地球科学进展 ›› 2024, Vol. 39 ›› Issue (1): 46 -55. doi: 10.11867/j.issn.1001-8166.2023.079

青藏高原综合科学考察研究 上一篇    下一篇

气候变化背景下陆面模式研究进展及不足
兰措( )   
  1. 1.中国科学院青藏高原研究所 环境变化与地表过程重点实验室,北京 100101
    2.中国科学院青藏高原 研究所 青藏高原地球系统与资源环境国家重点实验室,北京 100101
    3.中国科学院大学,北京 100049
  • 收稿日期:2023-09-02 修回日期:2023-11-04 出版日期:2024-01-10
  • 基金资助:
    国家自然科学基金项目(42371130);国家科技专项“第二次青藏高原综合科学考察研究”项目(2019QZKK010203)

Advances and Deficiencies in Land Surface Modeling Under Global Warming

CUO Lan( )   

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.State Key Laboratory of Tibetan Plateau Earth System Science, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-09-02 Revised:2023-11-04 Online:2024-01-10 Published:2024-01-26
  • About author:CUO Lan, Professor, research area includes cold region hydrometeorology. E-mail: lancuo@itpcas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(42371130);The Second Tibetan Plateau Scientific Expedition and Research (STEP) Program(2019QZKK010203)

气候变暖背景下,全球气候系统各圈层发生了复杂的响应和反馈。作为气候系统重要组成部分的陆地表面是地气水热交换、地球化学要素传输、水文过程产生和植被生长的界面,受气候变化影响显著。气候变化不仅直接影响水文过程,还可以通过影响植被的结构和生理特征,间接影响水文过程。陆面模式是研究气候变化影响和反馈的主要工具。全球描述陆气界面物质和能量交换过程的模式主要有3类:全球陆面过程模式、全球水文模式和全球动态植被模式。3种模式针对不同的科学问题,各有其侧重点,之间的差异较大。从20世纪90年代开始至今的许多陆面模式比较计划不断指出模式的不足及其原因,从而促进了陆面模式的不断发展。然而陆面模式依然存在很多不足,有待进一步提高和发展。如目前的水文模式普遍缺乏动态植被过程,无法准确模拟和预测长期气候变化导致的植被变化对水文过程的影响,累及极端水文事件的模拟和未来水资源的预估。水文过程模型耦合动态植被过程是水文学研究的前沿领域。作为亚洲水塔的青藏高原气候变化显著,冰冻圈要素不仅包括冰川、积雪和冻土退缩,而且植被生长趋好、变绿。因此,在青藏高原气候变化对水文过程的影响研究中,更应考虑气候变化导致的植被变化的水文效应。此外,陆面模式对青藏高原土壤结构内部的水热交换过程描述不足。为进一步提高陆面模式在青藏高原的模拟能力,今后需加强对青藏高原土壤质地观测和数据搜集整理,以及对土壤冻融阶段的水热物理过程的观测,提高对过程和机理的认识,并将有关的认识体现在陆面模式中。

Global warming caused by human activities has resulted in significant changes in the climate system, including changes in the regional climate, extreme events, snow, ice, vegetation, air quality, water cycle, and responses and feedbacks among various components of the climate system. The land surface is where water, energy, and geochemical transports to and from the atmosphere occur, hydrological processes occur, and vegetation grows. Hence, the land surface is sensitive to climate change. Climate change affects the hydrological processes not only directly but also indirectly by affecting the vegetation structure and physiology. Land surface models are useful for studying climate change and its impacts on the land surface by modeling the relevant responses and feedbacks. There are three types of land surface models that simulate the mass and energy exchange between the land surface and atmosphere: the global land surface process model, global hydrological model, and global dynamic vegetation model. These three types of models focus on different specific components of the land surface. Since the 1990s, various land surface comparison projects have revealed many problems and shortcomings in land surface models and have furthered their development. However, various issues with these models still need to be addressed. For example, one major problem with the global hydrological model is that it does not incorporate dynamic vegetation growth; hence, it cannot project long-term vegetation change impacts on the hydrological processes—let alone extreme hydrological events such as flooding and drought—and cannot be useful with respect to future water resource management. Incorporating dynamic vegetation growth into hydrological models is a frontline research topic in hydrology. Moreover, many land surface models represent soil textures and heat exchanges among soil liquids, solids, and gases on the Tibetan Plateau insufficiently. This aspect requires improvement by enhancing the observations, understanding the relevant mechanisms, and realizing the mechanisms and processes in the land surface models. The Tibetan Plateau provides fresh water to the surrounding regions and forms and modulates climate and weather both regionally and globally; thus, it is dubbed the Asian Water Tower. Improving the land surface model capability of the plateau will improve the understanding of climate change and its impacts, both regionally and globally.

