| 26 | JIN H J, HE R X, CHENG G D, et al. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts[J]. Environmental Research Letters, 2009, 4(4). DOI: 10.1088/1748-9326/4/4/045206 . | 
																													
																						| 27 | WALVOORD M, KURYLYK B. Hydrologic impacts of thawing permafrost—a review[J]. Vadose Zone Journal, 2016, 15(6). DOI:10.2136/vzj2016.01.0010 . | 
																													
																						| 28 | ZHU F X, CUO L, ZHANG Y X, et al. Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983-2013[J]. Climate Dynamics, 2018, 51(5/6): 2 209-2 227. | 
																													
																						| 29 | CUO L, ZHANG Y X, XU Ri, et al. Decadal change and inter-annual variability of net primary productivity on the Tibetan Plateau[J]. Climate Dynamics, 2021, 56(5/6): 1 837-1 857. | 
																													
																						| 30 | LI N, CUO L, ZHANG Y X. On the freeze-thaw cycles of shallow soil and connections with environmental factors over the Tibetan Plateau[J]. Climate Dynamics, 2021, 57(11): 3 183-3 206. | 
																													
																						| 31 | IPCC-SRCCL. Climate change and land[M]. WMO, UNEP, 2019. | 
																													
																						| 32 | YANG D Q, KANE D L, HINZMAN L D, et al. Siberian Lena River hydrologic regime and recent change[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D23). DOI: 10.1029/2002JD002542 . | 
																													
																						| 33 | IMMERZEEL W W, van BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5 984): 1 382-1 385. | 
																													
																						| 34 | IMMERZEEL W W, LUTZ A F, ANDRADE M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7 790): 364-369. | 
																													
																						| 35 | PRITCHARD H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7 758): 649-654. | 
																													
																						| 36 | KHANAL S, LUTZ A F, KRAAIJENBRINK P D A, et al. Variable 21st century climate change response for rivers in high Mountain Asia at seasonal to decadal time scales[J]. Water Resources Research, 2021, 57(5). DOI:10.1029/2020WR029266 . | 
																													
																						| 37 | HOU M, CUO L, MURODOV A, et al. Streamflow composition and the contradicting impacts of anthropogenic activities and climatic change on streamflow in the Amu Darya Basin, central Asia[J]. Journal of Hydrometeorology, 2023, 24(2): 185-201. | 
																													
																						| 38 | WANG Y H, YANG H B, GAO B, et al. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau[J]. Journal of Hydrology, 2018, 564: 1 153-1 164. | 
																													
																						| 39 | GAO B, YANG D W, QIN Y, et al. Change in frozen soils and its effect on regional hydrology, upper Heihe Basin, northeastern Qinghai-Tibetan Plateau[J]. The Cryosphere, 2018, 12(2): 657-673. | 
																													
																						| 40 | ZHANG L L, SU F G, YANG D Q, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8 500-8 518. | 
																													
																						| 41 | SINGH A, KUMAR S, AKULA S, et al. Plant growth nullifies the effect of increased water-use efficiency on streamflow under elevated CO2 in the southeastern United States[J]. Geophysical Research Letters, 2020, 47(4). DOI:10.1029/2019GL086940 . | 
																													
																						| 42 | MANKIN J S, SEAGER R, SMERDON J E, et al. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change[J]. Nature Geoscience, 2019, 12(12): 983-988. | 
																													
																						| 43 | PIAO S L, FRIEDLINGSTEIN P, CIAIS P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15 242-15 247. | 
																													
																						| 44 | de BOER H J, LAMMERTSMA E I, WAGNER-CREMER F, et al. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 4 041-4 046. | 
																													
																						| 45 | LAMMERTSMA E I, BOER H J D, DEKKER S C, et al. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 4 035-4 040. | 
																													
																						| 46 | CAO L, BALA G, CALDEIRA K, et al. Importance of carbon dioxide physiological forcing to future climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(21): 9 513-9 518. | 
																													
																						| 47 | PRUDHOMME C, GIUNTOLI I, ROBINSON E L, et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3 262-3 267. | 
																													
																						| 48 | LEMORDANT L, GENTINE P, STÉFANON M, et al. Modification of land-atmosphere interactions by CO2 effects: implications for summer dryness and heat wave amplitude[J]. Geophysical Research Letters, 2016, 43(19). DOI:10.1002/2016GL069896 . | 
																													
																						| 49 | POKHREL Y, FELFELANI F, SATOH Y, et al. Global terrestrial water storage and drought severity under climate change[J]. Nature Climate Change, 2021, 11(3): 226-233. | 
																													
																						| 50 | BROWN A E, ZHANG L, MCMAHON T A, et al. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation[J]. Journal of Hydrology, 2005, 310(1/2/3/4): 28-61. | 
																													
