地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1110 -1119. doi: 10.11867/j.issn.1001-8166.2014.10.1110

综述与评述 上一篇    下一篇

SLCPs及其气候效应研究进展
尹晓梅 1, 2, 石广玉 1   
  1. 1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京 100029; 2. 中国科学院大学, 北京 100049
  • 收稿日期:2014-07-12 出版日期:2014-10-20
  • 基金资助:

    国家自然科学基金重点项目“大气棕色云的辐射增温效应”(编号:41130104); 国家自然科学基金项目“大气气溶胶携带的微生物在输送过程中的变性研究”(编号:41475136)资助

Advances in Studies of Short-lived Climate Pollutants

Yin Xiaomei 1, 2, Shi Guangyu 1   

  1. 1. Institute of Atmospheric Physics, Chinese Academy of Sciences. Beijing 100029, China; 2. University of the Chinese Academy of Sciences. Beijing 100049, China
  • Received:2014-07-12 Online:2014-10-20 Published:2014-10-20

CO2造成全球55%~60%的辐射强迫,迅速有效的减排是对抗气候变化的必要措施,但必须与造成另外40%~45%气候效应的短期气候污染物(SLCPs)减排并行。SLCPs直接或间接地影响地球气候系统的辐射平衡及温度变化,危害生态系统和人类社会安全。控制SLCPs的排放能在短时间内缓解近期全球变暖和海平面上升,弥补CO2减排效应的滞后。在调研大量文献的基础上,首先论述了SLCPs研究的意义所在,归纳了SLCPs减排对全球气候变化的缓解效应。然后对SLCPs 4种代表物质——黑碳、甲烷、对流层臭氧和氢氟碳化物的物理及光学特性、排放变化和时空分布及未来发展可能的趋势进行了分析,在此基础上总结了分别针对4种物质的减排方案。阐述了4种SLCPs物质在不同机制下产生的直接和间接气候效应,以及对应的气候效应发生的机理和相关的大气化学过程,最后总结了国内外在研究SLCPs的大气浓度、区域排放、气候效应、辐射强迫及减排措施的研究方法,指出了研究中存在的不确定性因素及解决方案。

Pollutants that contribute significantly to climate change over days to decades timescales have been defined as Short-Lived Climate Pollutants (SLCPs). SLCPs are climate forcers and environment pollutants, which have an effect on earth’s radiative balance, influence the global temperature and climate system through different ways. They also have adverse effects on the ecosystem and human society directly and indirectly. Mitigation emissions of the four SLCPs, black carbon, methane, troposphetic ozone and hydrofluorocarbons are the most effective strategy for constraining global warming and the rising of sea level as an important complement to reducing long-lived warming gases in the near term. In this paper, we summarized the significance of SLCPs research, pointed out the potential benefits of SLCPs emission reductions. They offered important policy opportunities to reduce radiative forcing and air pollution effects in short term. Then, we explained the physical and optical characteristics of SLCPs, illustrated how they contributed to the regional and global climate by interactions with clouds, ice, snow or other aerosols, discussed the present and future trends of their distribution and radiative forcing, summed up their direct and indirect climate effects and mechanism that are comprehensive in inclusion of all known and relevant processes and proved estimates of main forcing terms. At the same time, the advances in research methods and SLCPs climate effects as well as changes in climate forcing were also introduced in this article. We concluded the potential trends of SLCPs concentration in the atmosphere, pointed out the uncertainties factors in researches and relevant potential measures to reduce harmful emissions, which can slow the rate of climate change and protect the people and regions most vulnerable over the next several decades.