中图分类号: 

图1 气候和植被变化的水文效应示意图
在寒区随着CO 2浓度升高,气候变暖,植被长势趋好;相应的植被蒸散发增加,减少径流,此为CO 2升高导致的植被结构效应;但同时由于气孔缩小、气孔密度减少,使得叶面气孔导度减小,植被水分利用效率提高,蒸散发减少,径流增加,此为CO 2升高导致的植被生理效应;实心箭头为蒸散发,空心箭头表示气温升高;土壤中的有机质层和碎石展示在土壤柱体中
Fig. 1 Schematic diagram of hydrological effects of climate and vegetation changes
With increasing CO 2 concentration in the cold region, climate becomes warmer resulting in greener land surface. The increasing CO 2 and greening surface will have two contradictory effects: greater evapotranspiration due to better vegetation growth and larger leaf area resulting in lower streamflow (vegetation structural effect); lower evapotranspiration due to reduced stomatal conductance and higher water use efficiency, hence greater streamflow (vegetation physiological effect). Solid arrows represent evapotranspiration; hollow arrow represents warming temperature. Soil column contains gravel and organic matter
26 JIN H J, HE R X, CHENG G D, et al. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts[J]. Environmental Research Letters, 2009, 4(4). DOI: 10.1088/1748-9326/4/4/045206 .
27 WALVOORD M, KURYLYK B. Hydrologic impacts of thawing permafrost—a review[J]. Vadose Zone Journal, 2016, 15(6). DOI:10.2136/vzj2016.01.0010 .
28 ZHU F X, CUO L, ZHANG Y X, et al. Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983-2013[J]. Climate Dynamics, 2018, 51(5/6): 2 209-2 227.
29 CUO L, ZHANG Y X, XU Ri, et al. Decadal change and inter-annual variability of net primary productivity on the Tibetan Plateau[J]. Climate Dynamics, 2021, 56(5/6): 1 837-1 857.
30 LI N, CUO L, ZHANG Y X. On the freeze-thaw cycles of shallow soil and connections with environmental factors over the Tibetan Plateau[J]. Climate Dynamics, 2021, 57(11): 3 183-3 206.
31 IPCC-SRCCL. Climate change and land[M]. WMO, UNEP, 2019.
32 YANG D Q, KANE D L, HINZMAN L D, et al. Siberian Lena River hydrologic regime and recent change[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D23). DOI: 10.1029/2002JD002542 .
33 IMMERZEEL W W, van BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5 984): 1 382-1 385.
34 IMMERZEEL W W, LUTZ A F, ANDRADE M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7 790): 364-369.
35 PRITCHARD H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7 758): 649-654.
36 KHANAL S, LUTZ A F, KRAAIJENBRINK P D A, et al. Variable 21st century climate change response for rivers in high Mountain Asia at seasonal to decadal time scales[J]. Water Resources Research, 2021, 57(5). DOI:10.1029/2020WR029266 .
37 HOU M, CUO L, MURODOV A, et al. Streamflow composition and the contradicting impacts of anthropogenic activities and climatic change on streamflow in the Amu Darya Basin, central Asia[J]. Journal of Hydrometeorology, 2023, 24(2): 185-201.
38 WANG Y H, YANG H B, GAO B, et al. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau[J]. Journal of Hydrology, 2018, 564: 1 153-1 164.
39 GAO B, YANG D W, QIN Y, et al. Change in frozen soils and its effect on regional hydrology, upper Heihe Basin, northeastern Qinghai-Tibetan Plateau[J]. The Cryosphere, 2018, 12(2): 657-673.
40 ZHANG L L, SU F G, YANG D Q, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8 500-8 518.
41 SINGH A, KUMAR S, AKULA S, et al. Plant growth nullifies the effect of increased water-use efficiency on streamflow under elevated CO2 in the southeastern United States[J]. Geophysical Research Letters, 2020, 47(4). DOI:10.1029/2019GL086940 .
42 MANKIN J S, SEAGER R, SMERDON J E, et al. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change[J]. Nature Geoscience, 2019, 12(12): 983-988.
43 PIAO S L, FRIEDLINGSTEIN P, CIAIS P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15 242-15 247.
44 de BOER H J, LAMMERTSMA E I, WAGNER-CREMER F, et al. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 4 041-4 046.
45 LAMMERTSMA E I, BOER H J D, DEKKER S C, et al. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 4 035-4 040.
46 CAO L, BALA G, CALDEIRA K, et al. Importance of carbon dioxide physiological forcing to future climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(21): 9 513-9 518.
47 PRUDHOMME C, GIUNTOLI I, ROBINSON E L, et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3 262-3 267.
48 LEMORDANT L, GENTINE P, STÉFANON M, et al. Modification of land-atmosphere interactions by CO2 effects: implications for summer dryness and heat wave amplitude[J]. Geophysical Research Letters, 2016, 43(19). DOI:10.1002/2016GL069896 .
