地球科学进展 ›› 2023, Vol. 38 ›› Issue (5): 493 -504. doi: 10.11867/j.issn.1001-8166.2023.020

研究论文 上一篇    下一篇

20152017年南非西开普省干旱事件的时空特征分析
张翔 1 , 2 , 3( ), 孙雯 1 , 2   
  1. 1.中国地质大学(武汉),国家地理信息系统工程技术研究中心,地理与信息工程学院,湖北 武汉 430074
    2.嵩山实验室,河南 郑州 450046
    3.湖北珞珈实验室,湖北 武汉 430079
  • 收稿日期:2022-10-08 修回日期:2023-01-28 出版日期:2023-05-10
  • 基金资助:
    嵩山实验室预研项目“自然灾害智能感知、预警及风险评估系统模型研究——侧重理论方法研究”(YYYY062022001);湖北珞珈实验室开放基金项目“基于星地多源数据融合的高精度高分辨率时空连续土壤水分感知技术”(220100059)

Spatial and Temporal Characterization of the Urban Drought in the Western Cape, South Africa, from 2015 to 2017

Xiang ZHANG 1 , 2 , 3( ), Wen SUN 1 , 2   

  1. 1.National Engineering Research Center of Geographic Information System, School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
    2.Songshan Laboratory, Zhengzhou 450046, China
    3.Hubei Luojia Laboratory, Wuhan 430079, China
  • Received:2022-10-08 Revised:2023-01-28 Online:2023-05-10 Published:2023-05-10
  • About author:ZHANG Xiang (1989-), male, Xiaogan City, Hubei Province, Professor. Research area includes disaster remote sensing. E-mail: zhangxiang76@cug.edu.cn
  • Supported by:
    the Pre-research Project of Songshan Laboratory “Research on intelligent sensing, early warning and risk assessment system and model for natural disaster—emphasis on theoretical research”(YYYY062022001);Open Fund of Hubei Luojia Laboratory “High-precision, high-resolution, spatiotemporal continuous soil moisture sensing technology based on fusion of multi-source data from space and ground”(220100059)

2015—2017年南非西开普省遭受了特大干旱冲击,造成了城市可用水资源的极度短缺,使其首都开普敦市成为人类历史上首个面临“零日”灾难(关闭该城市水龙头的确切时间)威胁的现代城市。但此次灾害的多种致灾因素的交互机理和过程尚不明确,人为供用水管理如何科学应对自然降水变异的模式有待进一步挖掘。因此,通过气象干旱、水文干旱和城市供用水管理3个维度挖掘其中的关键阶段、空间分布和管理效益。结果表明: 西开普省2015—2017年气象干旱面积和强度显著增加,且2017年5月干旱情况最为严重。相比于标准化降水指数,标准化降水蒸散指数检测到的干旱更为显著。 西开普省的水文干旱在2017年5月最为严重,这与气象干旱的时空特征规律大体一致,体现出气象—水文干旱迅速传播的特征。标准化径流指数结果与水库储水量变化均反映该地区的水资源缺乏,表明此次干旱事件对严重依赖降雨和水库供水的西开普省产生了显著影响。 西开普省政府针对此次干旱演进过程采取了不同等级的用水限制和管理政策,有效推迟和避免了“零日”灾难,但在政治和经济等方面解决用水不平等的问题还值得商榷和改良。研究表明城市干旱问题涉及气象、水文和供用水多个系统及其相互作用,需要从致灾时空过程角度监测、理解和减缓。