																						| 51 | CUO L. Land use/cover change impacts on hydrology in large river basins: a review[M]// TANG Qiuhong, OKI Taikan. Terrestrial water cycle and climate change: natural and human-induced impacts, Geophysical Monograph 221, First Edition. American Geophysical Union, 2016. | 
																													
																						| 52 | ZHANG L, DAWES W R, WALKER G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research, 2001, 37(3): 701-708. | 
																													
																						| 1 | IPCC. Summary for policymakers[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. | 
																													
																						| 2 | ARIAS P A, BELLOUIN N, COPPOLA E, et al. Technical summary[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009157896.002 . | 
																													
																						| 3 | KOSTER R D, SUD Y C, GUO Z C, et al. GLACE: the global land-atmosphere coupling experiment. part I: overview[J]. Journal of Hydrometeorology, 2006, 7(4): 590-610. | 
																													
																						| 4 | DOUVILLE H, RAGHAVAN K, RENWICK J. Water cycle changes[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009157896.010 . | 
																													
																						| 5 | SENEVIRATNE S I, ZHANG X, ADNAN M, et al. Weather and climate extreme events in a changing climate[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009157896.013 . | 
																													
																						| 6 | FOX-KEMPER B, HEWITT H T, XIAO C, et al. Ocean, cryosphere and sea level change[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009157896.011 . | 
																													
																						| 7 | YAO T D, XUE Y K, CHEN D L, et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444. | 
																													
																						| 8 | YAO T D, BOLCH T, CHEN D L, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632. | 
																													
																						| 9 | WANG R J, DING Y J, SHANGGUAN D H, et al. Projections of glacier peak water and its timing in the Sanjiangyuan on the Tibet Plateau[J]. Journal of Hydrology: Regional Studies, 2023, 45. DOI:10.1016/j.ejrh.2022.101313 . | 
																													
																						| 10 | HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6 951): 901-908. | 
																													
																						| 53 | CUO L, LETTENMAIER D P, ALBERTI M, et al. Effects of a century of land cover and climate change on the hydrology of the Puget Sound Basin[J]. Hydrological Processes, 2009, 23(6): 907-933. | 
																													
																						| 54 | CUO L, ZHANG Y X, GAO Y H, et al. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China[J]. Journal of Hydrology, 2013, 502: 37-52. | 
																													
																						| 55 | LIU Z, CUO L, LI Q J, et al. Impacts of climate change and land use/cover change on streamflow in Beichuan River Basin in Qinghai Province, China[J]. Water, 2020, 12(4). DOI:10.3390/w12041198 . | 
																													
																						| 56 | EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1 937-1 958. | 
																													
																						| 57 | van den HURK B, KIM H, KRINNER G, et al. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soilmoisture Model Intercomparison Project-aims, setup and expected outcome[J]. Geoscientific Model Development, 2016, 9(8): 2 809-2 832. | 
																													
																						| 58 | HENDERSON-SELLERS A, McGUFFIE K, PITMAN A J. The Project for Intercomparison of Land-Surface Parametrization Schemes (PILPS): 1992 to 1995[J]. Climate Dynamics, 1996, 12(12): 849-859. | 
																													
																						| 59 | KOSTER R D, DIRMEYER P A, GUO Z C, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004, 305(5 687): 1 138-1 140. | 
																													
																						| 60 | TELTEU C E, MÜLLER SCHMIED H, THIERY W, et al. Understanding each other’s models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication[J]. Geoscientific Model Development, 2021, 14(6): 3 843-3 878. | 
																													
																						| 61 | LI H Y, HUANG M Y, WIGMOSTA M S, et al. Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D24). DOI:10.1029/2011JD016276 . | 
																													
																						| 62 | KNIGHTON J, CONNEELY J, WALTER M T. Possible increases in flood frequency due to the loss of Eastern Hemlock in the Northeastern United States: observational insights and predicted impacts[J]. Water Resources Research, 2019, 55, 5 342-5 359. | 
																													
																						| 11 | BLÖSCHL G, HALL J, VIGLIONE A, et al. Changing climate both increases and decreases European River floods[J]. Nature, 2019, 573(7 772): 108-111. | 
																													
																						| 12 | TEUFEL B, SUSHAMA L, HUZIY O, et al. Investigation of the mechanisms leading to the 2017 Montreal flood[J]. Climate Dynamics, 2019, 52(7/8): 4 193-4 206. | 
																													
																						| 13 | ORTEGA J A, RAZOLA L, GARZÓN G. Recent human impacts and change in dynamics and morphology of ephemeral rivers[J]. Natural Hazards and Earth System Sciences, 2014, 14(3): 713-730. | 
																													
