地球科学进展 ›› 2023, Vol. 38 ›› Issue (8): 790 -801. doi: 10.11867/j.issn.1001-8166.2023.044

综述与评述 上一篇    下一篇

干旱胁迫下植被生态韧性研究进展
王田野 1 , 2( ), 王平 3 , 4, 吴泽宁 1( ), 尹君 2, 于静洁 3 , 4, 王慧亮 1, 于志磊 1, 许红师 1, 尹立河 5 , 6, 严登华 1 , 7   
  1. 1.郑州大学,水利与交通学院,河南 郑州 450001
    2.南京信息工程大学,水利部水文气象灾害机理与 预警重点实验室,江苏 南京 210044
    3.中国科学院地理科学与资源研究所,中国科学院陆地水循环 及地表过程重点实验室,北京 100101
    4.中国科学院大学,北京 101408
    5.中国地质调查局,西安地质调查中心,陕西 西安 710119
    6.中国地质调查局,干旱半干旱区地下水与 生态重点实验室,陕西 西安 710119
    7.中国水利水电科学研究院,北京 100038
  • 收稿日期:2023-05-17 修回日期:2023-07-20 出版日期:2023-08-10
  • 通讯作者: 吴泽宁 E-mail:wangtianye@zzu.edu.cn;zeningwu@zzu.edu.cn
  • 基金资助:
    河南省自然科学基金青年项目“基于根系水分适应机制的干旱区植被生态韧性研究”(222300420327);河南省高等学校重点科研项目基础研究计划“干旱胁迫下的黄河流域植被生态韧性评估方法研究”(22A170020)

Progress in the Study of Ecological Resilience of Vegetation under Drought Stress

Tianye WANG 1 , 2( ), Ping WANG 3 , 4, Zening WU 1( ), Jun YIN 2, Jingjie YU 3 , 4, Huiliang WANG 1, Zhilei YU 1, Hongshi XU 1, Lihe YIN 5 , 6, Denghua YAN 1 , 7   

  1. 1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
    2.Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
    3.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    4.University of Chinese Academy of Sciences, Beijing 101408, China
    5.Xi’an Center of Geological Survey, China Geological Survey, Xi’an 710119, China
    6.Key Laboratory for Groundwater and Ecology in Arid and Semi-arid Areas, Chinese Geological Survey, Xi’an 710119 China
    7.China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Received:2023-05-17 Revised:2023-07-20 Online:2023-08-10 Published:2023-08-28
  • Contact: Zening WU E-mail:wangtianye@zzu.edu.cn;zeningwu@zzu.edu.cn
  • About author:WANG Tianye (1987-), male, Pingdingshan City, Henan Province, Associate professor. Research areas include climate change and ecohydrology. E-mail: wangtianye@zzu.edu.cn
  • Supported by:
    the Natural Science Foundation of Henan “Ecological resilience of dryland vegetation based on root water adaptation mechanism”(222300420327);The Key Research Projects of Henan Higher Education Institutions “Research on the methods of assessing the ecological resilience of vegetation under drought stress in the Yellow River Basin”(22A170020)

在全球变化背景下,全球陆地植被生态系统如何响应和适应日益加剧的干旱环境,即干旱胁迫下植被生态韧性的空间格局和演变机理,成为当前生态学和生态水文学研究的核心内容之一。近年来,围绕植被变化与水分胁迫关系的研究不胜枚举,对其机理的认识不断深入。然而,对于植被生态韧性的阐释仍存在较大的分歧和争议,主要原因之一是对生态韧性内涵的理解尚未统一。针对这一问题综合了国内外学者的观点,认为解析生态韧性不仅应当考虑干旱事件下的系统抵抗和恢复能力,更应从系统演化的角度解析变化环境下的系统应对与适应行为,即抵抗力、恢复力和适应性应该是衡量生态韧性的3个最重要的维度。围绕这3个主要维度梳理了国内外近期研究成果,从生态韧性特征的空间格局、影响机理以及适应策略方面,总结了学术界当前对生态韧性的主要认识和待解决的关键问题。旨在通过对生态韧性概念的辨析和研究现状的梳理,促进学界就生态韧性的界定及其定量方法方面展开讨论,从而为解释韧性演变规律及其内在机理奠定基础。

Ecological resilience, the ability of an ecosystem to absorb and adapt to environmental change to maintain its sustainability, was first systematically introduced by the Canadian ecologist C.S. Holling in 1973 and has since rapidly attracted attention and been used across multiple disciplines. In the context of global change, the response of terrestrial ecosystems to increasingly intensifying arid environments, specifically the spatial patterns and evolutionary mechanisms of vegetation ecological resilience under drought stress, has become a core focus of current ecological and ecohydrological research. In recent years, numerous studies have been conducted on the relationship between vegetation change and water stress, enhancing our understanding of this mechanism. However, the interpretation of the ecological resilience of vegetation varies widely and remains controversial, and one of the main reasons for this is that the understanding