地球科学进展 ›› 2023, Vol. 38 ›› Issue (5): 483 -492. doi: 10.11867/j.issn.1001-8166.2023.017

综述与评述 上一篇    下一篇

古近纪 Danian期早期热事件 Dan-C2研究进展
王梦迪 1( ), 马明明 1 , 2( ), 邱煜丹 1, 黄惠欣 1, 刘秀铭 2 , 3   
  1. 1.福建省亚热带资源与环境重点实验室 福建师范大学,福建 福州 350117
    2.湿润亚热带生态—地理 过程教育部重点实验室 福建师范大学,福建 福州 350117
    3.Department of Environment and Geography,Macquarie University,Sydney NSW 2109,Australia
  • 收稿日期:2022-12-13 修回日期:2023-03-07 出版日期:2023-05-10
  • 通讯作者: 马明明 E-mail:wangmd202212@163.com;mamingming159@163.com
  • 基金资助:
    国家自然科学基金面上项目“南雄盆地古近纪早期热事件的陆相记录与碳来源示踪”(42277440)

Research Progress on the Dan-C2 Thermal Event of the Early Danian in the Paleogene

Mengdi WANG 1( ), Mingming MA 1 , 2( ), Yudan QIU 1, Huixin HUANG 1, Xiuming LIU 2 , 3   

  1. 1.Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
    2.Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
    3.Department of Environment and Geography, Macquarie University, Sydney NSW 2109, Australia
  • Received:2022-12-13 Revised:2023-03-07 Online:2023-05-10 Published:2023-05-10
  • Contact: Mingming MA E-mail:wangmd202212@163.com;mamingming159@163.com
  • About author:WANG Mengdi (1999-), female, Yexian County, Henan Province, Master student. Research area includes paleoclimate change. E-mail: wangmd202212@163.com
  • Supported by:
    the National Natural Science Foundation of China “Study of the early Paleocene hyperthermals in Nanxiong Basin: terrestrial records construction and carbon source(s) tracing”(42277440)

早古近纪是新生代典型的温室气候期,期间发生了一系列快速短暂的、以碳同位素(δ13C)负偏移为特征的增温事件(也被称为极热事件,hyperthermals),其中Danian期早期Dan-C2事件是白垩纪末期生物大灭绝之后出现的第一个热事件,因而其环境效应和生态效应受到了广泛关注。但是随着研究的不断深入,关于Dan-C2事件的争议也不断增加。通过总结Dan-C2热事件研究的最新成果,对其全球性意义及其触发机制进行综述后发现: 全球性意义存在争议:海洋记录方面,Dan-C2事件期间的碳同位素负偏移目前局限在大西洋和特提斯洋局部地区的浮游有孔虫和全岩记录中,底栖有孔虫很少记录到该事件,表明其可能只是一次区域性的碳扰动事件。此外,该事件期间全岩和浮游有孔虫的氧同位素(δ18O)指示的增温也仅局限在北大西洋部分海域的表层海水,底层海水普遍缺乏增温的证据。同时,尽管已有陆相Dan-C2事件的证据被发现,但是与海相记录相比,陆相记录在数量、年代学及地层的连续性上,还存在很大的不足,导致陆相记录难以与海洋记录开展深入有效的对比工作,因此该事件的全球性意义受到质疑。 触发机制存在争议:高精度年代框架显示Dan-C2事件发生在轨道偏心率极大值处,表明轨道驱动对该事件有一定的影响,同时该事件又与印度德干高原火山喷发的最后阶段在时间上吻合,暗示着火山活动排放的温室气体可能对Dan-C2事件期间的增温也有所贡献,但二者对该事件的相对贡献尚难以评估。未来研究要着重于以下方面: 不同海域Dan-C2事件记录的差异性以及海洋深层水记录缺失的原因; 建立更多可靠的陆相记录,在此基础上进一步探讨Dan-C2事件的全球性意义及其触发机制。

The early Paleogene was a typical greenhouse climate period in the Cenozoic, during which a series of rapid and short-lived warming events (termed “hyperthermals”) occurred. Hyperthermals were characterized by negative carbon isotope excursion. Among them, the Dan-C2 thermal event of the early Danian is considered to be the first to occur after the biological mass extinction at the end of the Cretaceous; thus, its environmental significance and ecological effects have received widespread attention. However, as research continues, controversies regarding the Dan-C2 event continue to grow: The global significance is controversial; in the marine records, the δ13C negative excursions during the Dan-C2 event were restricted to planktonic foraminifera and bulk records in parts of the Atlantic and Tethys Oceans, while benthic foraminifera rarely recorded this event, suggesting that it may only be a regional carbon perturbation event. Furthermore, the warming indicated by the oxygen isotopes (δ18O) of bulk and planktonic foraminifera during this event was limited to surface waters in parts of the North Atlantic, with evidence of warming in bottom waters generally lacking. At the same time, although evidence of the terrestrial Dan-C2 event has been discovered, the terrestrial records still have significant deficiencies in terms of quantification, chronology, and continuity compared with the marine records, which makes it difficult to conduct in-depth and effective comparisons between the terrestrial and marine records; therefore, the global significance of the Dan-C2 event is questioned. The trigger mechanism is controversial; the high-precision chronological frame shows that the Dan-C2 event occurred at the eccentricity maximum, indicating that the orbital cycle had a certain influence on the event. Simultaneously, the temporal coincidence of the Dan-C2 event with the last phase of the eruption of the Deccan Traps volcanism implies that greenhouse gas emissions from volcanic activity may have contributed to warming during the Dan-C2; however, the relative magnitudes of both contributions to the event is difficult to assess. Future research should focus on the following: Exploring the variability of the Dan-C2 event records in different areas and revealing the reasons for the absence of deep-ocean water records. Establishing more reliable terrestrial records and further exploring the global significance of the Dan-C2 event and its triggering mechanism.

中图分类号: 

图1 66 Ma全球古地理图(来自 https://www.odsn.de/odsn/services/paleomap/paleomap.html )及各研究地点的位置分布
Fig. 1 Paleogeographic reconstruction at 66 Ma https://www.odsn.de/odsn/services/paleomap/paleomap.html and the locations of the study sites
图2 各研究地点记录到的Dan-C2事件以及该事件期间碳、氧同位素的变化情况
灰色阴影代表Dan-C2和马斯特里赫特期末期增温事件;(a)、(b)和(c)引自参考文献[ 3 ],(d)引自参考文献[ 13 ],(e)引自参考文献[ 5 ],(f)、(g)和(h)引自参考文献[ 26 ],(i)引自参考文献[ 12 ],(j)引自参考文献[ 27 ],(k)引自参考文献[ 28 ],(l)引自参考文献[ 33 39 ],(m)引自参考文献[ 37 - 38 ]。磁性柱和生物带的划分引自参考文献[ 28 ];(a)和(i)的年代数据根据参考文献[ 28 ]校准的年代模型进行调整
Fig. 2 The changes of carbon and oxygen isotopes during the Dan-C2 event at each study site
The gray shadows represent the Dan-C2 and the Latest Maastrichtian Warming Event (LMWE). (a), (b) and (c) cited from reference [ 3 ]; (d) cited from reference [ 13 ]; (e) cited from reference [ 5 ]; (f), (g) and (h) cited from reference [ 26 ]; (i) cited from reference [ 12 ]; (j) cited from reference [ 27 ]; (k) cited from reference [ 28 ]; (l) cited from references [33,39]; (m) cited from references [37-38]; Chron and Bio-zones are cited from reference [ 28 ]. The chronology frameworks of (a) and (i) were calibrated according to reference [ 28
图3 ODP 1262站点Dan-C2事件和马斯特里赫特期末期增温事件对比
δ 13C bulk和δ 18O bulk数据引自参考文献[ 66 ],δ 13C benthic和δ 18O benthic数据引自参考文献[ 5 70
Fig. 3 Comparison of the Dan-C2 and the Latest Maastrichtian Warming EventLMWEat the ODP 1262 site
The data of δ 13C bulk and δ 18O bulk are cited from reference [ 66 ], the data of δ 13C benthic and δ 18O benthic are cited from references [5,70]
1 BORNEMANN A, SCHULTE P, SPRONG J, et al. Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt)[J]. Journal of the Geological Society, 2009, 166(6): 1 135-1 142.
