1 |
BRANTLEY S L, EISSENSTAT D M, MARSHALL J A, et al. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone[J]. Biogeosciences, 2017, 14(22): 5 115-5 142.
|
2 |
PIAO S L, WANG X H, PARK T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27.
|
3 |
CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2):111-119.
|
|
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2):111-119.
|
4 |
YANG T, DING J Z, LIU D, et al. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm[J]. Journal of Climate, 2019, 32(3): 737-748.
|
5 |
BRADFORD J B, SCHLAEPFER D R, LAUENROTH W K, et al. Robust ecological drought projections for drylands in the 21st century[J]. Global Change Biology, 2020, 26(7): 3 906-3 919.
|
6 |
SATOH Y, YOSHIMURA K, POKHREL Y, et al. The timing of unprecedented hydrological drought under climate change[J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-30729-2 .
|
7 |
ZHANG Qiang, YAO Yubi, LI Yaohui, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78(3):500-521.
|
|
张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500-521.
|
8 |
CHENG G D, LI X, ZHAO W Z, et al. Integrated study of the water-ecosystem-economy in the Heihe River Basin[J]. National Science Review, 2014, 1(3): 413-428.
|
9 |
Division of Earth Sciences of the Chinese Academy of Sciences. Report on the investigation of water resources in the northwest arid region: proposals for sustainable water use and ecological restoration in the Heihe and Shiyang River Basins[J]. Advances in Earth Science, 1996, 11(1): 1-4.
|
|
中国科学院地学部. 西北干旱区水资源考察报告——关于黑河、石羊河流域合理用水和拯救生态问题的建议[J]. 地球科学进展, 1996, 11(1): 1-4.
|
10 |
CHEN Yaning, YANG Qing, LUO Yi, et al. Ponder on the issues of water resources in the arid region of northwest China[J]. Arid Land Geography, 2012, 35(1):1-9.
|
|
陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1):1-9.
|
11 |
WANG Chuan, ZHANG Yongyong, ZHAO Wenzhi. Eco-hydrological restoration effect of ecological water conveyance in Ejina oasis, lower reaches of the Heihe River in recent 20 years[J]. Chinese Journal of Ecology, 2022, 41(11): 2 180-2 187.
|
|
王川, 张勇勇, 赵文智. 黑河下游额济纳绿洲近二十年生态输水的生态水文恢复效应[J]. 生态学杂志, 2022, 41(11): 2 180-2 187.
|
12 |
LI C J, FU B J, WANG S, et al. Drivers and impacts of changes in China’s drylands[J]. Nature Reviews Earth & Environment, 2021, 2(12): 858-873.
|
13 |
WANG Chenghai, ZHANG Shengning, ZHANG Feimin, et al. On the increase of precipitation in the northwestern China under the global warming[J]. Advances in Earth Science, 2021, 36(9): 980-989.
|
|
王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
|
14 |
ZHOU Jun, REN Hongchang, WANG Meng, et al. Characteristics and causes of drought event over Yangtze River Basin in summer 2022[J]. Yangtze River, 2023, 54(2): 29-35.
|
|
周军, 任宏昌, 王蒙, 等. 2022年夏季长江流域干旱特征及成因分析[J]. 人民长江, 2023, 54(2): 29-35.
|
15 |
YAN Wenbo, HE Yunling, YU Lan, et al. Variation of ecosystem vulnerability under the background of climate aridity in Yunnan Province[J]. Ecological Science, 2023, 42(1): 197-205.
|
|
闫文波, 何云玲, 余岚, 等. 气候干旱化背景下云南地区生态系统脆弱性的变化特征[J]. 生态科学, 2023, 42(1): 197-205.
|
16 |
FORZIERI G, DAKOS V, MCDOWELL N G, et al. Emerging signals of declining forest resilience under climate change[J]. Nature, 2022, 608(7 923): 534-539.
|
17 |
SMITH T, TRAXL D, BOERS N. Empirical evidence for recent global shifts in vegetation resilience[J]. Nature Climate Change, 2022, 12(5): 477-484.
|
18 |
FU B J, STAFFORD-SMITH M, WANG Y F, et al. The global-DEP conceptual framework-research on dryland ecosystems to promote sustainability[J]. Current Opinion in Environmental Sustainability, 2021, 48: 17-28.
|
19 |
ANDEREGG W R L, SCHWALM C, BIONDI F, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science, 2015, 349(6 247): 528-532.
|
20 |
HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 1-23.