中图分类号: 

[1] Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC[M]. United Kingdom and New York, USA:Cambridge University Press, 2013.
[2] Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC[M]. United Kingdom and New York, USA:Cambridge University Press, 2007.
[3] Climate Change 2001: The Physical Science Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC[M]. United Kingdom and New York, USA:Cambridge University Press, 2001.
[4] HFCs: A Critical Link in Protecting Climate and the Ozone Layer[M]. Kenya, Nairobi:United Nations Environment Programme(UNEP), 2011.
[5] Nations Environment Programme & World Meteorological Organization). Integrated Assessment of Black Carbon and Tropospheric Ozone: Summery for Decision Makers[M].London: UNON/Publishing Section/Nairobi, 2011.
[6] Xiangwan. Two basic issues on tackling climate change:The scientificity of strategy addressing climate change and its significance for China’s development[J]. Advances in Earth Science, 2014,29(4):438-442.[杜祥琬. 应对气候变化的两个基本问题——应对气候变化战略的科学性及对中国发展的意义[J]. 地球科学进展,2014,29(4):438-442.]
[7] States Environmental Protection Agency). Department of the Interior, Environment, and Related Agencies Appropriations Act. Report to Congress on Black Carbon(External peer Review Draft, 2010,EPA-450/D-11-001)[M].Washington DC, USA:EPA,Publication No. EPA-450/R-12-001. 2012.http:∥cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryID=240148.
[8] D S, Dentener F J, Schultz M G, et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone[J]. Journal of Geophysical Research, 2006, 111: D08301, doi: 10.1029/2005JD006338.
[9] M. Image Gallery: SCIAMACHY Methane[EB/OL]. (2013-09-26)[2014-08-09]. http:∥www.iup.uni-bremen.de/sciamachy/NIR- NADIR_WFM_DOAS/wfmd_image_gallery_ch4.html.
[10] Aixue, Xu Yangyang, Claudia T, et al. Mitigation of short-lived climate pollutants slows sea-level rise[J]. Nature Climate Change, 2013, 3:730-734.
[11] ce-study-group-report-using-pay-for-performance-mechanisms-finance-methane-abatement.
[12] V, Xu Y. The copenhagen accord for limiting global warming: Criteria, constraints, and available avenues[J]. Proceeding of National Academy of Sciences of the United States of America, 2010, 107:8 055-8 056.
[13] D, Kuylenstierna J C, Vignati E, et al. Simultaneously mitigating near-term climate change and improving human health and food security[J]. Science, 2012, 335:183.
[14] Li, Wang Yaqiang, Chen Zhenlin, et al. Progress of black carbon aerosol research I: Emission, removal and concentration[J]. Advances in Earth Science, 2006, 21(4):352-360.[许黎, 王亚强, 陈振林,等. 黑碳气溶胶研究进展I:排放、清除和浓度[J]. 地球科学进展, 2006, 21(4):352-360.]
[15] J S, Saxena V K, Wenny B N. Temporal trends of black carbon concentrations and regional climate forcing in the southeastern United States[J]. Atmospheric Environment, 2001, 35(19):3 293-3 302.
[16] T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research, 2013, 118(11):5 380-5 552.
[17] T, Ramanathan V, Hansen J E, et al. Large historical changes of fossil-fuel black carbon aerosols[J]. Geophysical Research Letters, 2002, 30(6):1 324, doi: 10.1029/2002GL016345.
[18] M Z. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health[J]. Journal of Geophysical Research, 2010, 115:D14209, doi: 10.1029/2009JD013795.
[19] V, Carmichael G. Global and regional climate changes due to black carbon[J]. Nature, 2008, 1: 221-227.
[20] A, Schonlinner M. Multi-angle absorption photometry—A new method for the measurement of aerosol light absorption and atmospheric black carbon[J]. Journal of Aerosol Science, 2004, 35(4): 421-441.
[21] R, Sherwood S. The impact of natural versus anthropogenic aerosols on atmospheric circulation in the community atmosphere model[J]. Climate Dynamics, 2011, 36:1 959-1 978.