2 BRALOWER T J, PREMOLI SILVA I, MALONE M J, et al. New evidence for abrupt climate change in the Cretaceous and Paleogene: an Ocean Drilling Program expedition to Shatsky Rise, northwest Pacific[J]. GSA Today, 2002, 12(11): 4-10.
3 QUILLÉVÉRÉ F, NORRIS R D, KROON D, et al. Transient ocean warming and shifts in carbon reservoirs during the early Danian[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 600-615.
4 CRAMER B S, WRIGHT J D, KENT D V, et al. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n)[J]. Paleoceanography, 2003, 18(4). DOI:10.1029/2003PA000909 .
5 BARNET J S K, LITTLER K, WESTERHOLD T, et al. A high-fidelity benthic stable isotope record of late Cretaceous-early Eocene climate change and carbon-cycling[J]. Paleoceanography and Paleoclimatology, 2019, 34(4): 672-691.
6 WESTERHOLD T, RÖHL U, DONNER B, et al. A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209)[J]. Paleoceanography, 2011, 26(2). DOI:10.1029/2010PA002092 .
7 WESTERHOLD T, RÖHL U, DONNER B, et al. Global extent of early Eocene hyperthermal events: a new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209)[J]. Paleoceanography and Paleoclimatology, 2018, 33(6): 626-642.
8 WESTERHOLD T, RÖHL U, RAFFI I, et al. Astronomical calibration of the Paleocene time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257(4): 377-403.
9 ALEGRET L, ORTIZ S, ARREGUĺN-RODRĺGUEZ G J, et al. Microfossil turnover across the uppermost Danian at Caravaca, Spain: paleoenvironmental inferences and identification of the latest Danian event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463: 45-59.
10 COCCIONI R, FRONTALINI F, CATANZARITI R, et al. Paleoenvironmental signature of the Selandian-Thanetian Transition Event (STTE) and Early Late Paleocene Event (ELPE) in the Contessa Road section (Western Neo-Tethys)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 523: 62-77.
11 BERNAOLA G, BACETA J I, ORUE-ETXEBARRIA X, et al. Evidence of an abrupt environmental disruption during the mid-Paleocene biotic event (Zumaia section, western Pyrenees)[J]. Geological Society of America Bulletin, 2007, 119(7/8): 785-795.
12 COCCIONI R, FRONTALINI F, BANCALÀ G, et al. The Dan-C2 hyperthermal event at Gubbio (Italy): global implications, environmental effects, and cause(s)[J]. Earth and Planetary Science Letters, 2010, 297(1/2): 298-305.
13 KRAHL G, BOM M H H, KOCHHANN K G D, et al. Environmental changes occurred during the early Danian at the Rio Grande Rise, South Atlantic Ocean[J]. Global and Planetary Change, 2020, 191. DOI:10.1016/j.gloplacha.2020.103197 .
14 ABELS H A, CLYDE W C, GINGERICH P D, et al. Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals[J]. Nature Geoscience, 2012, 5(5): 326-329.
15 ABELS H A, LAURETANO V, van YPEREN A E, et al. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming[J]. Climate of the Past, 2016, 12(5): 1 151-1 163.
16 CHEN Z L, DONG X X, WANG X, et al. Spatial change of precipitation in response to the Paleocene-Eocene Thermal Maximum warming in China[J]. Global and Planetary Change, 2020, 194. DOI:10.1016/j.gloplacha.2020.103313 .
17 CHEN Z L, WANG X, HU J F, et al. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene-Eocene thermal maximum record from central China[J]. Earth and Planetary Science Letters, 2014, 408: 331-340.