From 2015 to 2017, the Western Cape province in South Africa suffered a severe drought, resulting in an extreme shortage of water resources in the city, making its capital, Cape Town, the first modern city in human history to face the threat of a “Day Zero” disaster (i.e., the day when the city’s water taps are turned off). However, the interaction mechanisms and processes of various disaster-causing factors remain unclear, and how to scientifically cope with the natural precipitation variation mode by man-made water-supply management needs to be further explored. Therefore, this paper explores the key stages, spatial distribution, and management benefits from the three dimensions of meteorological drought, hydrological drought, and urban water supply management. The results show the following: The Western Cape experienced a significant increase in the area and intensity of meteorological drought from 2015 to 2017, with the most severe drought conditions occurring in May 2017. Compared with the Standardized Precipitation Index (SPI), the drought detected by Standardized Precipitation Evapotranspiration Index (SPEI) was more significant. The hydrological drought conditions in the Western Cape in May 2017 were the most severe. This is broadly consistent with the pattern of spatial and temporal characteristics of meteorological drought, reflecting the rapid spread of meteorological-hydrological drought. Both the Standardized Runoff Index (SRI) results and the change in reservoir water volume reflect water scarcity in the region, indicating that the drought event had a serious impact on the Western Cape, which relies heavily on rainfall and reservoir water supply. The Western Cape government adopted different levels of water restrictions and management policies in response to the evolution of this drought, effectively delaying and avoiding a “Day Zero” disaster; however, addressing the political and economic aspects of water inequality is still debatable and worth improving. This paper shows that urban drought problems involve multiple systems and interactions among the meteorology, hydrology, and water supply, and need to be monitored, understood, and mitigated in terms of the spatial and temporal processes.

中图分类号: 

