[1] |
Jessen K. Some west Baltic pollen diagrams[J].Quartär, 1938, 1: 124-139.
|
[2] |
Johnsen S, Clausen H B, Dansgaard W, et al. Irregular glacial interstadials recorded in a new Greenland ice core[J].Nature, 1992, 359(6 393): 311-313.
|
[3] |
Dansgaard W, Johnsen S, Clausen H, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J].Nature, 1993, 364(6 434): 218-220.
|
[4] |
Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J].Nature, 1993, 365(6 442): 143-147.
|
[5] |
Clark P U, Pisias N G, Stocker T F, et al. The role of the thermohaline circulation in abrupt climate change[J].Nature, 2002, 415(6 874): 863-869.
|
[6] |
Shakun J D, Carlson A E. A global perspective on last glacial maximum to Holocene climate change[J].Quaternary Science Reviews, 2010, 29(15): 1801-1816.
|
[7] |
Barnosky A D, Koch P L, Feranec R S, et al. Assessing the causes of late Pleistocene extinctions on the continents[J].Science, 2004, 306(5 693): 70-75.
|
[8] |
Fiedel S. Sudden deaths: The chronology of terminal Pleistocene megafaunal extinction[M]∥Haynes G, et al, eds.American Megafaunal Extinctions at the end of the Pleistocene. Dordrecht, The Netherlands: Springer, 2009: 21-37.
|
[9] |
Firestone R B, West A, Kennett J P, et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling[J]. Proceedings of the National Academy of Sciences, 2007, 104(41): 16016-16021.
|
[10] |
Meltzer D J, Holliday V T. Would North American paleoindians have noticed Younger Dryas age climate changes?[J].Journal of World Prehistory, 2010, 23(1): 1-41.
|
[11] |
Carlson A E. The Younger Dryas climate event[M]∥Elias S A, et al, eds.The Encyclopedia of Quaternary Science 3 (2nd). Columbia, USA: Elsevier, 2013: 126-134.
|
[12] |
Liu Dianbing. Recent progress on studies of the spatial structure and dynamics for the Younger Dryas event[J].Geological Review, 2012, 58(2): 341-349.
|
|
[刘殿兵. 新仙女木(YD) 事件区域特征及动力机制研究新进展[J].地质论评, 2012, 58(2): 341-349.]
|
[13] |
Fiedel S J. The mysterious onset of the Younger Dryas[J].Quaternary International, 2011, 242(2): 262-266.
|
[14] |
Li Chaoliu, Kang Shichang. Progress in studies on the Younger Dryas event and its trigger mechanisms[J].Journal of Glaciologyand Geocryology, 2006, 28(4): 568-576.
|
|
[李潮流, 康世昌. 全球新仙女木事件的恢复及其触发机制研究进展[J].冰川冻土, 2006, 28(4): 568-576.]
|
[15] |
Stuiver M, Grootes P M. GISP2 oxygen isotope ratios[J].Quaternary Research,2000, 53(3): 277-284.
|
[16] |
Southon J. A first step to reconciling the GRIP and GISP2 ice-core chronologies, 0-14,500 yr BP[J].Quaternary Research, 2002, 57(1): 32-37.
|
[17] |
Steffensen J P, Andersen K K, Bigler M,et al. High-resolution Greenland ice core data show abrupt climate change happens in few years[J].Science, 2008, 321(5 889): 680-684.
|
[18] |
Rach O, Brauer A, Wilkes H, et al. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe[J].Nature Geoscience, 2014, 7(2): 109-112.
|
[19] |
Brauer A, Haug G H, Dulski P, et al. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period[J].Nature Geoscience, 2008, 1(8): 520-523.
|
[20] |
Ma Z, Cheng H, Tan M, et al. Timing and structure of the Younger Dryas event in northern China[J].Quaternary Science Reviews, 2012, 41: 83-93.
|
[21] |
Wang Y, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J].Science, 2001, 294(5 550): 2345-2348.
|
[22] |
Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J].Earth and Planetary Science Letters, 2005, 233(1): 71-86.
|
[23] |
Liu D, Wang Y, Cheng H, et al. A detailed comparison of Asian Monsoon intensity and Greenland temperature during the Allerød and Younger Dryas events[J].Earth and Planetary Science Letters, 2008, 272(3): 691-697.
