地球科学进展 ›› 2019, Vol. 34 ›› Issue (6): 650 -659. doi: 10.11867/j.issn.1001-8166.2019.06.0650

全球变化研究 上一篇    下一篇

基于 HBV模型的太子河流域径流变化情景预估
刘鸣彦 1( ),孙凤华 2( ),侯依玲 1,赵春雨 1,周晓宇 1   
  1. 1. 中国气象局沈阳大气环境研究所,辽宁 沈阳 110166
    2. 沈阳区域气候中心,辽宁 沈阳 110166
  • 收稿日期:2018-12-29 修回日期:2019-04-20 出版日期:2019-06-10
  • 通讯作者: 孙凤华 E-mail:imlmy730@163.com;sfh3910839@sina.com
  • 基金资助:
    辽宁省科学技术计划项目“暴雨诱发的山洪灾害风险动态评估技术研究——以抚顺地区为例”(20180551217);中国气象局沈阳大气环境研究所开放基金课题“太子河流域水资源量变化特征及对生态环境的影响研究”(2017SYIAE10)

Runoff Change in Taizihe River Basin Under Future Climate Change Based on HBV Model

Mingyan Liu 1( ),Fenghua Sun 2( ),Yiling Hou 1,Chunyu Zhao 1,Xiaoyu Zhou 1   

  1. 1. Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China
    2. Regional Climate Center of Shenyang, Shenyang 110166, China
  • Received:2018-12-29 Revised:2019-04-20 Online:2019-06-10 Published:2019-07-05
  • Contact: Fenghua Sun E-mail:imlmy730@163.com;sfh3910839@sina.com
  • About author:Liu Mingyan(1987-), female, Shenyang City, Liaoning Province, Engineer. Research areas include climate change research and disaster risk assessment. E-mail: imlmy730@163.com
  • Supported by:
    Foundation item: Project supported by the Liaoning Science and Technology Project “Study on dynamic assessment technology of flood disaster risk caused by rainstorm-taking Fushun as an example”(NO. 20180551217);The Open Foundation of the China Meteorological Administration Shenyang Atmospheric Environment Research Institute “Study on variation characteristics of water resources in Taizihe River Basin and its impact on ecological environment”(NO. 2017SYIAE10)

以太子河流域为研究区域,采用HBV水文模型对流域的水文过程进行模拟,并选取RegCM4.4区域气候模式输出的平均气温和降水数据来驱动HBV水文模型,模拟逐日径流过程,分析RCP4.5排放情景下未来太子河流域径流的演变。结果表明,HBV水文模型在太子河流域模拟效果较好,率定期与验证期Nash效率系数与确定性系数均在0.60以上,模型基本模拟出了洪水对降水的响应过程。RCP4.5情景下,2021—2070年太子河流域年平均气温呈持续升温趋势,流域降水和年径流深度呈微弱减少趋势。相较于基准期,年径流深度将增多9.79%,夏季和秋季径流深度上升明显。径流分位数的变化表明,峰值极端径流和枯水极端径流均较基准期有不同程度的增多,未来太子河流域发生极端洪涝的可能性较高。

Taking the Taizihe River Basin located in Liaoning Province as a study area, we applied HBV hydrological model to simulate the hydrological process of this river basin with the support of observed daily precipitation, mean temperature, hydrological data in Xiaolinzi hydrologic station, and global digital elevation model data from SRTM3, land utilization types, etc. According to the simulation results of daily runoff, the possible impact of future climate change on runoff was analyzed through forcing HBV model by RegCM4.4 dynamic downscaled climatic data. The results show that HBV model performed generally well for daily simulation of the Taizihe River Basin with Nash Sutcliffe coefficient and deterministic coefficient being all over 0.60 in the calibration period and validation period, and the response of flooding to precipitation were simulated better. This indicates the HBV model can be successfully applied to the Taizihe River Basin. Mean temperature will increase obviously with persistent rising trend by RegCM4.4 model in 2021-2070 under RCP4.5 scenario. Annual precipitation and runoff depth are expected to reduce a bit. Compared with the baseline period (1986-2005), annual runoff depth will increase by 9.79%. At the same time, the runoff depth will increase significantly in summer and autumn. The variation of runoff quantile indicates that both peak extreme runoff and dry extreme runoff will increase to different degrees than that in the baseline period. In the future, the Taizihe River Basin will be likely to experience extreme flooding.