18 ZACHOS J C, MCCARREN H, MURPHY B, et al. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 242-249.
19 CUI Y, SCHUBERT B A. Atmospheric pCO2 reconstructed across five early Eocene global warming events[J]. Earth and Planetary Science Letters, 2017, 478: 225-233.
20 GRIFFITH E M, THOMAS E, LEWIS A R, et al. Bentho-pelagic decoupling: the marine biological carbon pump during Eocene hyperthermals[J]. Paleoceanography and Paleoclimatology, 2021, 36(3). DOI:10.1029/2020PA004053 .
21 CHEN Zuoling. Carbon-cycle dynamics during the Paleocene-Eocene thermal maximum[J]. Chinese Science Bulletin, 2022, 67(15): 1704-1714.
陈祚伶. 古新世—始新世极热事件碳循环研究进展[J]. 科学通报, 2022, 67(15): 1 704-1 714.
22 OGG J G, BARDOT L, KROON D, et al. Aptian through Eocene magnetostratigraphic correlation of the Blake Nose Transect (Leg 171B), Florida continental margin[M]// Proceedings of the ocean drilling program, 171B scientific results. Ocean Drilling Program, 2001.
23 HUBER B T, MACLEOD K G, NORRIS R D. Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the Cretaceous-Tertiary boundary: evidence from the subtropical North Atlantic[J]. Geological Society of America Special Papers, 2002, 356: 277-289.
24 NORRIS R D, RÖHL U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition[J]. Nature, 1999, 401(6 755): 775-778.
25 ARREGUĺN-RODRĺGUEZ G J, BARNET J S K, LENG M J, et al. Benthic foraminiferal turnover across the Dan-C2 event in the eastern South Atlantic Ocean (ODP Site 1262)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572. DOI:10.1016/j.palaeo.2021.110410 .
26 HULL P M, BORNEMANN A, PENMAN D E, et al. On impact and volcanism across the Cretaceous-Paleogene boundary[J]. Science, 2020, 367(6 475): 266-272.
27 GILABERT V, ARENILLAS I, ARZ J A, et al. Multiproxy analysis of paleoenvironmental, paleoclimatic and paleoceanographic changes during the early Danian in the Caravaca section (Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 576. DOI:10.1016/j.palaeo.2021.110513 .
28 GILABERT V, BATENBURG S J, ARENILLAS I, et al. Contribution of orbital forcing and Deccan volcanism to global climatic and biotic changes across the Cretaceous-Paleogene boundary at Zumaia, Spain[J]. Geology, 2022, 50(1): 21-25.
29 KHOZYEM H, TANTAWY A A, MAHMOUD A, et al. Biostratigraphy and geochemistry of the Cretaceous-Paleogene (K/Pg) and early Danian event (Dan-C2), a possible link to deccan volcanism: new insights from Red Sea, Egypt[J]. Journal of African Earth Sciences, 2019, 160. DOI:10.1016/j.jafrearsci.2019.103645 .
30 MAHANIPOUR A, MUTTERLOSE J, PARANDAVAR M. Integrated bio-and chemostratigraphy of the Cretaceous-Paleogene boundary interval in the Zagros Basin (Iran, central Tethys)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587. DOI:10.1016/j.palaeo.2021.110785 .
31 SINNESAEL M, MONTANARI A, FRONTALINI F, et al. Multiproxy Cretaceous-Paleogene boundary event stratigraphy: an Umbria-marche basinwide perspective[M]// 250 million years of Earth history in central Italy: celebrating 25 years of the geological observatory of coldigioco. Geological Society of America, 2019.
32 EBINGHAUS A, JOLLEY D W, ANDREWS S D, et al. Lake sedimentological and ecological response to hyperthermals: boltysh impact crater, Ukraine[J]. Sedimentology, 2017, 64(6): 1 465-1 487.
33 GILMOUR I, GILMOUR M, JOLLEY D, et al. A high-resolution nonmarine record of an early Danian hyperthermal event, Boltysh crater, Ukraine[J]. Geology, 2013, 41(7): 783-786.