图1 西开普省在南非的地理位置(a)及流域水库分布(b
Fig. 1 Geographical location of the Western Cape in South Africaaand its riverreservoir distributionb
图2 多维度干旱时空特征分析方法流程图
Fig. 2 Flow chart of multi-dimensional drought spatiotemporal characteristics analysis method
表1 标准化降水指数( SPI)、标准化降水蒸散指数( SPEI)和标准化径流指数( SRI)干旱等级划分
Table 1 Standardized Precipitation IndexSPI), Standardized Precipitation Evapotranspiration IndexSPEIand Standardized Runoff IndexSRIdrought classification
图3 20152018年(每年12月)南非西开普省SPI-12SPEI-12时空分布图
Fig. 3 Spatial and temporal distribution of SPI-12 and SPEI-12 in the Western CapeSouth AfricaDecember in each year of 2015-2018
图4 20168月至201711月南非西开普省SPI-1时空分布图
Fig. 4 Spatial and temporal distribution of SP-1 in Western CapeSouth AfricaAugust 2016 -November 2017
图5 20168月至201711月南非西开普省SPEI-1时空分布图
Fig. 5 Spatial and temporal distribution of SPEI-1 in Western CapeSouth AfricaAugust 2016-November 2017
图6 20152018年(每年12月)南非西开普省SRI-12时空分布图
Fig. 6 Spatio-temporal distribution of SRI-12 in the Western CapeSouth AfricaDecember in each year of 2015-2018
图7 20168月至201711月南非西开普SRI-1时空分布图
Fig. 7 Spatial and temporal distribution of SRI-1 in the Western CapeSouth AfricaAugust 2016-November 2017
图8 西开普省供水系统蓄水百分比历年变化
Fig. 8 Percentage change in water storage in the Western Cape Water Supply System over the years
图9 基于MNDWITheewaterskloof水库[(a1~f1)]与Wemmershoek水库[(a2~f2)]蓄水面积变化
Fig. 9 Changes in water-bearing storage area in Theewaterskloof Reservoir [(a1~f1)] and Wemmershoek Reservoir [(a2~f2)] based on MNDWI
图10 西开普省供水系统总体用水趋势
Fig. 10 Overall water use trends in the Western Cape Water Supply System
表2 开普敦市限水政策
Table 2 City of Cape Town water restriction policy
图11 西开普省供水系统蓄水量与开普敦市相关政策图
Fig. 11 Diagram of Western Cape Water Supply System water supply system storage and relevant policies of the city of Cape Town
1 ADEYERI O E, ZHOU W, WANG X, et al. The trend and spatial spread of multisectoral climate extremes in CMIP6 models[J]. Scientific Reports, 2022, 12(1). DOI:10.1038/s41598-022-25265-4 .
2 ZHANG X, CHEN N C, SHENG H, et al. Urban drought challenge to 2030 sustainable development goals[J]. Science of the Total Environment, 2019, 693. DOI:10.1016/j.scitotenv.2019.07.342 .
3 WANG J S, ZHANG Q, ZHANG L, et al. The global pattern and development trends & directions on the drought monitoring research from 1983 to 2020 by using bibliometric analysis[J]. Bulletin of the American Meteorological Society, 2022. DOI:10.1175/BAMS-D-21-0324.1 .
4 ZHANG Xiang, WEI Yanfang, LI Siyu, et al. From drought disaster towards drought disaster chain: state of art and challenges[J]. Journal of Arid Meteorology, 2021, 39(6): 873-883.
张翔, 韦燕芳, 李思宇, 等. 从干旱灾害到干旱灾害链:进展与挑战[J]. 干旱气象, 2021, 39(6): 873-883.
5 LEI Buyun, ZHAO Shuhe, QIN Zhihao, et al. Drought temporal-spatial distribution of South Africa based on MODIS SDI index from 2001-2014[J]. Arid Land Geography, 2016, 39(2): 395-404.
雷步云, 赵书河, 覃志豪, 等. 基于SDI指数的南非共和国2001—2014年干旱监测时空分布[J]. 干旱区地理, 2016, 39(2): 395-404.
6 NAIK M, ABIODUN B J. Projected changes in drought characteristics over Western Cape, South Africa[J]. Meteorlogical Applications, 2019, 27(1). DOI:10.1002/met.1802 .
7 HUANG S Z, ZHANG X, YANG L, et al. Urbanization-induced drought modification: example over the Yangtze River Basin, China[J]. Urban Climate, 2022, 44. DOI:10.1016/j.uclim.2022.101231 .
8 RUSCA M, SAVELLI E, di BALDASSARRE G, et al. Unprecedented droughts are expected to exacerbate urban inequalities in Southern Africa[J]. Nature Climate Change, 2023, 13(1): 98-105.
9 ZHANG Xiang, CHEN Nengcheng, HU Chuli, et al. Spatio-temporal distribution of three kinds of flash droughts over agricultural land in China from 1983 to 2015[J]. Advances in Earth Science, 2018, 33(10): 1 048-1 057.
张翔, 陈能成, 胡楚丽, 等. 1983—2015年我国农业区域三类骤旱时空分布特征分析[J]. 地球科学进展, 2018, 33(10): 1 048-1 057.
10 ZHOU Dan, BAO Guangyu, ZHANG Jing, et al. Analysis of extreme drought variation characteristics in Qaidam Basin based on gridded data[J]. Journal of Natural Disasters, 2017, 26(1): 165-175.
周丹, 保广裕, 张静, 等. 基于格点数据的柴达木盆地极端干旱变化特征分析[J]. 自然灾害学报, 2017, 26(1): 165-175.
11 PALMER W C. Keeping track of crop moisture conditions, nationwide: the new crop moisture index[J]. Weatherwise, 1968, 21(4): 156-161.