|
[24] |
Hughen K A, Overpeck J T, Lehman S J, et al. Deglacial changes in ocean circulation from an extended radiocarbon calibration[J].Nature, 1998, 391(6 662): 65-68.
|
[25] |
Goslar T, Arnold M, Tisnerat-Laborde N, et al. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes[J].Nature, 2000, 403(6 772): 877-880.
|
[26] |
Renssen H, Geel B, Plicht J, et al. Reduced solar activity as a trigger for the start of the Younger Dryas?[J].Quaternary International,2000, 68: 373-383.
|
[27] |
Hughen K A, Southon J R, Lehman S J, et al. Synchronous radiocarbon and climate shifts during the last deglaciation[J].Science, 2000, 290(5 498): 1951-1954.
|
[28] |
Hua Q, Barbetti M, Fink D, et al. Atmospheric 14C variations derived from tree rings during the early Younger Dryas[J].Quaternary Science Reviews, 2009, 28(25): 2982-2990.
|
[29] |
Reimer P J, Baillie M G, Bard E, et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 yeats cal BP[J]. 2009.
|
[30] |
Muscheler R, Kromer B, Björck S, et al. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas[J].Nature Geoscience, 2008, 1(4): 263-267.
|
[31] |
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J].Radiocarbon, 2013, 55(4): 1869-1887.
|
[32] |
Cuffey K M, Clow G D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition[J].Journal of Geophysical Research: Oceans, 1997, 102(C12): 26 383-26 396.
|
[33] |
Alley R B. The Younger Dryas cold interval as viewed from central Greenland[J].Quaternary Science Reviews, 2000, 19(1): 213-226.
|
[34] |
Severinghaus J P, Sowers T, Brook E J, et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice[J].Nature, 1998, 391(6 663): 141-146.
|
[35] |
Kelly M A, Lowell T V, Hall B L, et al. A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: Implications for seasonality during lateglacial time[J].Quaternary Science Reviews, 2008, 27(25): 2273-2282.
|
[36] |
Denton G, Alley R, Comer G, et al. The role of seasonality in abrupt climate change[J].Quaternary Science Reviews, 2005, 24(10/11): 1159-1182.
|
[37] |
Brauer A, Endres C, Günter C, et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany[J].Quaternary Science Reviews, 1999, 18(3): 321-329.
|
[38] |
Genty D, Blamart D, Ghaleb B, et al. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles-comparison with Chinese and South Hemisphere stalagmites[J].Quaternary Science Reviews, 2006, 25(17): 2118-2142.
|
[39] |
von Grafenstein U, Erlenkeuser H, Brauer A, et al. A mid-European decadal isotope-climate record from 15,500 to 5000 years BP[J].Science, 1999, 284(5 420): 1654-1657.
|
[40] |
Heiri O, Cremer H, Engels S,et al. Lateglacial summer temperatures in the Northwest European lowlands: A chironomid record from Hijkermeer, the Netherlands[J].Quaternary Science Reviews, 2007, 26(19): 2420-2437.
|
[41] |
Bakke J, Lie Ø, Heegaard E, et al. Rapid oceanic and atmospheric changes during the Younger Dryas cold period[J].Nature Geoscience, 2009, 2(3): 202-205.
|
[42] |
Ivy-Ochs S, Kerschner H, Maisch M, et al. Latest Pleistocene and Holocene glacier variations in the European Alps[J].Quaternary Science Reviews, 2009, 28(21): 2137-2149.
|
[43] |
Andersen B G, Lundqvist J, Saarnisto M. The Younger Dryas margin of the Scandinavian ice sheet-An introduction[J].Quaternary International, 1995, 28: 145-146.
|
[44] |
Lohneø S, Mangerud J, Svendsen J I. Timing of the younger dryas glacial maximum in western Norway[J].Journal of Quaternary Science, 2012, 27(1): 81-88.
|
[45] |
Bard E. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic[J].Science, 2000, 289(5 483): 1 321-1 324.
|
[46] |
Benway H M, McManus J F, Oppo D W, et al. Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation[J].Quaternary Science Reviews, 2010, 29(23): 3336-3345.
|