地球科学进展 ›› 2018, Vol. 33 ›› Issue (5): 445 -454. doi: 10.11867/j.issn.1001-8166.2018.05.0445

国家重点研发计划进展 上一篇    下一篇

全耦合空气质量预报模式系统
安俊岭 1, 2( ), 陈勇 1, 屈玉 1, 陈琦 3, 庄炳亮 4, 张平文 5, 吴其重 6, 徐勤武 7, 曹乐 8, 姜海梅 8, 陈学舜 1, 郑捷 9   
  1. 1.中国科学院大气物理研究所,北京 100029
    2.中国科学院大学,北京 100049
    3.北京大学环境科学与工程学院,北京 100871
    4.南京大学大气科学学院 江苏 南京 210023
    5.北京大学数学学院,北京 100871
    6.北京师范大学全球变化与地球系统科学研究院,北京 100875
    7.南京大学数学系,江苏 南京 210023
    8.南京信息工程大学,江苏 南京 210044
    9.中国科学院宁波城市环境观测研究站,浙江 宁波 315800
  • 收稿日期:2018-02-03 修回日期:2018-03-22 出版日期:2018-05-20
  • 基金资助:
    *国家重点研发计划项目“全耦合多尺度空气质量预报模式系统”(编号:2017YFC0209801)资助.

An Online-coupled Unified Air Quality Forecasting Model System

Junling An 1, 2( ), Yong Chen 1, Yu Qu 1, Qi Chen 3, Bingliang Zhuang 4, Pingwen Zhang 5, Qizhong Wu 6, Qinwu Xu 7, Le Cao 8, Haimei Jiang 8, Xueshun Chen 1, Jie Zheng 9   

  1. 1.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.University of the Chinese Academy of Sciences, Beijing 100049, China
    3.College of Environmental Sciences and Engineering,Peking University, Beijing 100871, China
    4.College of Atmospheric Science, Nanjing University, Nanjing 210023, China
    5.College of Mathematics, Peking University, Beijing 100871, China
    6.College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    7.Department of Mathematics, Nanjing University, Nanjing 210023, China
    8.Nanjing University of Information Science and Technology, Nanjing 210044, China
    9.Ningbo Urban Environment Observation and Research, Chinese Academy of Sciences, Ningbo Zhejiang 315800, China
  • Received:2018-02-03 Revised:2018-03-22 Online:2018-05-20 Published:2018-06-13
  • About author:

    First author:An Junling(1967-), male, Haiyuan County, Ningxia Hui Autonomous Region, Professor. Research areas include environmental/atmospheric chemistry.E-mail:anjl@mail.iap.ac.cn

  • Supported by:
    Project supported by the National Key Research and Development Program of China “The online-coupled unified air quality forecasting model system”(No.2017YFC0209801).

介绍了正在研发的全耦合空气质量预报模式系统,以及目前全耦合空气质量预报模式的不足,包括稳定边界层参数化方案、新粒子生成机制及其增长过程、二次有机和无机气溶胶形成过程、污染源追踪技术、自适应网格空气质量模式、模式初值优化以及动态污染源反演等。

An online-coupled unified air quality forecasting model system, which is being developed, is presented and needed are improvements in the parameterization of stable atmospheric boundary layer, new particle formation and subsequent growth processes, formation of secondary organic and inorganic aerosols, pollutant source apportionment technology, an adaptive gridding air quality model, and optimization of initial conditions and dynamic retrieval of pollutant emissions in an online-coupled unified air quality forecasting model.

中图分类号: 