|
21 |
OLSSON L, JERNECK A, THOREN H, et al. Why resilience is unappealing to social science: theoretical and empirical investigations of the scientific use of resilience[J]. Science Advances, 2015, 1(4). DOI: 10.1126/sciadv.1400217 .
|
22 |
OVERPECK J T, BRESHEARS D D. The growing challenge of vegetation change[J]. Science, 2021, 372(6 544): 786-787.
|
23 |
REIDMILLER D R, AVERY C W, EASTERLING D R, et al. Impacts, risks, and adaptation in the united states: fourth national climate assessment, volume II[M]. Washington, D.C.: U.S. Government Publishing Office, 2017.
|
24 |
SCHULDT B, BURAS A, AREND M, et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests[J]. Basic and Applied Ecology, 2020, 45: 86-103.
|
25 |
GUO X N, ZHU A, LI Q, et al. Long-term solutions for China’s heat and drought[J]. Science, 2022, 378(6 624). DOI: 10.1126/science.adf6012 .
|
26 |
DAKOS V, KÉFI S. Ecological resilience: what to measure and how[J]. Environmental Research Letters, 2022, 17(4). DOI:10.1088/1748-9326/ac5767 .
|
27 |
HILLEBRAND H, DONOHUE I, HARPOLE W S, et al. Thresholds for ecological responses to global change do not emerge from empirical data[J]. Nature Ecology & Evolution, 2020, 4(11): 1 502-1 509.
|
28 |
PIMM S L. The complexity and stability of ecosystems[J]. Nature, 1984, 307(5 949): 321-326.
|
29 |
ISBELL F, CRAVEN D, CONNOLLY J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes[J]. Nature, 2015, 526(7 574). DOI:10.1038/nature15374 .
|
30 |
NIMMO D G, NALLY R MAC, CUNNINGHAM S C, et al. Vive la résistance: reviving resistance for 21st century conservation[J]. Trends in Ecology & Evolution, 2015, 30(9): 516-523.
|
31 |
GRIMM V, WISSEL C. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion[J]. Oecologia, 1997, 109(3): 323-334.
|
32 |
de KEERSMAECKER W, LHERMITTE S, HONNAY O, et al. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems[J]. Global Change Biology, 2014, 20(7): 2 149-2 161.
|
33 |
WANG Hui, XU Yunxue, LU Siqi, et al. A comparative study of chinese translation of resilience terminology in socio-ecological system and its related research fields[J]. Urban Planning International, 2017, 32(4):29-39.
|
|
汪辉, 徐蕴雪, 卢思琪, 等. 恢复力、弹性或韧性?——社会—生态系统及其相关研究领域中“Resilience”一词翻译之辨析[J]. 国际城市规划, 2017, 32(4): 29-39.
|
34 |
SONG Shuang, WANG Shuai, FU Bojie, et al. Study on adaptive governance of social-ecological system: progress and prospect[J]. Acta Geographica Sinica, 2019, 74(11): 2 401-2 410.
|
|
宋爽, 王帅, 傅伯杰, 等. 社会—生态系统适应性治理研究进展与展望[J]. 地理学报, 2019, 74(11): 2 401-2 410.
|
35 |
XU Chan, WEN Tianzuo, LIU Siyao. Review on urban and regional resilience research in China[J]. City Planning Review, 2020, 44(4): 106-120.
|
|
许婵, 文天祚, 刘思瑶. 国内城市与区域语境下的韧性研究述评[J]. 城市规划, 2020, 44(4): 106-120.
|
36 |
XU Yaoyang, LI Gang, CUI Shenghui, et al. Review and perspective on resilience science: from ecological theory to urban practice[J]. Acta Ecologica Sinica, 2018, 38(15): 5 297-5 304.
|
|
徐耀阳, 李刚, 崔胜辉, 等. 韧性科学的回顾与展望: 从生态理论到城市实践[J]. 生态学报, 2018, 38(15): 5 297-5 304.
|
37 |
SHI Longyu, ZHENG Qiaoya, YANG Meng, et al. A review of definitions, influence factors and assessment of urban resilience[J]. Acta Ecologica Sinica, 2022, 42(14):6 016-6 029.
|
|
石龙宇, 郑巧雅, 杨萌, 等. 城市韧性概念、影响因素及其评估研究进展[J]. 生态学报, 2022, 42(14):6 016-6 029.
|
38 |
SUNDSTROM S M, ALLEN C R, GUNDERSON L. Resisting resilience theory: a response to Connell and Ghedini[J]. Trends in Ecology & Evolution, 2016, 31(6): 412-413.