中图分类号: 

图1 太子河流域高程、气象站及水文站分布
Fig.1 Distribution of elevationweather stations and hydrological station in Taizihe River Basin
表1 土壤持水力
Table1 The value of field capacity
表2 HBV水文模型最优参数值
Table 2 The optimal values of HBV model
图2 率定期模拟和实测径流深度及降水量曲线
Fig.2 The observed and simulated runoff curves and daily precipitation for the calibration period
表3 太子河率定期与验证期模拟结果
Table 3 The simulation results in the calibration and validation period
图3 验证期模拟和实测径流深度及降水量曲线
Fig.3 The observed and simulated runoff curves and daily precipitation for the validation period
图4 19802016年观测的太子河流域年平均气温和降水量变化
Fig.4 Temporal variations of annual mean temperature and precipitation during 1980-2016
图5 19802070年预估模拟的太子河流域年平均气温和降水量变化
Fig.5 Temporal variations of annual mean temperature and precipitation during 1980-2070
图6 太子河流域平均气温与降水量的逐月变化
Fig.6 Monthly variations of temperature and precipitation
表4 20212070年气温和降水相对于基均期( 19862005年)的变化
Table 4 Annual and seasonal temperature and precipitation changes from 2021 to 2070 ( relative to from 1986 to 2005)
图7 20212070年太子河流域径流深度的年际变化
Fig.7 Temporal variations of runoff depth during 2021-2070
表5 不同年代径流模比系数
Table 5 Model ratio coefficients of runoff in different years
表6 20212070年径流深度相对于基准期( 19862005年)的变化
Table 6 Annual and seasonal runoff depth percentage changes from 2021 to 2070 relative to from 1986 to 2005)
图8 太子河流域径流深度的逐月变化
Fig.8 Monthly variations of runoff depth
表7 分位数 (2021—2070)年径流相对于基准期 (19862005年)的变化百分率 单位:%)
Table 7 The variations of runoff quantile during 2021-2070 (relative to that of 1986-2005) (unit:%)
1 Lin Erda , Xu Yinlong , Jiang Jinhe , et al . National assessment report of climate change (II): Climate change impacts and adaptation[J]. Advance in Climate Change Research, 2006, 2(2):51-56.
林而达, 许吟隆, 蒋金荷, 等 . 气候变化国家评估报告(II): 气候变化的影响与适应[J].气候变化研究进展, 2006, 2(2):51-56.
2 Ren Guoyu . Climate Change and Water Resource in China[M]. Beijing:Meteorology Press, 2007.
任国玉 . 气候变化与中国水资源[M].北京:气象出版社,2007.
3 Xia Jun , Liu Chunzhen , Ren Guoyu . Opportunity and challenge of the climate change impact on the water resource of China[J]. Advances in Earth Science, 2010,26(1):1-12.
夏军,刘春蓁,任国玉 . 气候变化对我国水资源影响研究面临的机遇与挑战[J].地球科学进展, 2010,26(1):1-12.
4 Zhang Lei , Wang Chunyan , Pan Xiaoduo . A review of future climate change based on regional climate models[J]. Plateau Meteorology, 2018,37(5):1 440-1 448.
张磊,王春燕,潘小多 . 基于区域气候模式未来气候变化研究综述[J]. 高原气象, 2018,37(5):1 440-1 448.
5 Gao Xuejie , Zhao Zongci , Ding Yihui , et al . Climate change due to greenhouse effects in China as simulated by a regional climate model[J]. Advance in Atmospheric Sciences, 2001,18(6):1 224-1 230.
6 Xu Jijun , Yang Dawen . New model for drought estimation and prediction based on distributed hydrological simulation[J]. Journal of Hydraulic Engineering, 2010,41(6):739-747.
许继军,杨大文 . 基于分布式水文模拟的干旱评估预报模型研究[J].水利学报, 2010,41(6):739-747.
7 Lu Yanyu , Tian Hong . Mechanism-oriented approach for estimating critical rainfall of flood disaster: A case study based on HBV model[J]. Meteorological Monthly, 2015,41(6):755-760.
卢燕宇,田红 . 基于HBV模型的淮河流域洪水致灾临界雨量研究[J].气象, 2015,41(6):755-760.
8 Kang Ersi , Cheng Guodong , Lan Yongchao , et al . Application of a conceptual hydrological model in the runoff forecast of a mountainous watershed[J]. Advances in Earth Science, 2002,17(1):18-26.
康尔泗,程国栋,蓝永超,等 . 概念性水文模型在出山径流预报中的应用[J].地球科学进展, 2002,17(1):18-26.
9 Huang Jinlong , Wang Yanjun , Su Buda , et al . Future climate change and its impact on runoff in the upper reaches of the Yangtze River under RCP4.5 scenario[J]. Meteorological Monthly, 2016, 42(5):614-620.
黄金龙,王艳君,苏布达,等 . RCP4.5情景下长江上游流域未来气候变化及其对径流的影响[J].气象, 2016, 42(5):614-620.
10 Kang Lili , Ruby L L , Liu Chun , et al . Simulative study of future climate and hydrological change over the Yellow River Basin[J]. Acta Meteorologica Sinica, 2015, 73(2): 382-393.
康丽莉, Ruby L L ,柳春,等 . 黄河流域未来气候—水文变化的模拟研究[J].气象学报, 2015,73(2): 382-393.
