地球科学进展 ›› 2015, Vol. 30 ›› Issue (4): 425 -432. doi: 10.1167/j.issn.1001-8166.2015.04.0425

上一篇    下一篇

碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展
曹芳( ), 章炎麟 *( )   
  1. 南京信息工程大学大气环境中心,江苏 南京 210044
  • 收稿日期:2014-12-19 修回日期:2015-03-25 出版日期:2015-04-20
  • 通讯作者: 章炎麟 E-mail:caofangle@163.com;zhangyanlin@nuist.edu.cn
  • 基金资助:
    江苏高校优势学科建设工程项目(PAPD);教育部长江学者和创新团队发展计划项目“陆地碳水循环与气候变化”(编号:PCSIRT1147)资助

Principle, Method Development and Application of Radiocarbon ( 14C)-based Source Apportionment of Carbonaceous Aerosols: A Review

Fang Cao( ), Yanlin Zhang( )   

  1. Yale-NUIST Center on Atmospheric Environmental, Nanjing University of information Science and Technology, Nanjing, 210044, China
  • Received:2014-12-19 Revised:2015-03-25 Online:2015-04-20 Published:2015-04-20

碳质气溶胶(或颗粒物)作为大气气溶胶的重要组成,对环境、气候和人类健康造成了巨大的危害。其主要组成成分有机碳和元素碳具有不同的来源特征,且对人类健康和气候系统的影响也具有明显的差异。放射性碳同位素(14C)不仅能定性区分生物源和化石源,还能定量分析不同来源对有机碳和元素碳的贡献比率。重点评述了放射性碳同位素法对气溶胶源解析的技术原理、分离测试方法以及在我国应用的研究进展;最后提出了国内研究应加强的领域和利用放射性碳同位素法研究大气气溶胶的发展趋势。

Carbonaceous aerosols (or particles), which constitute one of most significant contribution of the atmospheric aerosols, are of worldwide concern due to their effects on environment, climate and human health. Two sub-fractions of total carbonaceous content of aerosols, Organic Carbon (OC) and Elemental Carbon (EC), not only differ in their origins but also in their effects on climate and human health. Radiocarbon (14C), as a radioactive isotope of carbon, has been proven to be a powerful tool of qualification and quantification of fossil and non-fossil contributions to OC and EC. This review introduces the principal and recent progress in the development of isolation method of different carbonaceous fraction for 14C measurement and compiles the results from 14C based source apportionment in China. Finally, the review concludes with some comments on current issues and future prospects using 14C as a source apportionment tool of atmospheric aerosols.

中图分类号: 