34 JOLLEY D W, DALY R J, EBINGHAUS A, et al. Centennial to decadal vegetation community changes linked to orbital and solar forcing during the Dan-C2 hyperthermal event[J]. Journal of the Geological Society, 2017, 174(6): 1 019-1 030.
35 JOLLEY D W, GILMOUR I, GILMOUR M, et al. Long-term resilience decline in plant ecosystems across the Danian Dan-C2 hyperthermal event, Boltysh crater, Ukraine[J]. Journal of the Geological Society, 2015, 172(4): 491-498.
36 MA M M, HE M, ZHAO M T, et al. Evolution of atmospheric circulation across the Cretaceous-Paleogene (K-Pg) boundary interval in low-latitude East Asia[J]. Global and Planetary Change, 2021, 199. DOI:10.1016/j.gloplacha.2021.103435 .
37 ZHAO M T, MA M M, HE M, et al. Evaluation of the four potential Cretaceous-Paleogene (K-Pg) boundaries in the Nanxiong Basin based on evidences from volcanic activity and paleoclimatic evolution[J]. Science China Earth Sciences, 2021, 64(4): 631-641.
38 MA M M, ZHANG W F, ZHAO M T, et al. Deccan Traps volcanism implicated in the extinction of non-avian dinosaurs in southeastern China[J]. Geophysical Research Letters, 2022, 49(24). DOI:10.1029/2022GL100342 .
39 GILMOUR I, JOLLEY D, KEMP D, et al. The early Danian hyperthermal event at Boltysh (Ukraine): relation to Cretaceous-Paleogene boundary events[M]// Volcanism, impacts, and mass extinctions: causes and effects. Geological Society of America, 2014.
40 ZACHOS J C, DICKENS G R, ZEEBE R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7 176): 279-283.
41 ZEEBE R E, ZACHOS J C, DICKENS G R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming[J]. Nature Geoscience, 2009, 2(8): 576-580.
42 PASSEY B H, LEVIN N E, CERLING T E, et al. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11 245-11 249.
43 BIRCH H, COXALL H K, PEARSON P N, et al. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals[J]. Marine Micropaleontology, 2013, 101: 127-145.
44 BIRCH H S, COXALL H K, PEARSON P N. Evolutionary ecology of early Paleocene planktonic foraminifera: size, depth habitat and symbiosis[J]. Paleobiology, 2012, 38(3): 374-390.
45 BIRCH H S, COXALL H K, PEARSON P N, et al. Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary[J]. Geology, 2016, 44(4): 287-290.
46 KELLER G, MATEO P, PUNEKAR J, et al. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: implications for the Anthropocene[J]. Gondwana Research, 2018, 56: 69-89.
47 SCHOENE B, EDDY M P, SAMPERTON K M, et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction[J]. Science, 2019, 363(6 429): 862-866.
48 SVENSEN H, PLANKE S, MALTHE-SØRENSSEN A, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming[J]. Nature, 2004, 429(6 991): 542-545.
49 PERCIVAL L M E, WITT M L I, MATHER T A, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: a link to the Karoo-Ferrar Large Igneous Province[J]. Earth and Planetary Science Letters, 2015, 428: 267-280.
50 PYLE D M, MATHER T A. The importance of volcanic emissions for the global atmospheric mercury cycle[J]. Atmospheric Environment, 2003, 37(36): 5 115-5 124.
51 ZAMBARDI T, SONKE J E, TOUTAIN J P, et al. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 236-243.
52 BAGNATO E, AIUPPA A, PARELLO F, et al. New clues on the contribution of Earth’s volcanism to the global mercury cycle[J]. Bulletin of Volcanology, 2011, 73(5): 497-510.
53 WITT M L L, MATHER T A, PYLE D M, et al. Mercury and halogen emissions from masaya and telica volcanoes, Nicaragua[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B6).DOI:1029/2007JB005401 .
54 SHEN J, YIN R S, ALGEO T J, et al. Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis[J]. Nature Communications, 2022, 13(1): 1-8.
55 PUNEKAR J, KELLER G, KHOZYEM H M, et al. A multi-proxy approach to decode the end-Cretaceous mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 116-136.