|
39 |
INGRISCH J, BAHN M. Towards a comparable quantification of resilience[J]. Trends in Ecology & Evolution, 2018, 33(4): 251-259.
|
40 |
HODGSON D, MCDONALD J L, HOSKEN D J. What do you mean, ‘resilient’?[J]. Trends in Ecology & Evolution, 2015, 30(9): 503-506.
|
41 |
SÁNCHEZ-SALGUERO R, CAMARERO J J, DOBBERTIN M, et al. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests[J]. Forest Ecology and Management, 2013, 310: 956-967.
|
42 |
LUO H, ZHOU T, WU H, et al. Contrasting responses of planted and natural forests to drought intensity in Yunnan, China[J]. Remote Sensing, 2016, 8(8). DOI:10.3390/rs8080635 .
|
43 |
FOLKE C, CARPENTER S R, WALKER B, et al. Resilience thinking: integrating resilience, adaptability and transformability[J/OL]. Ecology and Society, 2010, 15(4). [2023-05-10]. .
|
44 |
BERDUGO M, DELGADO-BAQUERIZO M, SOLIVERES S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020, 367(6 479): 787-790.
|
45 |
GUNDERSON L H. Ecological resilience—in theory and application[J]. Annual Review of Ecology and Systematics, 2000, 31(1): 425-439.
|
46 |
WANG T Y, WANG P, WANG Z L, et al. Drought adaptability of phreatophytes: insight from vertical root distribution in drylands of China[J]. Journal of Plant Ecology, 2021, 14(6): 1 128-1 142.
|
47 |
WANG Han, ZHAO Wenwu, YIN Caichun. Research progress and prospect of ecosystem regime shifts detection[J]. Acta Ecologica Sinica, 2023, 43(6):2 159-2 170.
|
|
王涵, 赵文武, 尹彩春. 生态系统稳态转换检测研究进展[J]. 生态学报, 2023, 43(6):2 159-2 170.
|
48 |
XU Chi, WANG Haijun, LIU Quanxing, et al. Alternative stable states and tipping points of ecosystems[J]. Biodiversity Science, 2020, 28(11): 1 417-1 430.
|
|
徐驰, 王海军, 刘权兴, 等. 生态系统的多稳态与突变[J]. 生物多样性, 2020, 28(11): 1 417-1 430.
|
49 |
SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions[J]. Nature, 2009, 461(7 260): 53-59.
|
50 |
SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions[J]. Science, 2012, 338(6 105): 344-348.
|
51 |
JOHNSON A F, LIDSTRÖM S. The balance between concepts and complexity in ecology[J]. Nature Ecology & Evolution, 2018, 2(4): 585-587.
|
52 |
van MEERBEEK K, JUCKER T, SVENNING J C. Unifying the concepts of stability and resilience in ecology[J]. Journal of Ecology, 2021, 109(9): 3 114-3 132.
|
53 |
GRAFTON R Q, DOYEN L, BÉNÉ C, et al. Realizing resilience for decision-making[J]. Nature Sustainability, 2019, 2(10): 907-913.
|
54 |
GESSLER A, BOTTERO A, MARSHALL J, et al. The way back: recovery of trees from drought and its implication for acclimation[J]. New Phytologist, 2020, 228(6): 1 704-1 709.
|
55 |
XU C G, MCDOWELL N G, FISHER R A, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change[J]. Nature Climate Change, 2019, 9(12): 948-953.
|
56 |
HE Q N, JU W M, DAI S P, et al. Drought risk of global terrestrial gross primary productivity over the last 40 years detected by a remote sensing-driven process model[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(6). DOI:10.1029/2020JG005944 .
|
57 |
VICENTE-SERRANO S M, QUIRING S M, PEÑA-GALLARDO M, et al. A review of environmental droughts: increased risk under global warming?[J]. Earth-Science Reviews, 2020, 201. DOI:10.1016/j.earscirev.2019.102953 .
|
58 |
ZHANG Q, KONG D D, SINGH V P, et al. Response of vegetation to different time-scales drought across China: spatiotemporal patterns, causes and implications[J]. Global and Planetary Change, 2017, 152: 1-11.
|
59 |
MCDOWELL N, POCKMAN W T, ALLEN C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719-739.
|
60 |
LUO Dandan, WANG Chuankuan, JIN Ying. Stomatal regulation of plants in response to drought stress[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4 333-4 343.
|
|
罗丹丹, 王传宽, 金鹰. 植物应对干旱胁迫的气孔调节[J]. 应用生态学报, 2019, 30(12): 4 333-4 343.