图1 碳质气溶胶 14C测定在线制样系统示意图 [ 23 ]
Fig. 1 Two-step heating system for radiocarbon ( 14C) determination of carbonaceous aerosols [ 23 ]
图2 有机碳和元素碳分析仪与 14C制样系统对接示意图 [ 25 ]
Fig. 2 Set-up of coupling the OC/EC analyser to the 14C sample preparation line [ 25 ]
表1 14C制样用的有机碳/元素碳分离及测定方法(Swiss_4S)的分析参数及其与EUSSAR2,NIOSH和IMPROVE方法的对比 [ 25 ]
Table 1 The Swiss_4S protocol for determination and isolation of OC/EC for 14C analysis and its comparison with the EUSAAR_2, modified NIOSH and IMPROVE protocols [ 25 ]
图3 典型气溶胶样品(如北京冬季PM 2.5)的热光法Swiss_4S分析谱图
Fig. 3 Thermograms of a typical aerosol sample (Beijing, PM 2.5) using thermal-optical Swiss_4S protocol
[1] Duan Fengkui, He Kebin, Liu Xiande, et al.Review of carbonaceous aerosols studies: Organic carbon and elemental carbon[J]. Chinese Journal of Environmental Engineering, 2007, 1(8): 1-8.
[段凤魁, 贺克斌, 刘咸德, 等. 含碳气溶胶研究进展: 有机碳和元素碳[J]. 环境工程学报, 2007, 1(8): 1-8.]
[2] Cao J J, Lee S C, Chow J C, et al.Spatial and seasonal distributions of carbonaceous aerosols over China[J]. Journal of Geophysical Research—Atmospheres, 2007, 112(D22),doi:10.1029/2006JD008205.
[3] Pöschl U.Atmospheric aerosols: Composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44(46): 7 520-7 540.
[4] Chow J C, Watson J G.PM2.5 carbonate concentrations at regionally representative interagency monitoring of protected visual environment sites[J]. Journal of Geophysical Research—Atmospheres, 2002, 107(D21),doi:10.1029/2001JD000574.
[5] Jacobson M Z.Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J].Nature, 2001, 409(6 821): 695-697.
[6] Bond T C, Doherty S J, Fahey D W, et al.Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research—Atmospheres, 2013, 118: 5 380-5 552.
[7] Nel A.Air pollution-related illness: Effects of particles[J]. Science, 2005, 308(5 723): 804-806.
[8] Vineis P, Forastiere F, Hoek G, et al.Outdoor air pollution and lung cancer: Recent epidemiologic evidence[J]. International Journal of Cancer, 2004, 111(5): 647-652.
[9] Huang R J, Zhang Y, Bozzetti C, et al.High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7 521): 218-222.
[10] Wang Yuesi, Zhang Junke, Wang Lili, et al.Researching significance, status and expectation of haze in Beijing-Tianjin-Hebei region[J]. Advances in Earth Science, 2014, 29(3): 388-396.
[王跃思,张军科,王莉莉,等.京津冀区域大气霾污染研究意义、现状及展望[J]. 地球科学进展, 2014, 29(3): 388-396.]
[11] He Hong, Wang Xinming, Wang Yuesi, et al.Formation mechanism and control strategies of haze in China[J]. Bulletin of Chinese Academy of Sciences, 2013, 28: 344-352.
[贺泓, 王新明, 王跃思, 等. 大气灰霾追因与控制[J]. 中国科学院院刊, 2013, 28: 344-352.]
[12] Currie L A.Evolution and multidisciplinary frontiers of 14C aerosol science[J]. Radiocarbon, 2000, 42(1): 115-126.
[13] Zhang Shichun, Wang Yiyong, Tong Quansong.The use of carbon isotope analysis in source apportionment of carbonaceous aerosols: A review[J]. Advances in Earth Science, 2013,28(1):62-70.
[张世春,王毅勇,童全松.碳同位素技术在碳质气溶胶源解析中应用的研究进展[J].地球科学进展,2013,28(1):62-70.]
[14] Reddy C M, Xu L.Using radiocarbon to apportion sources of polycyclic aromatic hydrocarbons in household soot[J]. Environmental Forensics, 2003, 4:191-197.
[15] Lewis C W, Klouda G A, Ellenson W D.Radiocarbon measurement of the biogenic contribution to summertime PM-2.5 ambient aerosol in Nashville, TN[J]. Atmospheric Environment, 2004, 38(35): 6 053-6 061.
[16] Szidat S, Jenk T M, Gäggeler H W, et al.Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to Organic Carbon (OC) of urban aerosols from Zürich, Switzerland[J]. Atmospheric Environment, 2004, 38(24): 4 035-4 044.
[17] Gustafsson O, Krusa M, Zencak Z, et al.Brown clouds over South Asia: Biomass or fossil fuel combustion?[J].Science, 2009, 323(5 913): 495-498.
[18] Szidat S.Sources of Asian haze[J]. Science, 2009, 323(5 913): 470-471.
[19] Szidat S, Jenk T M, Gäggeler H W, et al.Source apportionment of aerosols by 14C measurements in different carbonaceous particle fractions[J]. Radiocarbon, 2004, 46(1): 475-484.
[20] Szidat S, Jenk T M, Gäggeler H W, et al. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2004, 223/224: 829-836.
[21] Mohn J, Szidat S, Fellner J, et al.Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances[J]. Bioresource Technology, 2008, 99(14): 6 471-6 479.
[22] Cachier H, Bremond M P, Buat-Menard P.Determination of atmospheric soot carbon with a simple thermal method[J]. Tellus Series B—Chemical and Physical Meteorology, 1989, 41(3): 379-390.
[23] Zhang Y L, Liu D, Shen C D, et al.Development of a preparation system for the radiocarbon analysis of organic carbon in carbonaceous aerosols in China[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2010, 268(17/18): 2 831-2 834.
[24] Szidat S, Ruff M, Perron N, et al.Fossil and non-fossil sources of Organic Carbon (OC) and Elemental Carbon (EC) in Goeteborg[J]. Sweden Atmospheric Chemistry and Physics, 2009, 9: 1 521-1 535.
[25] Zhang Y L, Perron N, Ciobanu V G, et al.On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12: 10 841-10 856.
[26] Zhang Y L, Zotter P, Perron N, et al.Fossil and non-fossil sources of different carbonaceous fractions in fine and coarse particles by radiocarbon measurement[J]. Radiocarbon, 2013, 55(2/3): 1 510-1 520.
[27] Zhang Y L, Li J, Zhang G, et al.Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on hainan Island, South China[J]. Environmental Science and Technology, 2014, 48(5): 2 651-2 659.
