1 |
Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013.
|
2 |
Le Quéré C, Andrew R M, Friedlingstein P, et al. Global carbon budget 2018[J]. Earth System Science Data, 2018, 10(4): 2 141-2 194.
|
3 |
Xinhua News Agency. Enhanced?Actions?on?Climate?Change:?China's?Intended?Nationally?Determined?Contributions [EB/OL]. (2015-06-30). [2020-08-08]. .
URL
|
|
新华社. 强化应对气候变化行动——中国国家自主贡献[EB/OL]. ([2015-06-30). [2020-08-08]. .
URL
|
4 |
IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan, 2006.
|
5 |
Liu Zhu, Guan Dabo, Wei Wei, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7 565):335-338.
|
6 |
Marland G, Boden T A, Andres R J. Global, Regional, and National Fossil Fuel CO2 Emissions, Trends:A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center[R]. Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, 2007.
|
7 |
Gregg J S, Robert J A, Gregg M. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production[J]. Geophysical Research Letters, 2008, 35(8):L08806.
|
8 |
Ciais P, Paris J D, Marland G, et al. The european carbon balance. Part 1: Fossil fuel emissions[J]. Global Change Biology, 2010, 16: 1 395-1 408.
|
9 |
Godwin H. Half-life of radiocarbon[J]. Nature, 1962, 195(4 845):984.
|
10 |
Suess H E. Radiocarbon concentration in modern wood[J]. Science, 1955, 122(3 166): 415.
|
11 |
Turnbull J C, Miller J B, Lehman S J, et al. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange[J]. Geophysical Research Letters, 2006, 33(1):L01817.
|
12 |
Stuiver M, Polach H A. Discussion: Reporting of 14C data[J]. Radiocarbon, 1977, 19(3): 355-363.
|
13 |
Levin I, Kromer B, Schmidt M, et al. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations[J]. Geophysical Research Letters, 2003, 30(23):2 194.
|
14 |
Hsueh D Y, Krakauer N Y, Randerson J T, et al. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America[J]. Geophysical Research Letters, 2007, 34(2):L02816.
|
15 |
Kuc T, Rozanski K, Zimnoch M, et al. Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in Central Europe: Long-term changes of regional anthropogenic fossil CO2 emissions[J]. Radiocarbon, 2007, 49(2):807-816.
|
16 |
Miller J B, Lehman S J, Montzka S A, et al. Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D8): D08302.
|
17 |
Levin I, Schuchard J, Kromer B, et al. The continental European suess effect[J]. Radiocarbon, 1989, 31(3): 431-440.
|
18 |
Riley W J, Hsueh D Y, Randerson J T, et al. Where do fossil fuel carbon dioxide emissions from california go? An analysis based on radiocarbon observations and an atmospheric transport model[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G4). DOI:10.1029/2007JG000625.
doi: 10.1029/2007JG000625
|
19 |
Turnbull J, Rayner P, Miller J, et al. On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D22). DOI:10.1029/2009jd012308.
doi: 10.1029/2009jd012308
|
20 |
Djuricin S, Xu X, Pataki D E. The radiocarbon composition of tree rings as a tracer of local fossil fuel emissions in the Los Angeles Basin: 1980-2008[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12). DOI:10.1029/2011JD017284.
doi: 10.1029/2011JD017284
|
21 |
Bozhinova D, van der Molen M K, Krol M C, et al. Simulating the integrated Δ14CO2 signature from Anthropogenic emissions over Western Europe[J]. Atmospheric Chemistry and Physics, 2013, 13(11): 30 611-30 652.
|
22 |
Wenger A, Pugsley K, O'Doherty S, et al. Atmospheric radiocarbon measurements to quantify CO2 emissions in the UK from 2014 to 2015[J]. Atmospheric Chemistry and Physics, 2019, 19: 14 057-14 070.
|
23 |
Basu S, Lehman S J, Miller J B, et al. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2020, 117(24): 13 300-13 307.
|
24 |
Newman S, Xu X, Gurney K R, et al. Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles Megacity[J]. Atmospheric Chemistry and Physics, 2016, 16(6):3 843-3 863.
|
25 |
Zhou Weijian, Niu Zhenchuan, Wu Shugang, et al. Fossil fuel CO2 traced by radiocarbon in fifteen Chinese cities[J]. Science of the Total Environment, 2020, 729: 138 639.