[22] J, Sato M, Ruedy R, et al. Efficacy of climate forcings[J]. Journal of Geophysical Research-Atmospheres, 2005, D18(110): D18104, doi: 10.1029/2005JD005776.
[23] M, Salawitch R J, vonder Gathen P, et al. Arctilc ozone loss and climate change[J]. Geophysical Research Letters, 2004, 31(4): L04116, doi: 10.1029/2003GL018844.
[24] D, Faluvegi G, Lacis A, et al. Role of tropospheric ozone increases in 20th-century climate change[J]. Journal of Geophysical Research, 2006, 111: D08302, doi: 10.1029/2005JD006348.
[25] R. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 2004, 38: 3 431-3 442.
[26] O. Modelling the global tropospheric ozone budget: Exploring the variability in current models[J]. Atmospheric Chemistry Physics, 2007, 7:2 643-2 660.
[27] Guangyu. Radiative forcing and greenhouse climate effect of atmospheric trace gases[J]. Science in China(Series B), 1991, 7: 776-784.[石广玉. 大气微量气体的辐射强迫与温室气候效应[J]. 中国科学:B辑,1991, 7: 776-784.]
[28] J E, Sato M. Trends of measured climate forcing agents[J]. Proceeding of National Academy of Science,2001, 98:14 778-14 783.
[29] V. Climatic effects of ozone change: A review[J]. Low Latitude Aeronomical Processes, 1980, 8: 223-236.
[30] W C, Pinto J P, Yung Y L. Climatic effects due to halogenated components in the Earth’s atmosphere[J]. Journal of Atmospheric Science, 1980, 37:333-338.
[31] V, Dickinson R E. The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system[J]. Journal of Atmospheric Science, 1979, 36:1 084-1 104.
[32] J, Ramanathan V, Cryezen P J, et al. Tropospheric ozone and climate[J]. Nature, 1979, 282:818-820.
[33] S, Cox P M, Collins W J, et al. Huntingford: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink[J]. Nature, 2007, 448:791-794.
[34] de R. Sylvain Caillol.Fighting global warming: The potential of photocatalysis against CO 2 , CH 4 , N 2 O, CFCs, tropospheric O 3 , BC and other major contributors to climate change[J]. Journal of Photochemistry and Photobiology C, 2011, 12: 1-19.
[35] M, Gregson K, Marshall S. Global methane emissions and its sensitivity to climate change[J]. Atmospheric Environment, 1998, 32: 3 293-3 299.
[36] M E L, Massoud M. Methane emissions from wastewater management[J]. Environmental Pollution, 2001,(114): 177-185.
[37] Baiqing, Yao Tandong, Liu Xianqin, et al. Atmospheric methane recorded in ice cores[J]. Journal of Glaciology and Geocryology, 2006, 27(3): 360-367.[徐柏青, 姚檀栋, 刘先勤,等. 大气甲烷的冰芯记录[J]. 冰川冻土, 2006, 27(3): 360-367.]
[38] R, Chappellaz J, Stocker T F, et al. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores[J]. Science, 2005, 310: 1 317-1321.
[39] M Z. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health[J]. Journal of Geophysical Research, 2010, 115:D14209, doi: 10.1029/2009JD013795.
[40] J, Barnola J M, Raynaud D, et al. Ice-core record of atmospheric methane over past 160000 years[J]. Nature, 1990, 345: 127-131.
[41] D J, Hayhoe K. Atmospheric methane and global change[J]. Earth-Science Review, 2002, 57:177-210.
[42] O, Friedlingstein P, Collins B, et al. The indirect global warming potential and global temperature change potential due to methane oxidation[J]. Environta Research Letters, 2009, 4(4), doi: 10.1088/1748-9326/4/4/044007.
[43] W J, Sitch S, Boucher O. How vegetation impacts affect climatemetrics for ozone precursors[J]. Journal of Geophysical Research, 2010, 115:D23308, doi: 10.1029/2010JD014187.
[44] Protection Agency Office of Policy, Planning and Evaluation. Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2010[M]. Washington DC: US. Environmental Protection Agency, 2012.
[45] D W, Hegglin M I. Twenty questions and answers about the ozone layer 2010 update: Scientific assessment of ozone depletion 2010[R]∥World Meteorological Orgnisation Global Ozone Research and Monitoring Project-Report. Switzerland:[45] World Meterological Organization, Geneva, 2011.