|
61 |
FENG X, ACKERLY D D, DAWSON T E, et al. The ecohydrological context of drought and classification of plant responses[J]. Ecology Letters, 2018, 21(11): 1 723-1 736.
|
62 |
HOCHBERG U, ROCKWELL F E, HOLBROOK N M, et al. Iso/anisohydry: a plant-environment interaction rather than a simple hydraulic trait[J]. Trends in Plant Science, 2018, 23(2): 112-120.
|
63 |
XU S Q, MCVICAR T R, LI L C, et al. Globally assessing the hysteresis between sub-diurnal actual evaporation and vapor pressure deficit at the ecosystem scale: patterns and mechanisms[J]. Agricultural and Forest Meteorology, 2022, 323. DOI:10.1016/j.agrformet.2022.109085 .
|
64 |
STOCKER B D, TUMBER-DÁVILA S J, KONINGS A G, et al. Global patterns of water storage in the rooting zones of vegetation[J]. Nature Geoscience, 2023, 16(3): 250-256.
|
65 |
WANG T Y, WU Z N, WANG P, et al. Plant-groundwater interactions in drylands: a review of current research and future perspectives[J]. Agricultural and Forest Meteorology, 2023, 341. DOI:10.1016/j.agrformet.2023.109636 .
|
66 |
TESTERINK C, LAMERS J. How plant roots go with the flow[J]. Nature, 2022, 612(7 940): 414-415.
|
67 |
CHEN Q C, HU T, LI X H, et al. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought[J]. Nature Plants, 2021, 8(1): 68-77.
|
68 |
NIU G Y, FANG Y H, CHANG L L, et al. Enhancing the Noah-MP ecosystem response to droughts with an explicit representation of plant water storage supplied by dynamic root water uptake[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11). DOI:10.1029/2020MS002062 .
|
69 |
SCHWALM C R, ANDEREGG W R L, MICHALAK A M, et al. Global patterns of drought recovery[J]. Nature, 2017, 548(7 666): 202-205.
|
70 |
HUANG M T, WANG X H, KEENAN T F, et al. Drought timing influences the legacy of tree growth recovery[J]. Global Change Biology, 2018, 24(8): 3 546-3 559.
|
71 |
YU Z, WANG J X, LIU S R, et al. Global gross primary productivity and water use efficiency changes under drought stress[J]. Environmental Research Letters, 2017, 12(1). DOI:10.1088/1748-9326/aa5258 .
|
72 |
LIU L B, GUDMUNDSSON L, HAUSER M, et al. Revisiting assessments of ecosystem drought recovery[J]. Environmental Research Letters, 2019, 14(11). DOI:10.1088/1748-9326/ab4c61 .
|
73 |
ZHANG S L, YANG Y T, WU X C, et al. Postdrought recovery time across global terrestrial ecosystems[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(6). DOI:10.1029/2020JG005699 .
|
74 |
YAO Y, LIU Y X, ZHOU S, et al. Soil moisture determines the recovery time of ecosystems from drought[J]. Global Change Biology, 2023, 29(13): 3 562-3 574.
|
75 |
LI Y, ZHANG W, SCHWALM C R, et al. Widespread spring phenology effects on drought recovery of northern hemisphere ecosystems[J]. Nature Climate Change, 2023, 13(2): 182-188.
|
76 |
ZWIENIECKI M A, SECCHI F. Threats to xylem hydraulic function of trees under ‘new climate normal’ conditions[J]. Plant, Cell & Environment, 2015, 38(9): 1 713-1 724.
|
77 |
BRODRIBB T J, BOWMAN D J M S, NICHOLS S, et al. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit[J]. New Phytologist, 2010, 188(2): 533-542.
|
78 |
KLEIN T, ZEPPEL M J B, ANDEREGG W R L, et al. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs[J]. Ecological Research, 2018, 33(5): 839-855.
|
79 |
LUO Dandan, WANG Chuankuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress[J]. Chinese Journal of Plant Ecology, 2021, 45(9): 925-941.
|
|
罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941.
|
80 |
MÜLLER L M, BAHN M. Drought legacies and ecosystem responses to subsequent drought[J]. Global Change Biology, 2022, 28(17): 5 086-5 103.
|
81 |
FENG X M, FU B J, ZHANG Y, et al. Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening Earth[J]. Science Bulletin, 2021, 66(14): 1 462-1 471.