of the connotations of ecological resilience is not yet unified. To address this issue, we synthesized the views of researchers worldwide and suggested that the analysis of ecological resilience should not only consider the system resistance and recovery capacity under drought events but also the system response and adaptation behavior under changing environments from the perspective of system evolution. These include resistance, recovery, and adaptation, which should be the three most important dimensions for determining ecological resilience. Focusing on these three main dimensions, we reviewed the results of recent research conducted globally and summarized the current understanding of ecological resilience and the key issues to be addressed in terms of spatial patterns, impact mechanisms, and adaptation strategies for ecological resilience. Through an analysis of the concept of ecological resilience and the current state of research, we hope to promote academic discussions on the definition of ecological resilience and its quantitative methods to facilitate an understanding of the evolution of resilience and its underlying mechanisms.

中图分类号: 

图1 以“ecosystem resilience”(a)和“生态韧性”(b)为关键词的中国知网搜索结果主题分布(检索日期:2023725日)
Fig. 1 Distribution of the main themes of the search results on the CNKI using “ecosystem resilience” (a) and “生态韧性bas keywordsdate of retrievalJuly 252023
图2 干旱事件影响下的植被变化示意图
A、B为2个生态系统;D 1和D 2表示2个不同强度的干旱事件(D 2>D 1); L表示干旱影响下的植被状态变化幅度; α表示植被恢复速率
Fig. 2 Schematic diagram of vegetation changes under the influence of drought events
A and B refer to two ecosystems, D 1 and D 2 represent two drought events with different intensities (D 2 > D 1), L denotes the magnitude of change in vegetation state under the influence of drought, and α represents the rate of vegetation recovery
图3 生态系统演化的“滚动球”模型
Fig. 3 A ball-and-cup model of ecosystem evolution
图4 不同时间尺度上生态韧性概念侧重的内涵差异
Fig. 4 Connotational differences in the concept of ecological resilience on different time scales
1 BRANTLEY S L, EISSENSTAT D M, MARSHALL J A, et al. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone[J]. Biogeosciences, 2017, 14(22): 5 115-5 142.
2 PIAO S L, WANG X H, PARK T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27.
3 CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2):111-119.
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2):111-119.
4 YANG T, DING J Z, LIU D, et al. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm[J]. Journal of Climate, 2019, 32(3): 737-748.
5 BRADFORD J B, SCHLAEPFER D R, LAUENROTH W K, et al. Robust ecological drought projections for drylands in the 21st century[J]. Global Change Biology, 2020, 26(7): 3 906-3 919.
6 SATOH Y, YOSHIMURA K, POKHREL Y, et al. The timing of unprecedented hydrological drought under climate change[J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-30729-2 .
7 ZHANG Qiang, YAO Yubi, LI Yaohui, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78(3):500-521.
张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500-521.
8 CHENG G D, LI X, ZHAO W Z, et al. Integrated study of the water-ecosystem-economy in the Heihe River Basin[J]. National Science Review, 2014, 1(3): 413-428.
9 Division of Earth Sciences of the Chinese Academy of Sciences. Report on the investigation of water resources in the northwest arid region: proposals for sustainable water use and ecological restoration in the Heihe and Shiyang River Basins[J]. Advances in Earth Science, 1996, 11(1): 1-4.
中国科学院地学部. 西北干旱区水资源考察报告——关于黑河、石羊河流域合理用水和拯救生态问题的建议[J]. 地球科学进展, 1996, 11(1): 1-4.