49 POKHREL Y, FELFELANI F, SATOH Y, et al. Global terrestrial water storage and drought severity under climate change[J]. Nature Climate Change, 2021, 11(3): 226-233.
50 BROWN A E, ZHANG L, MCMAHON T A, et al. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation[J]. Journal of Hydrology, 2005, 310(1/2/3/4): 28-61.
51 CUO L. Land use/cover change impacts on hydrology in large river basins: a review[M]// TANG Qiuhong, OKI Taikan. Terrestrial water cycle and climate change: natural and human-induced impacts, Geophysical Monograph 221, First Edition. American Geophysical Union, 2016.
52 ZHANG L, DAWES W R, WALKER G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research, 2001, 37(3): 701-708.
1 IPCC. Summary for policymakers[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021.
2 ARIAS P A, BELLOUIN N, COPPOLA E, et al. Technical summary[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009157896.002 .
3 KOSTER R D, SUD Y C, GUO Z C, et al. GLACE: the global land-atmosphere coupling experiment. part I: overview[J]. Journal of Hydrometeorology, 2006, 7(4): 590-610.
4 DOUVILLE H, RAGHAVAN K, RENWICK J. Water cycle changes[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009157896.010 .
5 SENEVIRATNE S I, ZHANG X, ADNAN M, et al. Weather and climate extreme events in a changing climate[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009157896.013 .
6 FOX-KEMPER B, HEWITT H T, XIAO C, et al. Ocean, cryosphere and sea level change[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009157896.011 .
7 YAO T D, XUE Y K, CHEN D L, et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
8 YAO T D, BOLCH T, CHEN D L, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632.
9 WANG R J, DING Y J, SHANGGUAN D H, et al. Projections of glacier peak water and its timing in the Sanjiangyuan on the Tibet Plateau[J]. Journal of Hydrology: Regional Studies, 2023, 45. DOI:10.1016/j.ejrh.2022.101313 .
10 HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6 951): 901-908.
53 CUO L, LETTENMAIER D P, ALBERTI M, et al. Effects of a century of land cover and climate change on the hydrology of the Puget Sound Basin[J]. Hydrological Processes, 2009, 23(6): 907-933.
54 CUO L, ZHANG Y X, GAO Y H, et al. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China[J]. Journal of Hydrology, 2013, 502: 37-52.
55 LIU Z, CUO L, LI Q J, et al. Impacts of climate change and land use/cover change on streamflow in Beichuan River Basin in Qinghai Province, China[J]. Water, 2020, 12(4). DOI:10.3390/w12041198 .
56 EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1 937-1 958.
57 van den HURK B, KIM H, KRINNER G, et al. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soilmoisture Model Intercomparison Project-aims, setup and expected outcome[J]. Geoscientific Model Development, 2016, 9(8): 2 809-2 832.
58 HENDERSON-SELLERS A, McGUFFIE K, PITMAN A J. The Project for Intercomparison of Land-Surface Parametrization Schemes (PILPS): 1992 to 1995[J]. Climate Dynamics, 1996, 12(12): 849-859.
59 KOSTER R D, DIRMEYER P A, GUO Z C, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004, 305(5 687): 1 138-1 140.
60 TELTEU C E, MÜLLER SCHMIED H, THIERY W, et al. Understanding each other’s models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication[J]. Geoscientific Model Development, 2021, 14(6): 3 843-3 878.
61 LI H Y, HUANG M Y, WIGMOSTA M S, et al. Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D24). DOI:10.1029/2011JD016276 .
62 KNIGHTON J, CONNEELY J, WALTER M T. Possible increases in flood frequency due to the loss of Eastern Hemlock in the Northeastern United States: observational insights and predicted impacts[J]. Water Resources Research, 2019, 55, 5 342-5 359.
11 BLÖSCHL G, HALL J, VIGLIONE A, et al. Changing climate both increases and decreases European River floods[J]. Nature, 2019, 573(7 772): 108-111.
12 TEUFEL B, SUSHAMA L, HUZIY O, et al. Investigation of the mechanisms leading to the 2017 Montreal flood[J]. Climate Dynamics, 2019, 52(7/8): 4 193-4 206.
13 ORTEGA J A, RAZOLA L, GARZÓN G. Recent human impacts and change in dynamics and morphology of ephemeral rivers[J]. Natural Hazards and Earth System Sciences, 2014, 14(3): 713-730.
14 ROGGER M, AGNOLETTI M, ALAOUI A, et al. Land use change impacts on floods at the catchment scale: challenges and opportunities for future research[J]. Water Resources Research, 2017, 53(7): 5 209-5 219.
