01.007.]
[47] Vannote R L, Minshall G W, Cummins K W, et al. The river continuum concept[J]. Canadian Journal of Fisheries & Aquatic Sciences, 1980,37:130-137.
Vannote R L, Minshall G W, Cummins K W, et al. The river continuum concept[J]. Canadian Journal of Fisheries & Aquatic Sciences, 1980,37:130-137.
[48] Miranda L E, Dembkowski D J.Evidence for serial discontinuity in the fish community of a heavily impounded river[J]. River Research and Applications, 2016,32:1 187-1 195.
doi: 10.1002/rra.2936     URL    
Miranda L E, Dembkowski D J.Evidence for serial discontinuity in the fish community of a heavily impounded river[J]. River Research and Applications, 2016,32:1 187-1 195.
doi: 10.1002/rra.2936     URL    
[49] Ellis L E, Jones N E.A test of the serial discontinuity concept: Longitudinal trends of benthic invertebrates in regulated and natural rivers of Northern Canada[J]. River Research and Applications, 2016,32:462-472.
doi: 10.1002/rra.v32.3     URL    
Ellis L E, Jones N E.A test of the serial discontinuity concept: Longitudinal trends of benthic invertebrates in regulated and natural rivers of Northern Canada[J]. River Research and Applications, 2016,32:462-472.
doi: 10.1002/rra.v32.3     URL    
[50] Olden J D, Konrad C P, Melis T S, et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems?[J]. Frontiers in Ecology and the Environment, 2014,12:176-185.
doi: 10.1890/130076     URL    
Olden J D, Konrad C P, Melis T S, et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems?[J]. Frontiers in Ecology and the Environment, 2014,12:176-185.
doi: 10.1890/130076     URL    
[51] Poff N L, Zimmerman J K.Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows[J]. Freshwater Biology, 2010,55:194-205.
doi: 10.1111/fwb.2009.55.issue-1     URL    
Poff N L, Zimmerman J K.Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows[J]. Freshwater Biology, 2010,55:194-205.
doi: 10.1111/fwb.2009.55.issue-1     URL    
[52] Petesse M L, Petrere M.Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietêriver Basin, Brazil[J]. Ecological Engineering, 2012,48:109-116.
doi: 10.1016/j.ecoleng.2011.06.033     URL    
Petesse M L, Petrere M.Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietêriver Basin, Brazil[J]. Ecological Engineering, 2012,48:109-116.
doi: 10.1016/j.ecoleng.2011.06.033     URL    
[53] Holling C S.Adaptive Environmental Assessment and Management[M]. New York: John Wiley & Sons, 1978.
Holling C S.Adaptive Environmental Assessment and Management[M]. New York: John Wiley & Sons, 1978.
[54] Naiman R J, Alldredge J R, Beauchamp D A, et al. Developing a broader scientific foundation for river restoration: Columbia River food webs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109:21 201-21 207.
doi: 10.1073/pnas.1213408109     URL    
Naiman R J, Alldredge J R, Beauchamp D A, et al. Developing a broader scientific foundation for river restoration: Columbia River food webs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109:21 201-21 207.
doi: 10.1073/pnas.1213408109     URL    
[55] Melis T S, Walters C J, Korman J.Surprise and opportunity for learning in grand canyon: The Glen Canyon dam adaptive management program[J]. Ecology and Society, 2015,20(3).DOI:10.5751/ES-07621-200322.
Melis T S, Walters C J, Korman J.Surprise and opportunity for learning in grand canyon: The Glen Canyon dam adaptive management program[J]. Ecology and Society, 2015,20(3).DOI:10.5751/ES-07621-200322.