12 MCKEE T B, DOESKEN N J, KLEIST J. The relationship of drought frequency and duration to time scales[C]// Proceedings of the 8th conference on applied climatology. 1993: 179-183.
13 VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1 696-1 718.
14 SHUKLA S, WOOD A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters, 2008, 35(2). DOI:10.1029/2007GL032487 .
15 KOGAN F N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data[J]. Bulletin of the American Meteorological Society, 1995, 76(5): 655-668.
16 ZHANG X, CHEN N C, LI J Z, et al. Multi-sensor integrated framework and index for agricultural drought monitoring[J]. Remote Sensing of Environment, 2017, 188: 141-163.
17 HAO Z C, AGHAKOUCHAK A. Multivariate standardized drought index: a parametric multi-index model[J]. Advances in Water Resources, 2013, 57: 12-18.
18 DIKICI M, AKSEL M.Comparison of SPI, SPEI and SRI drought indices for Seyhan Basin[J]. International Journal of Electronics, Mechanical and Mechatronics Engineering, 2019, 9(4): 1 751-1 762.
19 JHA S, SEHGAL V, RAGHAVA R. Spatio-temporal trends of standardized precipitation index for meteorological drought analysis across agroclimatic zones of India [J]. Nature Precedings, 2011, 26(2):1 477-1 480.
20 KAMRUZZAMAN M, ALMAZROUI M, SALAM M A, et al. Spatiotemporal drought analysis in Bangladesh using the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)[J]. Scientific Reports, 2022, 12(1). DOI:10.1038/s41598-022-24146-0 .
21 HAN Lanying, ZHANG Qiang, JIA Jianying, et al. Drought severity, frequency, duration and regional differences in China[J]. Journal of Desert Research, 2019, 39(5): 1-10.
韩兰英, 张强, 贾建英, 等. 气候变暖背景下中国干旱强度、频次和持续时间及其南北差异性[J]. 中国沙漠, 2019, 39(5): 1-10.
22 RACHUNOK B, FLETCHER S. Socio-hydrological drought impacts on urban water affordability[J]. Nature Water, 2023, 1(1): 83-94.
23 HE Fuli, HU Caihong, WANG Jijun, et al. Analysis of meteorological and hydrological drought in the Yellow River Basin during the past 50 years based on SPI and SDI[J]. Geography and Geo-Information Science, 2015, 31(3): 69-75.
何福力, 胡彩虹, 王纪军, 等. 基于标准化降水、径流指数的黄河流域近50年气象水文干旱演变分析[J]. 地理与地理信息科学, 2015, 31(3): 69-75.
24 ZHANG X, OBRINGER R, WEI C H, et al. Droughts in India from 1981 to 2013 and implications to wheat production[J]. Scientific Reports, 2017, 7(1). DOI:10.1038/srep44552 .
25 LEE M H, IM E S, BAE D H. A comparative assessment of climate change impacts on drought over Korea based on multiple climate projections and multiple drought indices[J]. Climate Dynamics, 2019, 53(1): 389-404.
26 DEGAETANO A T. A temporal comparison of drought impacts and responses in the New York City metropolitan area[J]. Climatic Change, 1999, 42(3): 539-560.
27 KUSANGAYA S, WARBURTON M L, van GARDEREN E A, et al. Impacts of climate change on water resources in southern Africa: a review[J]. Physics and Chemistry Earth, Parts A/B/C, 2014, 67/68/69: 47-54.
28 ORIMOLOYE I R, OLOLADE O O, MAZINYO S P, et al. Spatial assessment of drought severity in Cape Town area, South Africa[J]. Heliyon, 2019, 5(7). DOI:10.1016/j.heliyon.2019.e02148 .
29 RICHMAN M B, LESLIE L M. The 2015-2017 Cape Town drought: attribution and prediction using machine learning[J]. Procedia Computer Science, 2018, 140: 248-257.
30 BOTAI C, BOTAI J, de WIT J, et al. Drought characteristics over the Western Cape Province, South Africa[J]. Water, 2017, 9(11). DOI:10.3390/w9110876 .
31 FUNK C, PETERSON P, LANDSFELD M, et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes[J]. Scientific Data, 2015, 2(1). DOI:10.1038/sdata.2015.66 .
32 MA H L, ZENG J Y, ZHANG X, et al. Evaluation of six satellite- and model-based surface soil temperature datasets using global ground-based observations[J]. Remote Sensing of Environment, 2021, 264. DOI: 10.1016/j.rse.2021.112605 .
33 ZHANG Qiang, HAN Lanying, ZHANG Liyang, et al. Analysis on the character and management strategy of drought disaster and risk under the climatic warming[J]. Advances in Earth Science, 2014, 29(1): 80-91.
张强, 韩兰英, 张立阳, 等. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
34 YANG C P, TUO Y F, MA J M, et al. Spatial and temporal evolution characteristics of drought in Yunnan Province from 1969 to 2018 based on SPI/SPEI[J]. Water, Air, & Soil Pollution, 2019, 230(11). DOI:10.1007/s11270-019-4287-6 .