|
82 |
GAMPE D, ZSCHEISCHLER J, REICHSTEIN M, et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades[J]. Nature Climate Change, 2021, 11(9): 772-779.
|
83 |
KEEN R M, VOELKER S L, WANG S-Y S, et al. Changes in tree drought sensitivity provided early warning signals to the California drought and forest mortality event[J]. Global Change Biology, 2022, 28(3): 1 119-1 132.
|
84 |
BOULTON C A, LENTON T M, BOERS N. Pronounced loss of Amazon rainforest resilience since the early 2000s[J]. Nature Climate Change, 2022, 12(3): 271-278.
|
85 |
ANDEREGG W R L, TRUGMAN A T, BADGLEY G, et al. Divergent forest sensitivity to repeated extreme droughts[J]. Nature Climate Change, 2020, 10(12): 1 091-1 095.
|
86 |
YANG X, XU X T, STOVALL A, et al. Recovery: fast and slow—vegetation response during the 2012-2016 California drought[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(4). DOI:10.1029/2020JG005976 .
|
87 |
ANGELER D G, ALLEN C R. Quantifying resilience[J]. Journal of Applied Ecology, 2016, 53(3): 617-624.
|
88 |
MACARTHUR R. Fluctuations of animal populations and a measure of community stability[J]. Ecology, 1955, 36(3): 533-536.
|
89 |
ELTON C S. The ecology of invasions by animals and plants[M]. London: Methuen, 1958.
|
90 |
PENNEKAMP F, PONTARP M, TABI A, et al. Biodiversity increases and decreases ecosystem stability[J]. Nature, 2018, 563(7 729): 109-112.
|
91 |
MCCANN K S. The diversity-stability debate[J]. Nature, 2000, 405(6 783): 228-233.
|
92 |
GARCÍA-PALACIOS P, GROSS N, GAITÁN J, et al. Climate mediates the biodiversity-ecosystem stability relationship globally[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8 400-8 405.
|
93 |
LIU D, WANG T, PEÑUELAS J, et al. Drought resistance enhanced by tree species diversity in global forests[J]. Nature Geoscience, 2022, 15(10): 800-804.
|
94 |
ANDEREGG W R L, KONINGS A G, TRUGMAN A T, et al. Hydraulic diversity of forests regulates ecosystem resilience during drought[J]. Nature, 2018, 561(7 724): 538-541.
|
95 |
YAO Y, FU B J, LIU Y X, et al. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time[J]. Agricultural and Forest Meteorology, 2022, 314. DOI:10.1016/j.agrformet.2022.108809 .
|
96 |
MATOS I S, MENOR I O, RIFAI S W, et al. Deciphering the stability of grassland productivity in response to rainfall manipulation experiments[J]. Global Ecology and Biogeography, 2020, 29(3): 558-572.
|
97 |
RUPPERT J C, HARMONEY K, HENKIN Z, et al. Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime[J]. Global Change Biology, 2015, 21(3): 1 258-1 270.
|
98 |
LIANG M Q, CAO R C, DI K, et al. Vegetation resistance and resilience to a decade-long dry period in the temperate grasslands in China[J]. Ecology and Evolution, 2021, 11(15): 10 582-10 589.
|
99 |
LI X Y, PIAO S L, WANG K, et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought[J]. Nature Ecology & Evolution, 2020, 4(8): 1 075-1 083.
|
100 |
AU T F, MAXWELL J T, ROBESON S M, et al. Younger trees in the upper canopy are more sensitive but also more resilient to drought[J]. Nature Climate Change, 2022, 12(12): 1 168-1 174.
|
101 |
BENNETT A C, MCDOWELL N G, ALLEN C D, et al. Larger trees suffer most during drought in forests worldwide[J]. Nature Plants, 2015, 1(10). DOI:10.1038/NPLANTS.2015.139 .
|
102 |
YI C X, JACKSON N. A review of measuring ecosystem resilience to disturbance[J]. Environmental Research Letters, 2021, 16(5). DOI:10.1088/1748-9326/abdf09 .
|
103 |
CAPDEVILA P, STOTT I, BEGER M, et al. Towards a comparative framework of demographic resilience[J]. Trends in Ecology & Evolution, 2020, 35(9): 776-786.
|
104 |
GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6 488): 266-269.
|
105 |
WANG T Y, WANG P, WU Z N, et al. Modeling revealed the effect of root dynamics on the water adaptability of phreatophytes[J]. Agricultural and Forest Meteorology, 2022, 320. DOI:10.1016/j.agrformet.2022.108959 .
|