10 CHEN Yaning, YANG Qing, LUO Yi, et al. Ponder on the issues of water resources in the arid region of northwest China[J]. Arid Land Geography, 2012, 35(1):1-9.
陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1):1-9.
11 WANG Chuan, ZHANG Yongyong, ZHAO Wenzhi. Eco-hydrological restoration effect of ecological water conveyance in Ejina oasis, lower reaches of the Heihe River in recent 20 years[J]. Chinese Journal of Ecology, 2022, 41(11): 2 180-2 187.
王川, 张勇勇, 赵文智. 黑河下游额济纳绿洲近二十年生态输水的生态水文恢复效应[J]. 生态学杂志, 2022, 41(11): 2 180-2 187.
12 LI C J, FU B J, WANG S, et al. Drivers and impacts of changes in China’s drylands[J]. Nature Reviews Earth & Environment, 2021, 2(12): 858-873.
13 WANG Chenghai, ZHANG Shengning, ZHANG Feimin, et al. On the increase of precipitation in the northwestern China under the global warming[J]. Advances in Earth Science, 2021, 36(9): 980-989.
王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
14 ZHOU Jun, REN Hongchang, WANG Meng, et al. Characteristics and causes of drought event over Yangtze River Basin in summer 2022[J]. Yangtze River, 2023, 54(2): 29-35.
周军, 任宏昌, 王蒙, 等. 2022年夏季长江流域干旱特征及成因分析[J]. 人民长江, 2023, 54(2): 29-35.
15 YAN Wenbo, HE Yunling, YU Lan, et al. Variation of ecosystem vulnerability under the background of climate aridity in Yunnan Province[J]. Ecological Science, 2023, 42(1): 197-205.
闫文波, 何云玲, 余岚, 等. 气候干旱化背景下云南地区生态系统脆弱性的变化特征[J]. 生态科学, 2023, 42(1): 197-205.
16 FORZIERI G, DAKOS V, MCDOWELL N G, et al. Emerging signals of declining forest resilience under climate change[J]. Nature, 2022, 608(7 923): 534-539.
17 SMITH T, TRAXL D, BOERS N. Empirical evidence for recent global shifts in vegetation resilience[J]. Nature Climate Change, 2022, 12(5): 477-484.
18 FU B J, STAFFORD-SMITH M, WANG Y F, et al. The global-DEP conceptual framework-research on dryland ecosystems to promote sustainability[J]. Current Opinion in Environmental Sustainability, 2021, 48: 17-28.
19 ANDEREGG W R L, SCHWALM C, BIONDI F, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science, 2015, 349(6 247): 528-532.
20 HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 1-23.
21 OLSSON L, JERNECK A, THOREN H, et al. Why resilience is unappealing to social science: theoretical and empirical investigations of the scientific use of resilience[J]. Science Advances, 2015, 1(4). DOI: 10.1126/sciadv.1400217 .
22 OVERPECK J T, BRESHEARS D D. The growing challenge of vegetation change[J]. Science, 2021, 372(6 544): 786-787.
23 REIDMILLER D R, AVERY C W, EASTERLING D R, et al. Impacts, risks, and adaptation in the united states: fourth national climate assessment, volume II[M]. Washington, D.C.: U.S. Government Publishing Office, 2017.
24 SCHULDT B, BURAS A, AREND M, et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests[J]. Basic and Applied Ecology, 2020, 45: 86-103.
25 GUO X N, ZHU A, LI Q, et al. Long-term solutions for China’s heat and drought[J]. Science, 2022, 378(6 624). DOI: 10.1126/science.adf6012 .
26 DAKOS V, KÉFI S. Ecological resilience: what to measure and how[J]. Environmental Research Letters, 2022, 17(4). DOI:10.1088/1748-9326/ac5767 .
27 HILLEBRAND H, DONOHUE I, HARPOLE W S, et al. Thresholds for ecological responses to global change do not emerge from empirical data[J]. Nature Ecology & Evolution, 2020, 4(11): 1 502-1 509.
28 PIMM S L. The complexity and stability of ecosystems[J]. Nature, 1984, 307(5 949): 321-326.
29 ISBELL F, CRAVEN D, CONNOLLY J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes[J]. Nature, 2015, 526(7 574). DOI:10.1038/nature15374 .