11 Wang Guoqing , Jin Junliang , Wang Jinxing , et al . Study on hydrological characteristics of Liaohe River Basin in response to climate change[J]. Advances in Earth Science, 2011, 26(4):433-440.
王国庆,金君良,王金星,等 . 辽河流域径流对气候变化的响应特征研究[J]. 地球科学进展, 2011, 26(4):433-440.
12 Sun Fenghua , Li Liguang , Yuan Jian , et al . Research status analysis of impact of climate change on water resource in Liaohe River basin[J]. Journal of Meteorology and Environment, 2015,31(6):147-152.
孙凤华,李丽光,袁健,等 . 气候变化对辽河流域水资源影响研究现状分析[J].气象与环境学报, 2015,31(6):147-152.
13 Zhang Jianyun , Zhang Silong , Wang Jinxing , et al . Study on runoff trends of the six larger basins in China over the past 50 years[J]. Advances in Water Science, 2007,18(4):230-234.
张建云,章四龙,王金星,等 . 近50年来中国六大流域年际径流变化趋势研究[J].水科学进展, 2007,18(4):230-234.
14 Yang Hengshan , Liu Jiang , Liang Huaiyu . Change characteristics of climate and water resources in west Liaohe River Plain[J]. Chinses Journal of Applied Ecology, 2009, 20(1):84-90.
杨恒山,刘江,梁怀宇 . 西辽河平原气候及水资源变化特征[J].应用生态学报, 2009, 20(1):84-90.
15 Jing Zhengshu , Gu Hao , Zheng Liandi , et al . Encyclopedia of Rivers and Lakes in China Section of Heilongjiang River and Liaohe River Basins[M]. Beijing: China Water and Power Press, 2014:276-278.
敬正书, 顾浩, 郑连第, 等 . 中国河湖大典黑龙江、辽河卷[M].北京:中国水利水电出版社,2014:276-278.
16 Krysanova V , Bronstert A , Muller W D . Modelling river discharge for large drainage basins: From lumped to distributed approach[J].Hydrological Sciences Journal, 1999, 44(2):313-331.
17 Xu Zongxue , Wang Guangqian , Fang Hongwei , et al . Hydrological Models[M]. Beijing: Science Press, 2009:282-296.
徐宗学, 王光谦, 方红卫, 等 . 水文模型[M].北京:科学出版社,2009:282-296.
18 Zhao Yanzeng , Zhang Jianxin , Zhang Shu'an , et al . Application of HBV model in Huaihe Guanzhai River Basin[J]. Journal of China Hydrology, 2007, 27(2):57-59.
赵彦增, 张建新, 章树安, 等 . HBV模型在淮河官寨流域的应用研究[J].水文, 2007, 27(2): 57-59.
19 Gu Yi , Hao Zhenchun , Wang Guoqing , et al . Application of HBV model to the Xunbila River Basin[J]. Journal of Water Resources and Water Engineering, 2017,28(1):20-25.
谷一, 郝振纯, 王国庆, 等 . HBV模型在逊毕拉河流域的适用性研究[J].水资源与水工程学报, 2017,28(1):20-25.
20 Li Haichuan , Hao Zhenchun , Danzeng Nima , et al . Application of HBV model to Tangwang River Basin[J]. Journal of China Three Gorges University (Natural Sciences), 2016,38(5):24-29.
李海川, 郝振纯, 尼玛旦增, 等 . HBV模型在汤旺河流域的应用研究[J].三峡大学学报:自然科学版, 2016,38(5):24-29.
21 Dong Lifan , Lei Xiangjie , Wang Qian . Study on the applicability of HBV model in Hanjiang River Basin[J]. Journal of Shaanxi Meteorological, 2016,(4):23-26.
董立凡,雷向杰,王倩 . HBV模型在汉江流域的适用性研究[J]. 陕西气象, 2016,(4):23-26.
22 Zhang Jianyun , Wang Guoqing . Effects of Climate Change on Hydrology and Water Resources[M]. Beijing: Science Press, 2007:129-131.
张建云,王国庆 . 气候变化对水文水资源影响研究[J]. 北京: 科学出版社, 2007:129-131.
23 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Forecasting Norm for Hydrology Intelligence: GB/T 22482-2008[S].BeiJing: Chinese Standards Press, 2007.[中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 水文情报预报规范:GB/T 22482-2008 [S].北京:中国标准出版社, 2007.]
[1] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[2] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[3] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行 CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[4] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[5] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[6] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[7] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
[8] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[9] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[10] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[11] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[12] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[13] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[14] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[15] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
阅读次数
全文


摘要