|
26 |
Yang Wenfeng. Analysis of pollution meteorological conditions in Xi'an[J]. Journal of Shaanxi Meteorology, 2003, 5:18-20.
|
|
杨文峰. 西安市污染气象条件分析[J]. 陕西气象, 2003, 5: 18-20.
|
27 |
Wilson A, Grinsted M. 12C/13C in cellulose and lignin as palaeothermometers[J]. Nature, 1977, 265:133-135.
|
28 |
Hou Yaoyao, Zhou Weijian, Cheng Peng, et al. 14C-AMS measurements in modern tree rings to trace local fossil fuel-derived CO2 in the Greater Xi'an area, China[J]. Science of the Total Environment, 2020, 715: 136 669.
|
29 |
Niu Zhenchuan, Zhou Weijian, Wu Shugang, et al. Atmospheric fossil fuel CO2 traced by Δ14C in Beijing and Xiamen, China: Temporal variations, inland/coastal differences and influencing factors[J]. Environmental Science & Technology, 2016, 50(11):5 474-5 480.
|
30 |
Ding Ping, Shen Chengde, Yi Weixi, et al. Fossil-Fuel-Derived CO2 contribution to the urban atmosphere in Guangzhou, South China, estimated by 14CO2 observation, 2010-2011[J]. Radiocarbon, 2013, 55(2/3):791-803.
|
31 |
Zhou Weijian, Wu Shugang, Huo Wenwen, et al. Tracing fossil fuel CO2 using Δ14C in Xi'an City, China[J]. Atmospheric Environment, 2014, 94(0):538-545.
|
32 |
Raducan G, Stefan S. Characterization of traffic-generated pollutants in Bucharest [J]. Atmósfera, 2009, 22(1): 99-110.
|
33 |
Gurney K R, Razlivanov I, Song Y, et al. Quantification of fossil fuel CO2 Emissions on the building/street scale for a large US City [J]. Environmental Science & Technology, 2012, 46(21): 12 194-12 202.
|
34 |
Chen Han, Huang Ye, Shen Huizhong, et al. Modeling temporal variations in global residential energy consumption and pollutant emissions [J]. Applied Energy, 2016, 184:820-829.
|
35 |
Feng Tian, Zhou Weijian, Wu Shugang, et al. High-resolution simulation of wintertime fossil fuel CO2 in Beijing, China: Characteristics, sources, and regional transport [J]. Atmospheric Environment, 2019, 198: 226-235.
|
36 |
Xie Shaowen. Radiocarbon (14C) Tracing the Vertical Variations of Fossil Fuel CO142 in Typical Area of Shaanxi Province [D]. Beijing: University of Chinese Academy of Sciences, 2016.
|
|
谢邵文. 陕西省典型区域化石源CO2垂直高度变化的14C示踪研究[D]. 北京:中国科学院大学, 2016.
|
37 |
Niu Zhenchuan, Zhou Weijian, Cheng Peng, et al. Observations of atmospheric Δ14CO2 at the global and regional background sites in China: Implication for fossil fuel CO2 inputs [J]. Environmental Science & Technology, 2016, 50(22):12 122-12 128.
|
38 |
Niu Zhenchuan, Zhou Weijian, Feng Xue, et al. Determining diurnal fossil fuel CO2 and biological CO2 by Δ14CO2 observation on certain summer and winter days at Chinese background sites[J]. Science of the Total Environment, 2020, 718: 136 864.
|
39 |
Feng Tian, Zhou Weijian, Wu Shugang, et al. Simulations of summertime fossil fuel CO2 in the Guanzhong Basin, China [J]. Science of the Total Environment, 2018, 624: 1 163-1 170.
|
40 |
Xi Xianting, Ding Xingfang, Fu Dongpo, et al. Regional Δ14C patterns and fossil fuel derived CO2 distribution in the Beijing area using annual plants [J]. Chinese Science Bulletin, 2011, 56(16): 1 721-1 726.
|
41 |
An Zhisheng, Huang Rujing, Zhang Renyi, et al. Severe haze in Northern China: A synergy of anthropogenic emissions and atmospheric processes [J]. Proceedings of the National Academy of Sciences, 2019, 116(18): 8 657-8 666.
|
42 |
Xiong Xiaohu, Zhou Weijian, Wu Shugang, et al. Two-year observation of fossil fuel carbon dioxide spatial distribution in Xi'an City[J]. Advances in Atmospheric Sciences, 2020, 37(6):569-575.
|