30 NIMMO D G, NALLY R MAC, CUNNINGHAM S C, et al. Vive la résistance: reviving resistance for 21st century conservation[J]. Trends in Ecology & Evolution, 2015, 30(9): 516-523.
31 GRIMM V, WISSEL C. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion[J]. Oecologia, 1997, 109(3): 323-334.
32 de KEERSMAECKER W, LHERMITTE S, HONNAY O, et al. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems[J]. Global Change Biology, 2014, 20(7): 2 149-2 161.
33 WANG Hui, XU Yunxue, LU Siqi, et al. A comparative study of chinese translation of resilience terminology in socio-ecological system and its related research fields[J]. Urban Planning International, 2017, 32(4):29-39.
汪辉, 徐蕴雪, 卢思琪, 等. 恢复力、弹性或韧性?——社会—生态系统及其相关研究领域中“Resilience”一词翻译之辨析[J]. 国际城市规划, 2017, 32(4): 29-39.
34 SONG Shuang, WANG Shuai, FU Bojie, et al. Study on adaptive governance of social-ecological system: progress and prospect[J]. Acta Geographica Sinica, 2019, 74(11): 2 401-2 410.
宋爽, 王帅, 傅伯杰, 等. 社会—生态系统适应性治理研究进展与展望[J]. 地理学报, 2019, 74(11): 2 401-2 410.
35 XU Chan, WEN Tianzuo, LIU Siyao. Review on urban and regional resilience research in China[J]. City Planning Review, 2020, 44(4): 106-120.
许婵, 文天祚, 刘思瑶. 国内城市与区域语境下的韧性研究述评[J]. 城市规划, 2020, 44(4): 106-120.
36 XU Yaoyang, LI Gang, CUI Shenghui, et al. Review and perspective on resilience science: from ecological theory to urban practice[J]. Acta Ecologica Sinica, 2018, 38(15): 5 297-5 304.
徐耀阳, 李刚, 崔胜辉, 等. 韧性科学的回顾与展望: 从生态理论到城市实践[J]. 生态学报, 2018, 38(15): 5 297-5 304.
37 SHI Longyu, ZHENG Qiaoya, YANG Meng, et al. A review of definitions, influence factors and assessment of urban resilience[J]. Acta Ecologica Sinica, 2022, 42(14):6 016-6 029.
石龙宇, 郑巧雅, 杨萌, 等. 城市韧性概念、影响因素及其评估研究进展[J]. 生态学报, 2022, 42(14):6 016-6 029.
38 SUNDSTROM S M, ALLEN C R, GUNDERSON L. Resisting resilience theory: a response to Connell and Ghedini[J]. Trends in Ecology & Evolution, 2016, 31(6): 412-413.
39 INGRISCH J, BAHN M. Towards a comparable quantification of resilience[J]. Trends in Ecology & Evolution, 2018, 33(4): 251-259.
40 HODGSON D, MCDONALD J L, HOSKEN D J. What do you mean, ‘resilient’?[J]. Trends in Ecology & Evolution, 2015, 30(9): 503-506.
41 SÁNCHEZ-SALGUERO R, CAMARERO J J, DOBBERTIN M, et al. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests[J]. Forest Ecology and Management, 2013, 310: 956-967.
42 LUO H, ZHOU T, WU H, et al. Contrasting responses of planted and natural forests to drought intensity in Yunnan, China[J]. Remote Sensing, 2016, 8(8). DOI:10.3390/rs8080635 .
43 FOLKE C, CARPENTER S R, WALKER B, et al. Resilience thinking: integrating resilience, adaptability and transformability[J/OL]. Ecology and Society, 2010, 15(4). [2023-05-10]. .
44 BERDUGO M, DELGADO-BAQUERIZO M, SOLIVERES S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020, 367(6 479): 787-790.
45 GUNDERSON L H. Ecological resilience—in theory and application[J]. Annual Review of Ecology and Systematics, 2000, 31(1): 425-439.
46 WANG T Y, WANG P, WANG Z L, et al. Drought adaptability of phreatophytes: insight from vertical root distribution in drylands of China[J]. Journal of Plant Ecology, 2021, 14(6): 1 128-1 142.
47 WANG Han, ZHAO Wenwu, YIN Caichun. Research progress and prospect of ecosystem regime shifts detection[J]. Acta Ecologica Sinica, 2023, 43(6):2 159-2 170.