																						| 14 | ROGGER M, AGNOLETTI M, ALAOUI A, et al. Land use change impacts on floods at the catchment scale: challenges and opportunities for future research[J]. Water Resources Research, 2017, 53(7): 5 209-5 219. | 
																													
																						| 15 | CUO L, ZHANG Y X, ZHU F X, et al. Characteristics and changes of streamflow on the Tibetan Plateau: a review[J]. Journal of Hydrology: Regional Studies, 2014, 2: 49-68. | 
																													
																						| 16 | CUO L, ZHANG Y X. Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings[J]. Scientific Reports, 2017, 7. DOI:10.1038/s41598-017-05345-6 . | 
																													
																						| 17 | LAN Cuo, LIU Zhe, HOU Mei. Climate change on the Tibetan Plateau and its implications on natural environment and society[J]. Sanjiangyuan Ecology, 2022, 27: 26-37. | 
																													
																						|  | 兰措, 刘哲, 侯梅. 青藏高原气候变化及其对自然环境和社会的影响[J]. 三江源生态,2022, 27: 26-37. | 
																													
																						| 18 | YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. | 
																													
																						| 19 | CUO L, ZHANG Y X, LI N. Historical and future vegetation changes in the degraded frozen soil and the entire Tibetan Plateau and climate drivers[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(11). DOI:10.1029/2022JG006987 . | 
																													
																						| 20 | LI C H, SU F G, YANG D Q, et al. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014[J]. International Journal of Climatology, 2018, 38(2): 708-728. | 
																													
																						| 63 | GAO B, QIN Y, WANG Y H, et al. Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China[J]. Forests, 2015, 7(12). DOI:10.3390/f7010010 . | 
																													
																						| 64 | JI P, YUAN X, MA F, et al. Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels[J]. Hydrology and Earth System Sciences, 2020, 24(11): 5 439-5 451. | 
																													
																						| 65 | AICH V, LIERSCH S, VETTER T, et al. Flood projections within the Niger River Basin under future land use and climate change[J]. Science of the Total Environment, 2016, 562: 666-677. | 
																													
																						| 66 | LIN B Q, CHEN X W, YAO H X, et al. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model[J]. Ecological Indicators, 2015, 58: 55-63. | 
																													
																						| 67 | YANG L S, FENG Q, YIN Z L, et al. Separation of the climatic and land cover impacts on the flow regime changes in two watersheds of northeastern Tibetan Plateau[J]. Advances in Meteorology, 2017, 2017: 1-15. | 
																													
																						| 68 | GASHAW T, TULU T, ARGAW M, et al. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia[J]. Science of the Total Environment, 2018, 619: 1 394-1 408. | 
																													
																						| 69 | WANG S F, KANG S Z, ZHANG L, et al. Modelling hydrological response to different land-use and climate change scenarios in the Zamu River Basin of northwest China[J]. Hydrological Processes, 2008, 22(14): 2 502-2 510. | 
																													
																						| 70 | KIM J, CHOI J, CHOI C, et al. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea[J]. Science of the Total Environment, 2013, 452: 181-195. | 
																													
																						| 71 | GUO H, HU Q, JIANG T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake Basin, China[J]. Journal of Hydrology, 2008, 355(1/2/3/4): 106-122. | 
																													
																						| 72 | WEI P J, CHEN S Y, WU M H, et al. Using the InVEST model to assess the impacts of climate and land use changes on water yield in the upstream regions of the Shule River Basin[J]. Water, 2021, 13(9). DOI:10.3390/w13091250 . | 
																													
																						| 73 | WANG W, ZHANG Y, GENG X, et al. Impact classification of future land use and climate changes on flow regimes in the Yellow River Source Region, China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(13). DOI:10.1029/2020JD034064 . | 
																													
																						| 74 | CARETTA M A, MUKHERJI A, ARFANUZZAMAN M. Water[M]// PÖRTNER H O, ROBERTS D C, TIGNOR M, et al. Climate change 2022: impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. DOI:10.1017/9781009325844.006 . | 
																													
																						| 75 | FENG X M, SUN G, FU B J, et al. Regional effects of vegetation restoration on water yield across the Loess Plateau, China[J]. Hydrology and Earth System Sciences, 2012, 16(8): 2 617-2 628. | 
																													
																						| 21 | DING J, CUO L, ZHANG Y X, et al. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963-2015[J]. Scientific Reports, 2018, 8. DOI:10.1038/s41598-018-30320-0 . | 
																													
																						| 22 | DING J, CUO L, ZHANG Y X, et al. Varied spatiotemporal changes in wind speed over the Tibetan Plateau and its surroundings in the past decades[J]. International Journal of Climatology, 2021, 41(13): 5 956-5 976. | 
																													