[46] G J M, Ravishankara A R, Miller M K, et al. Preserving montreal protocol climate benefits by limiting HFCs[J]. Science, 2012, 335:922-923.
[47] G J M, Fahey D W, Daniel J S, et al. The large contribution of projected HFC emissions to future climate forcing[J]. Proceeding of National Academy of Sciences, 2009, 106(27):10 949-10 954.
[48] T J, Schneider W F, Worsnop D R, et al. The environmental impact of CFC replacements—HFCs and HCFCs[J]. Environmental Science & Technology, 1994, 28 (7): 320A-326A.
[49] Tsai. An overview of environmental hazards and exposure risk of Hydrofluorocarbons (HFCs)[J]. Chemosphere, 2005, 61:1 539-1 547.
[50] D, Bauer S E, Del Genio A, et al. Coupled aerosol-chemistry-climate twentieth-century transient model investigation: Trends in short-lived species and climate responses[J]. Journal of Climate, 2011, 24(11): 2 693-2 714.
[51] T, Fuglestvedt J, Myhre G, et al. Abatement of greenhouse gases: Does location matter?[J]. Climate Change, 2006, 74:377-411.
[52] S H, Seinfeld J H. Climate response of direct radiative forcing of anthropogenic black carbon[J]. Journal of Geophysical Research, 2005, 110: D11102, doi: 10. 1029/2004 JD005441.
[53] Y, Liou K N, Xue Y, et al. Climatic effects of different aerosol types in China simulated by the UCLA general circulation model[J]. Journal of Geophysical Research, 2006, 111: D15201, doi: 10.1029/2005JD006312.
[54] C. A modeling study on the climate impacts of black carbon aerosols[J]. Journal of Geophysical Research, 2004, 109: D03106, doi: 10.1029/2003JD004084.
[55] J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceeding of National Academy Science of the United States of America, 2004, 101 (2): 423-428.
[56] M Z. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming[J]. Journal of Geophysical Research, 2002, 107(D19): 4 410, doi: 10.1029/2001JD001376.
[57] S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297: 2 250-2 253.
[58] Yihui. Climate change and its impact on China’s precipitation[J]. Climate Change Communication, 2003, 2 (2): 9-10.[丁一汇. 气候变化及其对中国降水的影响[J]. 气候变化通讯, 2003, 2 (2): 9-10.]
[59] Q. Abrupt change of themid-summer climate in central east China by the influence of atmospheric pollution[J]. Atmospheric Environment, 2001, 35: 5 029-5 040.
[60] C, Ramanathan V. Relationship between trends in land precipitation and tropical SST gradient[J]. Geophysical Research Letters, 2007, 34, doi: 10.1029/2007GL030491.
[61] K M, Kim M K, Kim K M. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau[J]. Climate Dynamics, 2006, 26:855-864.
[62] Zhiwen, Zhang Hua, Guo Pinwen. Effects of black carbon aerosol in South Asia on Asian summer monsoon[J].Plateau Meteorology,2009,28(2):419-424.[王志文, 张华, 郭品文. 南亚地区黑碳气溶胶对亚洲夏季风的影响[J]. 高原气象, 2009, 28(2):419-424.]
[63] Y H. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)[J]. Atmospheric Chemistry and Physics, 2013, 13:2 607-2 634.
[64] Changming, Dang Suzhen, Wang Zhonggen, et al. Research progess of black carbon in snow and ice[J]. South-to-North Water Diversion and Water Science & Technology, 2012, 10(2):44-51.[刘昌明, 党素珍, 王中根,等. 雪冰中黑碳的研究进展[J]. 南水北调与水利科技, 2012, 10(2):44-51.]
[65] Jing, Xiao Cunde, Qin Dahe, et al. Climate forcing of black carbon in snow and ice[J]. Advances in Climate Change Research, 2006, 2(5):238-241.[明镜, 效存德,秦大河,等. 雪冰黑碳的气候效应研究[J]. 气候变化研究进展, 2006, 2(5):238-241.]
[66] H. Normal atmosphere: Large radical and formaldehyde concentrations predicted[J]. Science, 1971, 173:141-143.
[67] C E. Global ozone budget and exchange between stratosphere and troposphere[J]. Tellus, 1962, 14:364-337.