王涵, 赵文武, 尹彩春. 生态系统稳态转换检测研究进展[J]. 生态学报, 2023, 43(6):2 159-2 170.
48 XU Chi, WANG Haijun, LIU Quanxing, et al. Alternative stable states and tipping points of ecosystems[J]. Biodiversity Science, 2020, 28(11): 1 417-1 430.
徐驰, 王海军, 刘权兴, 等. 生态系统的多稳态与突变[J]. 生物多样性, 2020, 28(11): 1 417-1 430.
49 SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions[J]. Nature, 2009, 461(7 260): 53-59.
50 SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions[J]. Science, 2012, 338(6 105): 344-348.
51 JOHNSON A F, LIDSTRÖM S. The balance between concepts and complexity in ecology[J]. Nature Ecology & Evolution, 2018, 2(4): 585-587.
52 van MEERBEEK K, JUCKER T, SVENNING J C. Unifying the concepts of stability and resilience in ecology[J]. Journal of Ecology, 2021, 109(9): 3 114-3 132.
53 GRAFTON R Q, DOYEN L, BÉNÉ C, et al. Realizing resilience for decision-making[J]. Nature Sustainability, 2019, 2(10): 907-913.
54 GESSLER A, BOTTERO A, MARSHALL J, et al. The way back: recovery of trees from drought and its implication for acclimation[J]. New Phytologist, 2020, 228(6): 1 704-1 709.
55 XU C G, MCDOWELL N G, FISHER R A, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change[J]. Nature Climate Change, 2019, 9(12): 948-953.
56 HE Q N, JU W M, DAI S P, et al. Drought risk of global terrestrial gross primary productivity over the last 40 years detected by a remote sensing-driven process model[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(6). DOI:10.1029/2020JG005944 .
57 VICENTE-SERRANO S M, QUIRING S M, PEÑA-GALLARDO M, et al. A review of environmental droughts: increased risk under global warming?[J]. Earth-Science Reviews, 2020, 201. DOI:10.1016/j.earscirev.2019.102953 .
58 ZHANG Q, KONG D D, SINGH V P, et al. Response of vegetation to different time-scales drought across China: spatiotemporal patterns, causes and implications[J]. Global and Planetary Change, 2017, 152: 1-11.
59 MCDOWELL N, POCKMAN W T, ALLEN C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719-739.
60 LUO Dandan, WANG Chuankuan, JIN Ying. Stomatal regulation of plants in response to drought stress[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4 333-4 343.
罗丹丹, 王传宽, 金鹰. 植物应对干旱胁迫的气孔调节[J]. 应用生态学报, 2019, 30(12): 4 333-4 343.
61 FENG X, ACKERLY D D, DAWSON T E, et al. The ecohydrological context of drought and classification of plant responses[J]. Ecology Letters, 2018, 21(11): 1 723-1 736.
62 HOCHBERG U, ROCKWELL F E, HOLBROOK N M, et al. Iso/anisohydry: a plant-environment interaction rather than a simple hydraulic trait[J]. Trends in Plant Science, 2018, 23(2): 112-120.
63 XU S Q, MCVICAR T R, LI L C, et al. Globally assessing the hysteresis between sub-diurnal actual evaporation and vapor pressure deficit at the ecosystem scale: patterns and mechanisms[J]. Agricultural and Forest Meteorology, 2022, 323. DOI:10.1016/j.agrformet.2022.109085 .
64 STOCKER B D, TUMBER-DÁVILA S J, KONINGS A G, et al. Global patterns of water storage in the rooting zones of vegetation[J]. Nature Geoscience, 2023, 16(3): 250-256.
65 WANG T Y, WU Z N, WANG P, et al. Plant-groundwater interactions in drylands: a review of current research and future perspectives[J]. Agricultural and Forest Meteorology, 2023, 341. DOI:10.1016/j.agrformet.2023.109636 .
66 TESTERINK C, LAMERS J. How plant roots go with the flow[J]. Nature, 2022, 612(7 940): 414-415.
67 CHEN Q C, HU T, LI X H, et al. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought[J]. Nature Plants, 2021, 8(1): 68-77.