[56] Naiman R J, Magnuson J J, McKnight D M, et al. Fresh-water ecosystems and their management—A national initiative[J]. Science, 1995,270:584-585.
doi: 10.1126/science.270.5236.584     URL    
Naiman R J, Magnuson J J, McKnight D M, et al. Fresh-water ecosystems and their management—A national initiative[J]. Science, 1995,270:584-585.
doi: 10.1126/science.270.5236.584     URL    
[57] Kennedy T A, Muehlbauer J D, Yackulic C B, et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs[J]. American Institute of Biological Sciences, 2016,66:561-575.
doi: 10.1093/biosci/biw059     URL    
Kennedy T A, Muehlbauer J D, Yackulic C B, et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs[J]. American Institute of Biological Sciences, 2016,66:561-575.
doi: 10.1093/biosci/biw059     URL    
[58] Warner A T, Bach L B, Hickey J T.Restoring environmental flows through adaptive reservoir management: Planning, science, and implementation through the Sustainable Rivers Project[J]. Hydrological Sciences JournalJournal Des Sciences Hydrologiques, 2014,59:770-785.
Warner A T, Bach L B, Hickey J T.Restoring environmental flows through adaptive reservoir management: Planning, science, and implementation through the Sustainable Rivers Project[J]. Hydrological Sciences JournalJournal Des Sciences Hydrologiques, 2014,59:770-785.
[59] Keith D A, Martin T G, McDonald-Madden E, et al. Uncertainty and adaptive management for biodiversity conservation[J]. Biological Conservation, 2011,144:1 175-1 178.
doi: 10.1016/j.biocon.2010.11.022     URL    
Keith D A, Martin T G, McDonald-Madden E, et al. Uncertainty and adaptive management for biodiversity conservation[J]. Biological Conservation, 2011,144:1 175-1 178.
doi: 10.1016/j.biocon.2010.11.022     URL    
[60] Poff N L, Brown C M, Grantham T E, et al. Sustainable water management under future uncertainty with eco-engineering decision scaling[J]. Nature Climate Change, 2016,6:25-34.
doi: 10.1038/nclimate2765     URL    
Poff N L, Brown C M, Grantham T E, et al. Sustainable water management under future uncertainty with eco-engineering decision scaling[J]. Nature Climate Change, 2016,6:25-34.
doi: 10.1038/nclimate2765     URL    
[61] Liu Yanxu,Peng Jian,Wang An,et al. New research progress and trends in ecosystem health[J]. Acta Ecologica Sinica, 2015, 35(18): 5 920-5 930.
doi: 10.5846/stxb201401060032     URL    
Liu Yanxu,Peng Jian,Wang An,et al. New research progress and trends in ecosystem health[J]. Acta Ecologica Sinica, 2015, 35(18): 5 920-5 930.
[刘焱序, 彭建, 汪安, 等. 生态系统健康研究进展[J]. 生态学报, 2015, 35(18): 5 920-5 930.]
doi: 10.5846/stxb201401060032     URL    
[刘焱序, 彭建, 汪安, 等. 生态系统健康研究进展[J]. 生态学报, 2015, 35(18): 5 920-5 930.]
doi: 10.5846/stxb201401060032     URL    
[1] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[2] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[3] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[4] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[5] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[6] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[7] 丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究: 现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-728.
[8] 顾磊, 张洪波 , 陈克宇, 俞奇骏. 陕北地区河川基流的时空演变规律[J]. 地球科学进展, 2015, 30(7): 802-811.
[9] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[10] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[11] 戴海伦, 代加兵, 舒安平, 张科利. 河岸侵蚀研究进展综述[J]. 地球科学进展, 2013, 28(9): 988-996.
[12] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[13] 贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27(7): 705-711.
[14] 邓铭江,龙爱华,李湘权,章毅,雷雨. 中亚五国跨界水资源开发利用与合作及其问题分析  [J]. 地球科学进展, 2010, 25(12): 1337-1346.
[15] 张运林;黄群芳;马荣华;陈伟民. 基于反射率的太湖典型湖区溶解性有机碳的反演[J]. 地球科学进展, 2005, 20(7): 772-777.
阅读次数
全文


摘要