35 NIU Wenjuan. Spatio-temporal variation of droughts in northeast Chongqing during 1979-2015[J]. Water Conservancy Science and Technology and Economy, 2021, 27(10): 1-7.
牛文娟. 渝东北地区1979—2015年干旱时空分布特征[J]. 水利科技与经济, 2021, 27(10): 1-7.
36 ROUAULT M, RICHARD Y. Intensity and spatial extension of drought in South Africa at different time scales[J]. Water SA, 2004, 29(4). DOI: 10.4314/wsa.v29i4.5057 .
37 ZHU Xinyu. The variation in the characteristics of drought in east Henan Province over a 50-year period based on standaradzed precipitation evapotranspiration index[J]. Journal of Natural Disasters, 2015, 24(4): 128-137.
朱新玉. 基于SPEI的豫东地区近50年干旱演变特征[J]. 自然灾害学报, 2015, 24(4): 128-137.
38 LIU Min, QIN Pengcheng, LIU Kequn, et al. Response of lake water level of Honghu Lake to SPEI/SPI drought indices at different time scales[J]. Meteorological Monthly, 2013, 39(9): 1 163-1 170.
刘敏, 秦鹏程, 刘可群, 等. 洪湖水位对不同时间尺度SPEI/SP干旱指数的响应研究[J]. 气象, 2013, 39(9): 1 163-1 170.
39 ZHOU Yang, LI Ning, JI Zhonghui, et al. Temporal and spatial patterns of droughts based on Standard Precipitation Index (SPI) in Inner Mongolia during 1981-2010[J]. Journal of Natural Resources, 2013, 28(10): 1 694-1 706.
周扬, 李宁, 吉中会, 等. 基于SPI指数的1981—2010年内蒙古地区干旱时空分布特征[J]. 自然资源学报, 2013, 28(10): 1 694-1 706.
40 SUN He. The analysis of temporal change rules of meteorological drought over the Liaoning Province based on SPI[J]. Territory & Natural Resources Study, 2018(5): 60-62.
孙赫. 基于SPI指数的辽宁省气象干旱时间特征分析[J]. 国土与自然资源研究, 2018(5): 60-62.
41 HAN Lanying, ZHANG Qiang, YAO Yubi, et al. Characteristics and origins of drought disasters in Southwest China in nearly 60 years[J]. Acta Geographica Sinica, 2014, 69(5): 632-639.
韩兰英, 张强, 姚玉璧, 等. 近60年中国西南地区干旱灾害规律与成因[J]. 地理学报, 2014, 69(5): 632-639.
42 SHI B L, ZHU X Y, HU Y C, et al. Drought characteristics of Henan Province in 1961-2013 based on standardized precipitation evapotranspiration index[J]. Journal of Geographical Sciences, 2017, 27(3): 311-325.
43 ZHANG Qiaofeng, LIU Guixiang, YU Hongbo, et al. Analysis of drought characteristics in Xilingol League based on standardized precipitation index[J]. Journal of Natural Disasters, 2015, 24(5): 119-128.
张巧凤, 刘桂香, 于红博, 等. 基于标准化降水指数的锡林郭勒盟干旱特征分析[J]. 自然灾害学报, 2015, 24(5): 119-128.
44 LI Weiguang, YI Xue, HOU Meiting, et al. Standardized precipitation evapotranspiration index shows drought trends in China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(5): 643-649.
李伟光, 易雪, 侯美亭, 等. 基于标准化降水蒸散指数的中国干旱趋势研究[J]. 中国生态农业学报, 2012, 20(5): 643-649.
45 XU Hanqiu. A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589-595.
徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589-595.
46 SPINONI J, BARBOSA P, JAGER A D, et al. A new global database of meteorological drought events from 1951 to 2016[J]. Journal of Hydrology Regional Studies, 2019, 22. DOI: 10.1016/j.ejrh.2019.100593 .
47 WARNER J F, MEISSNER R. Cape Town’s “Day Zero” water crisis: a manufactured media event?[J]. International Journal of Disaster Risk Reduction, 2021(2). DOI:10.1016/j.ijdrr.2021.102481 .
48 PARKS R, MCLAREN M, TOUMI R, et al. Experiences and lessons in managing water from Cape Town[J]. Grantham Institute Briefing Paper, 2019, 29: 1-20.
49 XU Xiangyu, LIU Yunzhu, WANG Dangxian, et al. Strategic study on drought disaster risk management[J]. Journal of Catastrophology, 2022, 37(2): 1-5.
徐翔宇, 刘昀竺, 汪党献, 等. 干旱灾害风险管理的战略思考[J]. 灾害学, 2022, 37(2): 1-5.
[1] 龚咏琪, 于海鹏, 周洁, 任钰, 魏韵, 程姗岭, 杨耀先, 罗红羽. 东亚干旱半干旱区水汽来源研究进展[J]. 地球科学进展, 2023, 38(2): 168-182.
[2] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[3] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[4] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[5] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[6] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[7] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[10] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[11] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[12] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[13] 江笑薇, 白建军, 刘宪锋. 基于多源信息的综合干旱监测研究进展与展望[J]. 地球科学进展, 2019, 34(3): 275-287.
[14] 马成龙,陈晓东,江利明,孙和平,徐建桥,董景龙,李德伟. 月基 InSAR观测地球大尺度形变能力的初步研究[J]. 地球科学进展, 2019, 34(2): 164-174.
[15] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
阅读次数
全文


摘要