68 NIU G Y, FANG Y H, CHANG L L, et al. Enhancing the Noah-MP ecosystem response to droughts with an explicit representation of plant water storage supplied by dynamic root water uptake[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11). DOI:10.1029/2020MS002062 .
69 SCHWALM C R, ANDEREGG W R L, MICHALAK A M, et al. Global patterns of drought recovery[J]. Nature, 2017, 548(7 666): 202-205.
70 HUANG M T, WANG X H, KEENAN T F, et al. Drought timing influences the legacy of tree growth recovery[J]. Global Change Biology, 2018, 24(8): 3 546-3 559.
71 YU Z, WANG J X, LIU S R, et al. Global gross primary productivity and water use efficiency changes under drought stress[J]. Environmental Research Letters, 2017, 12(1). DOI:10.1088/1748-9326/aa5258 .
72 LIU L B, GUDMUNDSSON L, HAUSER M, et al. Revisiting assessments of ecosystem drought recovery[J]. Environmental Research Letters, 2019, 14(11). DOI:10.1088/1748-9326/ab4c61 .
73 ZHANG S L, YANG Y T, WU X C, et al. Postdrought recovery time across global terrestrial ecosystems[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(6). DOI:10.1029/2020JG005699 .
74 YAO Y, LIU Y X, ZHOU S, et al. Soil moisture determines the recovery time of ecosystems from drought[J]. Global Change Biology, 2023, 29(13): 3 562-3 574.
75 LI Y, ZHANG W, SCHWALM C R, et al. Widespread spring phenology effects on drought recovery of northern hemisphere ecosystems[J]. Nature Climate Change, 2023, 13(2): 182-188.
76 ZWIENIECKI M A, SECCHI F. Threats to xylem hydraulic function of trees under ‘new climate normal’ conditions[J]. Plant, Cell & Environment, 2015, 38(9): 1 713-1 724.
77 BRODRIBB T J, BOWMAN D J M S, NICHOLS S, et al. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit[J]. New Phytologist, 2010, 188(2): 533-542.
78 KLEIN T, ZEPPEL M J B, ANDEREGG W R L, et al. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs[J]. Ecological Research, 2018, 33(5): 839-855.
79 LUO Dandan, WANG Chuankuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress[J]. Chinese Journal of Plant Ecology, 2021, 45(9): 925-941.
罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941.
80 MÜLLER L M, BAHN M. Drought legacies and ecosystem responses to subsequent drought[J]. Global Change Biology, 2022, 28(17): 5 086-5 103.
81 FENG X M, FU B J, ZHANG Y, et al. Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening Earth[J]. Science Bulletin, 2021, 66(14): 1 462-1 471.
82 GAMPE D, ZSCHEISCHLER J, REICHSTEIN M, et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades[J]. Nature Climate Change, 2021, 11(9): 772-779.
83 KEEN R M, VOELKER S L, WANG S-Y S, et al. Changes in tree drought sensitivity provided early warning signals to the California drought and forest mortality event[J]. Global Change Biology, 2022, 28(3): 1 119-1 132.
84 BOULTON C A, LENTON T M, BOERS N. Pronounced loss of Amazon rainforest resilience since the early 2000s[J]. Nature Climate Change, 2022, 12(3): 271-278.
85 ANDEREGG W R L, TRUGMAN A T, BADGLEY G, et al. Divergent forest sensitivity to repeated extreme droughts[J]. Nature Climate Change, 2020, 10(12): 1 091-1 095.
86 YANG X, XU X T, STOVALL A, et al. Recovery: fast and slow—vegetation response during the 2012-2016 California drought[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(4). DOI:10.1029/2020JG005976 .
87 ANGELER D G, ALLEN C R. Quantifying resilience[J]. Journal of Applied Ecology, 2016, 53(3): 617-624.
88 MACARTHUR R. Fluctuations of animal populations and a measure of community stability[J]. Ecology, 1955, 36(3): 533-536.
89 ELTON C S. The ecology of invasions by animals and plants[M]. London: Methuen, 1958.
90 PENNEKAMP F, PONTARP M, TABI A, et al. Biodiversity increases and decreases ecosystem stability[J]. Nature, 2018, 563(7 729): 109-112.