																						| 23 | DING J, CUO L, ZHANG Y X, et al. Annual and seasonal precipitation and their extremes over the Tibetan Plateau and its surroundings in 1963-2015[J]. Atmosphere, 2021, 12(5): 620. | 
																													
																						| 24 | CHENG G D, WU T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI: 10.1029/2006JF000631 . | 
																													
																						| 25 | OSTERKAMP T E. Characteristics of the recent warming of permafrost in Alaska[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI: 10.1029/2006JF000578 . | 
																													
																						| 76 | DANKERS R, KUNDZEWICZ Z W. Grappling with uncertainties in physical climate impact projections of water resources[J]. Climatic Change, 2020, 163(3): 1 379-1 397. | 
																													
																						| 77 | LEE J Y, MAROTZKE J, BALA G, et al. Future global climate: scenario-based projections and near-term information[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press,2021. DOI:10.1017/9781009157896.006 . | 
																													
																						| 78 | QIU Y, FENG J M, WANG J, et al. Memory of Land Surface and Subsurface Temperature (LST/SUBT) initial anomalies over Tibetan Plateau in different land models[J]. Climate Dynamics, 2021. DOI:10.1007/s00382-021-05937-2 . | 
																													
																						| 79 | ZHENG D H, van der VELDE R, SU Z B, et al. Assessment of Noah land surface model with various runoff parameterizations over a Tibetan River[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(3): 1 488-1 504. | 
																													
																						| 80 | CHEN J L, WEN J, TIAN H, et al. A study of soil thermal and hydraulic properties and parameterizations for CLM in the SRYR[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8 487-8 499. | 
																													
																						| 81 | DENG M S, MENG X H, LYV Y, et al. Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two Community Land surface Model (CLM) versions[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(10). DOI:10.1029/2020MS002189 . | 
																													
																						| 82 | MA S P, ZHOU L B, LI F, et al. Evaluation of WRF land surface schemes in land-atmosphere exchange simulations over grassland in Southeast Tibet[J]. Atmospheric Research, 2020, 234. DOI:10.1016/j.atmosres.2019.104739 . | 
																													
																						| 83 | YANG S H, LI R, WU T H, et al. Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau[J]. Geoderma, 2021, 401. DOI:10.1016/j.geoderma.2021.115330 . | 
																													
																						| 84 | YIN M, HAN Y L, WANG Y, et al. Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2[J]. Geoscientific Model Development, 2023, 16(1): 135-156. | 
																													
																						| 85 | YANG K, CHEN Y Y, QIN J. Some practical notes on the land surface modeling in the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2009, 13(5): 687-701. | 
																													
																						| 86 | COSBY B J, HORNBERGER G M, CLAPP R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 1984, 20(6): 682-690. | 
																													
																						| 87 | CHERKAUER K A, LETTENMAIER D P. Hydrologic effects of frozen soils in the upper Mississippi River Basin[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D16): 19 599-19 610. | 
																													
																						| 88 | CUO L, ZHAO H Q, ZHANG Y X, et al. Spatiotemporally heterogeneous soil thermohydraulic processes in the frozen soil of the Tibetan Plateau[J]. Geoderma, 2023, 438. DOI:10.1016/j.geoderma.2023.116634 . | 
																													
																						| 89 | LUO D L, JIN H J, WU Q B, et al. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the source areas of the Yangtze and Yellow Rivers on the Qinghai-Tibet Plateau, SW China[J]. Science of the Total Environment, 2018, 618: 1 033-1 045. | 
																													
																						| 90 | LUO D L, JIN H J, BENSE V F, et al. Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the headwater area of the Yellow River, Tibetan Plateau[J]. Geoderma, 2020, 376. DOI:10.1016/j.geoderma.2020.114531 . | 
																													
																						| 91 | SHANGGUAN W, DAI Y J, LIU B Y, et al. A soil particle-size distribution dataset for regional land and climate modelling in China[J]. Geoderma, 2012, 171: 85-91. | 
																													
																						| 92 | YU L Y, ZENG Y J, WEN J, et al. Liquid-vapor-air flow in the frozen soil[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(14): 7 393-7 415. | 
																													
																						| 93 | SU F, PRITCHARD H D, YAO T, et al. Contrasting fate of western third pole’s water resources under 21st century climate change[J]. Earth’s Future, 2022. DOI:10.1029/2022EF002776 . | 
																													
																						| 94 | JI P, YUAN X. High-resolution land surface modeling of hydrological changes over the Sanjiangyuan region in the eastern Tibetan Plateau: 2. impact of climate and land cover change[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(11): 2 829-2 843. | 
																													
																						| 95 | CUO L, ZHANG Y X, PIAO S L, et al. Simulated annual changes in plant functional types and their responses to climate change on the northern Tibetan Plateau[J]. Biogeosciences, 2016, 13(12): 3 533-3 548. |