[28] Novakov T, Hegg D A, Hobbs P V.Airborne measurements of carbonaceous aerosols on the east coast of the United States[J]. Journal of Geophysical Research—Atmospheres, 1997, 102(30):23-30.
[29] Cavalli F, Viana M, Yttri K E, et al.Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol[J]. Atmospheric Measurement Techniques, 2010, 3(1): 79-89.
[30] Birch M E, Cary R A.Elemental carbon—based method for monitoring occupational exposures to particulate diesel exhaust[J]. Aerosol Science and Technology, 1996, 25(3): 21-241.
[31] Chow J C, Watson J G, Chen L W A, et al. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols[J]. Environmental Science and Technology, 2004, 38(16): 4 414-4 422.
[32] Watson J G, Chow J C.Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons[J]. Aerosol and Air Quality Research, 2005, 5(1): 65-102.
[33] Yang H, Yu J Z.Uncertainties in charring correction in the analysis of elemental and organic carbon in atmospheric particles by thermal/optical methods[J]. Environmental Science and Technology, 2002, 36(23): 5 199-5 204.
[34] Zhang Y L, Perron N, Ciobanu V G, et al.On the isolation of OC and EC and the optimal strategy of radiocarbon—based source apportionment of carbonaceous aerosols[J]. Atmospheric Chemistry and Physics Discussions, 2012, 12: 17 657-17 702.
[35] Yu J Z, Xu J, Yang H.Charring characteristics of atmospheric organic particulate matter in thermal analysis[J]. Environmental Science and Technology, 2002, 36(4): 754-761.
[36] Shao Min, Li Jinlong, Tang Xiaoyan.Source apportionment of atmospheric carbonaceous aerosols using AMS[J]. Journal of Nuclear and Radiochemistry, 1996, 18(4): 234-238.
[邵敏, 李金龙, 唐孝炎. 大气气溶胶含碳组分的来源研究——加速器质谱法[J]. 核化学与放射化学, 1996, 18(4): 234-238.]
[37] Yang F, He K, Ye B, et al.One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai[J]. Atmospheric Chemistry and Physics, 2005, 5: 1 449-1 457.
[38] Liu D, Li J, Zhang Y, et al.The use of levoglucosan and radiocarbon for source apportionment of PM2.5 carbonaceous aerosols at a background site in East China[J]. Environmental Science and Technology, 2013, 47(18): 10 454-10 461.
[39] Liu J, Li J, Zhang Y, et al.Source apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous aerosols in Guangzhou, South China: Contrasting local-and regional-scale haze events[J]. Environmental Science and Technology, 2014, 48(20):12 002-12 011.
[40] Song J, He L, Peng P A, et al.Chemical and isotopic compostion of Humic-Like Substances (HULIS) in ambient aerosols in Guangzhou, South China[J]. Aerosol Science and Technology, 2012, 46(5): 533-546.
[41] Zhang Y, Liu J, Salazar G A, et al.Micro-scale (μg) radiocarbon analysis of water-soluble organic carbon in aerosol samples[J]. Atmospheric Environment, 2014, 97: 1-5.
[42] Szidat S, Bench G, Bernardoni V, et al.Intercomparison of 14C analysis of carbonaceous aerosols: Exercise 2009[J]. Radiocarbon, 2013, 55(3/4): 1 496-1 509.
[43] Reddy C M, Pearson A, Xu L, et al.Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples[J]. Environmental Science and Technology, 2002, 36(8): 1 774-1 782.
[44] Mollenhauer G, Rethemeyer J. Compound-specific radiocarbon analysis-Analytical challenges and applications[C]∥IOP Conference Series: Earth and Environmental Science Program 5, 2009.
[45] Mandalakis M, Gustafsson O, Alsberg T, et al.Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites[J]. Environmental Science and Technology, 2005, 39(9):2 976-2 982.
[46] Fahrni S M, Ruff M, Wacker L, et al.A preparative 2D-chromatography method for compound-specific radiocarbon analysis of dicarboxylic acids in aerosols[J]. Radiocarbon, 2010, 52(2): 752-760.
[47] Wacker L, Fahrni S M, Hajdas I, et al.A versatile gas interface for routine radiocarbon analysis with a gas ion source[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2013, 294: 315-319.
[48] Wacker L, Bonani G, Friedrich M, et al.Micadas: Routine and high-precision radiocarbon dating[J]. Radiocarbon, 2010, 52(2): 252-262.
[49] Uhl T, Luppold W, Rottenbach A, et al.Development of an automatic gas handling system for microscale AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2007, 259: 303-307.
[50] Szidat S, Salazar G A, Vogel E, et al.14C analysis and sample preparation at the new bern Laboratory for the Analysis of Radiocarbon with AMS (LARA)[J]. Radiocarbon,2014, 56(2):561-566.
[51] Synal H A, Dobeli M, Jacob S, et al.Radiocarbon AMS towards its low-energy limits[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2004, 223: 339-345.
[52] Sheesley R J, Kruså M, Krecl P, et al.Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis[J]. Atmospheric Chemistry and Physics,2009, 9(10): 3 347-3 356.
[1] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[2] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[3] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[4] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[5] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[6] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[7] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[8] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[9] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[10] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[11] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[12] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[13] 陈小梅, 闫俊华, 林媚珍, 褚国伟, 吴建平, 张德强. 南亚热带森林植被恢复演替中土壤有机碳组分及其稳定[J]. 地球科学进展, 2016, 31(1): 86-93.
[14] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[15] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
阅读次数
全文


摘要