15 CUO L, ZHANG Y X, ZHU F X, et al. Characteristics and changes of streamflow on the Tibetan Plateau: a review[J]. Journal of Hydrology: Regional Studies, 2014, 2: 49-68.
16 CUO L, ZHANG Y X. Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings[J]. Scientific Reports, 2017, 7. DOI:10.1038/s41598-017-05345-6 .
17 LAN Cuo, LIU Zhe, HOU Mei. Climate change on the Tibetan Plateau and its implications on natural environment and society[J]. Sanjiangyuan Ecology, 2022, 27: 26-37.
兰措, 刘哲, 侯梅. 青藏高原气候变化及其对自然环境和社会的影响[J]. 三江源生态,2022, 27: 26-37.
18 YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
19 CUO L, ZHANG Y X, LI N. Historical and future vegetation changes in the degraded frozen soil and the entire Tibetan Plateau and climate drivers[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(11). DOI:10.1029/2022JG006987 .
20 LI C H, SU F G, YANG D Q, et al. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014[J]. International Journal of Climatology, 2018, 38(2): 708-728.
63 GAO B, QIN Y, WANG Y H, et al. Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China[J]. Forests, 2015, 7(12). DOI:10.3390/f7010010 .
64 JI P, YUAN X, MA F, et al. Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels[J]. Hydrology and Earth System Sciences, 2020, 24(11): 5 439-5 451.
65 AICH V, LIERSCH S, VETTER T, et al. Flood projections within the Niger River Basin under future land use and climate change[J]. Science of the Total Environment, 2016, 562: 666-677.
66 LIN B Q, CHEN X W, YAO H X, et al. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model[J]. Ecological Indicators, 2015, 58: 55-63.
67 YANG L S, FENG Q, YIN Z L, et al. Separation of the climatic and land cover impacts on the flow regime changes in two watersheds of northeastern Tibetan Plateau[J]. Advances in Meteorology, 2017, 2017: 1-15.
68 GASHAW T, TULU T, ARGAW M, et al. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia[J]. Science of the Total Environment, 2018, 619: 1 394-1 408.
69 WANG S F, KANG S Z, ZHANG L, et al. Modelling hydrological response to different land-use and climate change scenarios in the Zamu River Basin of northwest China[J]. Hydrological Processes, 2008, 22(14): 2 502-2 510.
70 KIM J, CHOI J, CHOI C, et al. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea[J]. Science of the Total Environment, 2013, 452: 181-195.
71 GUO H, HU Q, JIANG T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake Basin, China[J]. Journal of Hydrology, 2008, 355(1/2/3/4): 106-122.
72 WEI P J, CHEN S Y, WU M H, et al. Using the InVEST model to assess the impacts of climate and land use changes on water yield in the upstream regions of the Shule River Basin[J]. Water, 2021, 13(9). DOI:10.3390/w13091250 .
73 WANG W, ZHANG Y, GENG X, et al. Impact classification of future land use and climate changes on flow regimes in the Yellow River Source Region, China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(13). DOI:10.1029/2020JD034064 .
74 CARETTA M A, MUKHERJI A, ARFANUZZAMAN M. Water[M]// PÖRTNER H O, ROBERTS D C, TIGNOR M, et al. Climate change 2022: impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009325844.006 .
75 FENG X M, SUN G, FU B J, et al. Regional effects of vegetation restoration on water yield across the Loess Plateau, China[J]. Hydrology and Earth System Sciences, 2012, 16(8): 2 617-2 628.
21 DING J, CUO L, ZHANG Y X, et al. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963-2015[J]. Scientific Reports, 2018, 8. DOI:10.1038/s41598-018-30320-0 .
22 DING J, CUO L, ZHANG Y X, et al. Varied spatiotemporal changes in wind speed over the Tibetan Plateau and its surroundings in the past decades[J]. International Journal of Climatology, 2021, 41(13): 5 956-5 976.
23 DING J, CUO L, ZHANG Y X, et al. Annual and seasonal precipitation and their extremes over the Tibetan Plateau and its surroundings in 1963-2015[J]. Atmosphere, 2021, 12(5): 620.
24 CHENG G D, WU T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI: 10.1029/2006JF000631 .
25 OSTERKAMP T E. Characteristics of the recent warming of permafrost in Alaska[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI: 10.1029/2006JF000578 .
76 DANKERS R, KUNDZEWICZ Z W. Grappling with uncertainties in physical climate impact projections of water resources[J]. Climatic Change, 2020, 163(3): 1 379-1 397.
77 LEE J Y, MAROTZKE J, BALA G, et al. Future global climate: scenario-based projections and near-term information[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press,2021. DOI:10.1017/9781009157896.006 .