91 MCCANN K S. The diversity-stability debate[J]. Nature, 2000, 405(6 783): 228-233.
92 GARCÍA-PALACIOS P, GROSS N, GAITÁN J, et al. Climate mediates the biodiversity-ecosystem stability relationship globally[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8 400-8 405.
93 LIU D, WANG T, PEÑUELAS J, et al. Drought resistance enhanced by tree species diversity in global forests[J]. Nature Geoscience, 2022, 15(10): 800-804.
94 ANDEREGG W R L, KONINGS A G, TRUGMAN A T, et al. Hydraulic diversity of forests regulates ecosystem resilience during drought[J]. Nature, 2018, 561(7 724): 538-541.
95 YAO Y, FU B J, LIU Y X, et al. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time[J]. Agricultural and Forest Meteorology, 2022, 314. DOI:10.1016/j.agrformet.2022.108809 .
96 MATOS I S, MENOR I O, RIFAI S W, et al. Deciphering the stability of grassland productivity in response to rainfall manipulation experiments[J]. Global Ecology and Biogeography, 2020, 29(3): 558-572.
97 RUPPERT J C, HARMONEY K, HENKIN Z, et al. Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime[J]. Global Change Biology, 2015, 21(3): 1 258-1 270.
98 LIANG M Q, CAO R C, DI K, et al. Vegetation resistance and resilience to a decade-long dry period in the temperate grasslands in China[J]. Ecology and Evolution, 2021, 11(15): 10 582-10 589.
99 LI X Y, PIAO S L, WANG K, et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought[J]. Nature Ecology & Evolution, 2020, 4(8): 1 075-1 083.
100 AU T F, MAXWELL J T, ROBESON S M, et al. Younger trees in the upper canopy are more sensitive but also more resilient to drought[J]. Nature Climate Change, 2022, 12(12): 1 168-1 174.
101 BENNETT A C, MCDOWELL N G, ALLEN C D, et al. Larger trees suffer most during drought in forests worldwide[J]. Nature Plants, 2015, 1(10). DOI:10.1038/NPLANTS.2015.139 .
102 YI C X, JACKSON N. A review of measuring ecosystem resilience to disturbance[J]. Environmental Research Letters, 2021, 16(5). DOI:10.1088/1748-9326/abdf09 .
103 CAPDEVILA P, STOTT I, BEGER M, et al. Towards a comparative framework of demographic resilience[J]. Trends in Ecology & Evolution, 2020, 35(9): 776-786.
104 GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6 488): 266-269.
105 WANG T Y, WANG P, WU Z N, et al. Modeling revealed the effect of root dynamics on the water adaptability of phreatophytes[J]. Agricultural and Forest Meteorology, 2022, 320. DOI:10.1016/j.agrformet.2022.108959 .
[1] 王银, 谢露华. 造礁珊瑚骨骼氮同位素研究进展[J]. 地球科学进展, 2023, 38(7): 703-714.
[2] 张翔, 黄舒哲, 管宇航. 干旱传播的研究进展、挑战与展望[J]. 地球科学进展, 2023, 38(6): 563-579.
[3] 张翔, 孙雯. 20152017年南非西开普省干旱事件的时空特征分析[J]. 地球科学进展, 2023, 38(5): 493-504.
[4] 龚咏琪, 于海鹏, 周洁, 任钰, 魏韵, 程姗岭, 杨耀先, 罗红羽. 东亚干旱半干旱区水汽来源研究进展[J]. 地球科学进展, 2023, 38(2): 168-182.
[5] 张雨欣, 左昕昕. 植硅体碳与陆地生态系统碳循环:机遇和挑战[J]. 地球科学进展, 2023, 38(2): 212-220.
[6] 胡扬, 汪子微, 蒋洪毛, 陈有超, 刘巧, 段宝利, 鲁旭阳. 山地冰川生态系统微生物研究现状与展望[J]. 地球科学进展, 2022, 37(9): 899-914.
[7] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[8] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[9] 冯起, 常宗强, 席海洋, 苏永红, 温小虎, 朱猛, 张举涛, 张成琦. 基于碳氮循环的中蒙荒漠生态脆弱区生态系统对全球变化响应研究[J]. 地球科学进展, 2022, 37(11): 1101-1114.
[10] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[11] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[12] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[13] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[14] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[15] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
阅读次数
全文


摘要