56 PUNEKAR J, MATEO P, KELLER G, et al. Effects of deccan volcanism on paleoenvironment and planktic foraminifera: a global survey[M]// Volcanism, impacts, and mass extinctions: causes and effects. Geological Society of America, 2014.
57 SHEN J, ALGEO T J, PLANAVSKY N J, et al. Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction[J]. Earth-Science Reviews, 2019, 195: 191-212.
58 SHEN J, FENG Q L, ALGEO T J, et al. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy[J]. Earth and Planetary Science Letters, 2020, 543. DOI:10.1016/j.epsl.2020.116333 .
59 ALEGRET L, THOMAS E. Benthic foraminifera and environmental turnover across the Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(1/2): 59-83.
60 ZACHOS J, KROON D, BLOOM P, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 208: college station, TX[R]. Ocean Drilling Program, 2004. DOI:10.2973/odp.proc.ir.208.2004 .
61 LOROCH D, DEUTSCH A, BERNDT J, et al. The Cretaceous/Paleogene (K-Pg) boundary at the J Anomaly Ridge, Newfoundland (IODP expedition 342, hole U1403B)[J]. Meteoritics & Planetary Science, 2016, 51(7): 1 370-1 385.
62 ZACHOS J C, RÖHL U, SCHELLENBERG S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5 728): 1 611-1 615.
63 ALEGRET L, THOMAS E, LOHMANN K C. End-Cretaceous marine mass extinction not caused by productivity collapse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 728-732.
64 ALVAREZ S A, GIBBS S J, BOWN P R, et al. Diversity decoupled from ecosystem function and resilience during mass extinction recovery[J]. Nature, 2019, 574(7 777): 242-245.
65 D'HONDT S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems[J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36: 295-317.
66 KROON D, ZACHOS J C, BLUM P, et al. Leg 208 synthesis: cenozoic climate cycles and excursions[J]. Leg 208 Scientific Party, 2007, 208: 1-55.
67 RENNE P R, SPRAIN C J, RICHARDS M A, et al. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact[J]. Science, 2015, 350(6 256): 76-78.
68 SCHOENE B, SAMPERTON K M, EDDY M P, et al. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction[J]. Science, 2015, 347(6 218): 182-184.
69 ZHAO Mengting, QIU Yudan, MA Mingming. A review on the hyperthermals from late Certaceous to early Paleogene[J]. Quaternary Sciences, 2022, 42(2): 512-528.
赵梦婷, 邱煜丹, 马明明. 白垩纪晚期—古近纪早期热事件研究进展[J]. 第四纪研究, 2022, 42(2): 512-528.
70 BARNET J S K, LITTLER K, KROON D, et al. A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism[J]. Geology, 2018, 46(2): 147-150.
71 KELLER G, MATEO P, MONKENBUSCH J, et al. Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction[J]. Global and Planetary Change, 2020, 194. DOI: 10.1016/j.gloplacha.2020.103312 .
72 ZHANG L M, WANG C S, WIGNALL P B, et al. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018, 46(3): 271-274.
73 LI S, GRASBY S E, ZHAO X D, et al. Mercury evidence of Deccan volcanism driving the Latest Maastrichtian Warming Event[J]. Geology, 2022, 50(10): 1 140-1 144.
74 DECONTO R M, GALEOTTI S, PAGANI M, et al. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 2012, 484(7 392): 87-91.
75 DICKENS G R, CASTILLO M M, WALKER J C. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25(3): 259-262.
76 DICKENS G R, O’NEIL J R, REA D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10(6): 965-971.
77 KURTZ A C, KUMP L R, ARTHUR M A, et al. Early Cenozoic decoupling of the global carbon and sulfur cycles[J]. Paleoceanography, 2003, 18(4). DOI:10.1029/2003PA000908 .
[1] 丁晓东, 郑立伟, 高树基. 新仙女木事件研究进展 *[J]. 地球科学进展, 2014, 29(10): 1095-1109.
阅读次数
全文


摘要