78 QIU Y, FENG J M, WANG J, et al. Memory of Land Surface and Subsurface Temperature (LST/SUBT) initial anomalies over Tibetan Plateau in different land models[J]. Climate Dynamics, 2021. DOI:10.1007/s00382-021-05937-2 .
79 ZHENG D H, van der VELDE R, SU Z B, et al. Assessment of Noah land surface model with various runoff parameterizations over a Tibetan River[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(3): 1 488-1 504.
80 CHEN J L, WEN J, TIAN H, et al. A study of soil thermal and hydraulic properties and parameterizations for CLM in the SRYR[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8 487-8 499.
81 DENG M S, MENG X H, LYV Y, et al. Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two Community Land surface Model (CLM) versions[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(10). DOI:10.1029/2020MS002189 .
82 MA S P, ZHOU L B, LI F, et al. Evaluation of WRF land surface schemes in land-atmosphere exchange simulations over grassland in Southeast Tibet[J]. Atmospheric Research, 2020, 234. DOI:10.1016/j.atmosres.2019.104739 .
83 YANG S H, LI R, WU T H, et al. Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau[J]. Geoderma, 2021, 401. DOI:10.1016/j.geoderma.2021.115330 .
84 YIN M, HAN Y L, WANG Y, et al. Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2[J]. Geoscientific Model Development, 2023, 16(1): 135-156.
85 YANG K, CHEN Y Y, QIN J. Some practical notes on the land surface modeling in the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2009, 13(5): 687-701.
86 COSBY B J, HORNBERGER G M, CLAPP R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 1984, 20(6): 682-690.
87 CHERKAUER K A, LETTENMAIER D P. Hydrologic effects of frozen soils in the upper Mississippi River Basin[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D16): 19 599-19 610.
88 CUO L, ZHAO H Q, ZHANG Y X, et al. Spatiotemporally heterogeneous soil thermohydraulic processes in the frozen soil of the Tibetan Plateau[J]. Geoderma, 2023, 438. DOI:10.1016/j.geoderma.2023.116634 .
89 LUO D L, JIN H J, WU Q B, et al. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the source areas of the Yangtze and Yellow Rivers on the Qinghai-Tibet Plateau, SW China[J]. Science of the Total Environment, 2018, 618: 1 033-1 045.
90 LUO D L, JIN H J, BENSE V F, et al. Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the headwater area of the Yellow River, Tibetan Plateau[J]. Geoderma, 2020, 376. DOI:10.1016/j.geoderma.2020.114531 .
91 SHANGGUAN W, DAI Y J, LIU B Y, et al. A soil particle-size distribution dataset for regional land and climate modelling in China[J]. Geoderma, 2012, 171: 85-91.
92 YU L Y, ZENG Y J, WEN J, et al. Liquid-vapor-air flow in the frozen soil[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(14): 7 393-7 415.
93 SU F, PRITCHARD H D, YAO T, et al. Contrasting fate of western third pole’s water resources under 21st century climate change[J]. Earth’s Future, 2022. DOI:10.1029/2022EF002776 .
94 JI P, YUAN X. High-resolution land surface modeling of hydrological changes over the Sanjiangyuan region in the eastern Tibetan Plateau: 2. impact of climate and land cover change[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(11): 2 829-2 843.
95 CUO L, ZHANG Y X, PIAO S L, et al. Simulated annual changes in plant functional types and their responses to climate change on the northern Tibetan Plateau[J]. Biogeosciences, 2016, 13(12): 3 533-3 548.
[1] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[2] 王田野, 王平, 吴泽宁, 尹君, 于静洁, 王慧亮, 于志磊, 许红师, 尹立河, 严登华. 干旱胁迫下植被生态韧性研究进展[J]. 地球科学进展, 2023, 38(8): 790-801.
[3] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[4] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[5] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[6] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[7] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[8] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[9] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物 GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[10] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行 CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[11] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[12] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[13] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[14] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[15] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
阅读次数
全文


摘要