[68] P J. Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air[J]. Tellus, 1974, 26:47-57.
[69] D A, Augustsson T R, Levine J S. The photochemistry of anthropogenic non-methane hydrocarbons in the troposphere[J]. Journal of Geophysical Research, 1983, 88:6 683-6 695.
[70] Chao, Zhou Xiuji. A regional model study of the variations and distributions of ozone and its precursors on eastern Asia and west Pacific Ocean regions[J]. Acta Meteorological Science, 1994, 8(2):195-202.
[71] V, Cicerone R J, Singh H B. Trace gas trends and their potential role in climate change[J]. Journal of Geophysical Research, 1985, 90(D3): 5 547-5 566.
[72] Z, Dabdub D, Seinfeld J H. Chemical coupling between atmospheric ozone and particulate matter[J]. Science, 1997, 227:116-119.
[73] H S, Zender C S. Miner dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake[J]. Journal of Geophysical Research, 2003, 108(D21):4 672, doi: 10.1029/2002JD003143.
[74] K W, Shindell D T, Worden H M, et al. Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations[J]. Atmospheric Chemistry and Physics, 2013, 13: 4057-4072.
[75] D S, Young P J, Naik V, et al. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)[J]. Atmospheric Chemistry and Physics, 2013, 13:3 063-3085.
[76] Mingxing. CH 4 Emission from Rice Paddy Soils in China[M]. Beijing: Science Press, 2001.
[77] Ying, Xiong Xiaozhen, Tao Jinhua, et al. Methane retrieval from atmospheric infrared sounder using EOF-based regression algorithm and its validation[J]. Chinese Science Bulletin,2014,59(14):1508-1518.
[78] A, Miller C C, Palmer P I, et al. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model[J]. Journal of Geophysical Research, 2011, 116: D20306, doi: 10.1029/2011JD015964.
[79] Dingyuan, Liao Hong, Wang Yuesi. Simulated spatial distribution and seasonal variation of atmospheric methane over China: Contributions from key sources[J]. Advances in Atmospheric Sciences, 2014, 31: 283-292.
[80] Shi, Agnew J. Catalytic combustion of coal mine ventilation air methane[J]. Fuel, 2006, 85(9): 1 201-1 210.
[81] G J M, Fahey D W, Daniel J S, et al. The large contribution of projected HFC emissions to future climate forcing[J]. Proceeding of National Academy of Sciences of the United States of America, 2009, 106(27):10949-10954, doi: 10.1073/pnas.0902817106.
[82] M A K, Rasmussen R A. Cause of increasing atmospheric methane: Depletion of hydroxyl radicals and the rice of emission[J]. Atomospheric Environment, 1985, 19:397.
[83] Chaolin, Song Changqing. Research results on study on the column density and vertical variations of atmospheric methane over China[J]. Advances in Earth Science, 2013, 28(11): 1 285-1 286.[张朝林, 宋长青.中国地区整层大气甲烷柱总量及其垂直分布特征研究[J].地球科学进展, 2013, 28(11): 1 285-1 286.]
[84] Ruoyu, He Jinhai, Zhang Hua. Overview of researches on global warming potential of greenhouse gases[J]. Journal of Anhui Agricultural Science, 2011, 39(28):17416-17422.[张若玉, 何金海, 张华. 温室气体全球增温潜能的研究进展[J]. 安徽农业科学, 2011, 39(28):17 416-17422.]
[85] P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[M]∥Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. United Kingdom and New York, USA:Cambridge University Press, 2007.
[86] S A. HFCs in the atmosphere: Concentrations, emissions and impacts[C]//ASHRAE-NIST Refrigerants Conference, Gaithersburg, Maryland, 2012.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[9] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 李侠祥, 刘昌新, 王芳, 郝志新. 中国投资对“一带一路”地区经济增长和碳排放强度的影响[J]. 地球科学进展, 2020, 35(6): 618-631.
[12] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[13] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[14] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[15] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
阅读次数
全文


摘要