图1 “全耦合多尺度空气质量预报模式系统”项目技术路线
Fig.1 Framework of the Online-coupled Unified Air Quality Forecasting Model System
图1 “全耦合多尺度空气质量预报模式系统”项目技术路线
Fig.1 Framework of the Online-coupled Unified Air Quality Forecasting Model System
图2 三维自适应网格构造和守恒差值方案设计框图
Fig.2 Framework of 3-dimentional construction of adaptive mesh and designing of a conservative difference scheme
图2 三维自适应网格构造和守恒差值方案设计框图
Fig.2 Framework of 3-dimentional construction of adaptive mesh and designing of a conservative difference scheme
图3 自适应网格空气质量预报模式研制框图
Fig.3 Framework of development of adaptive mesh air quality forecasting model
图3 自适应网格空气质量预报模式研制框图
Fig.3 Framework of development of adaptive mesh air quality forecasting model
图4 全耦合多尺度空气质量预报系统框图
Fig.4 Flowchart of the Online-coupled Unified Air Quality Forecasting Model System
图4 全耦合多尺度空气质量预报系统框图
Fig.4 Flowchart of the Online-coupled Unified Air Quality Forecasting Model System
[1] Seinfeld J H, Pandis S N.Atmospheric Chemistry and Physics: From Air Pollution to Climate Change[M]. New York: John Wiley & Sons, Inc., 2006.
[2] Flatøy F, Hov O, Schlager H.Chemical forecasts used for measurement flight planning during POLINAT 2[J]. Geophysical Research Letters, 2000, 27(7): 951-954.
doi: 10.1029/1999GL010805     URL    
[3] Peters L K, Berkowitz C M, Carmichael G R, et al.The current state and future direction of Eulerian models in simulating the tropospheric chemistry and transport of trace species: A review[J]. Atmospheric Environment, 1995, 29(2): 189-222.
doi: 10.1016/1352-2310(94)00235-D     URL    
[4] Russell A, Dennis R.NARSTO critical review of photochemical models and modeling[J]. Atmospheric Environment, 2000, 34(12/13/14): 2 283-2 324.
doi: 10.1016/S1352-2310(99)00468-9     URL    
[5] Zhang Y.Online coupled meteorology and chemistry models: History, current status, and outlook[J]. Atmospheric Chemistry and Physics, 2008, 8(11): 2 895-2 932.
doi: 10.5194/acpd-8-1833-2008     URL    
[6] Zhang Y, Bocquet M, Mallet V, et al.Real-time air quality forecasting, part I: History, techniques, and current status[J]. Atmospheric Environment, 2012, 60: 632-655.
doi: 10.1016/j.atmosenv.2012.06.031     URL    
[7] Han Zhiwei, Du Shiyong, Lei Xiaoen, et al.Numerical model system of urban air pollution prediction and its application[J]. China Environmental Science, 2002, 22(3): 202-206.
[韩志伟, 杜世勇, 雷孝恩, 等. 城市空气污染数值预报模式系统及其应用[J]. 中国环境科学, 2002, 22(3): 202-206.]
doi: 10.3321/j.issn:1000-6923.2002.03.003     URL    
[8] Wang Zifa, Wu Qizhong, Gbaguidi A, et al.Ensemble air quality multi-model forecast system for Beijing (EMS-Beijing): Model description and preliminary application[J]. Journal of Nanjing University of Science and Technology (Natural Science Edition), 2009, 1(1): 19-26.
[王自发, 吴其重, Gbaguidi A, 等. 北京空气质量多模式集成预报系统的建立及初步应用[J]. 南京信息工程大学学报:自然科学版, 2009, 1(1): 19-26.]
[9] Byun D W, Ching J K S. Science Algorithms of the EPA MODELS-3 Community Multi-scale Air Quality (CMAQ) Modeling System[M]. Washington DC: Environmental Protection Agency, 1999.
[10] Kukkonen J, Olsson T, Schultz D M, et al.A review of operational, regional-scale, chemical weather forecasting models in Europe[J]. Atmospheric Chemistry and Physics, 2012, 12(1): 1-87.
doi: 10.5194/acpd-11-5985-2011     URL    
[11] Grell G A, Peckham S E, Schmitz R, et al.Fully coupled “online” chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37): 6 957-6 975.
doi: 10.1016/j.atmosenv.2005.04.027     URL    
[12] Wong D C, Pleim J, Mathur R, et al.WRF-CMAQ two-way coupled system with aerosol feedback: Software development and preliminary results[J]. Geoscience Model Development, 2012, 5(2): 299-312.
doi: 10.5194/gmdd-4-2417-2011     URL    
[13] Zhang Y, Bocquet M, Mallet V, et al.Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects[J]. Atmospheric Environment, 2012, 60: 656-676.
doi: 10.1016/j.atmosenv.2012.02.041     URL    
[14] Grell G A, Baklanov A.Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches[J]. Atmospheric Environment, 2011, 45(38): 6 845-6 851.
doi: 10.1016/j.atmosenv.2011.01.017     URL    
[15] Zhang Y, Karamchandani P, Glotfelty T, et al.Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem)[J]. Journal of Geophysical Research, 2012, 117: D20206. DOI: 10.1029/2012JD017966.
doi: 10.1029/2012JD017966     URL    
[16] Jacobson M Z, Kaufmann Y J, Rudich Y.Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions[J]. Journal of Geophysical Research, 2007, 112: D24205. DOI:10.1029/2007JD008922.
doi: 10.1029/2007JD008922     URL    
[17] Kaminski J W, Neary L, Struzewska J, et al.GEM-AQ, an on-line global multiscale chemical weather modelling system: Model description and evaluation of gas phase chemistry processes[J]. Atmospheric Chemistry and Physics, 2008, 8(12): 3 255-3 281.
doi: 10.5194/acpd-7-14895-2007     URL    
[18] Wang Zifa, Xie Fuying, Wang Xiquan, et al.Development and application of nested air quality prediction modeling system[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5): 778-790.
[王自发, 谢付莹, 王喜全, 等. 嵌套网格空气质量预报模式系统的发展与应用[J]. 大气科学, 2006, 30(5): 778-790.]
doi: 10.3878/j.issn.1006-9895.2006.05.07    
[19] An J, Ueda H, Wang Z, et al.Simulations of monthly mean nitrate concentrations in precipitation[J]. Atmospheric Environment, 2002, 36(26): 4 159-4 171.
doi: 10.1016/S1352-2310(02)00412-0     URL    
[20] Chen H, Wang Z, Li J, et al.GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: Model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions[J]. Geoscience Model Development, 2015, 8(9): 2 857-2 876.
doi: 10.5194/gmd-8-2857-2015     URL    
[21] Zhu Rong, Xu Dahai, Meng Yanjun, et al.City air pollution numerical prediction system and its application[J]. Quarterly Journal of Applied Meteorology, 2001, 12(3): 267-277.
[朱蓉, 徐大海, 孟燕君, 等. 城市空气污染数值预报系统CAPPS及其应用[J]. 应用气象学报, 2001, 12(3): 267-277.]
doi: 10.3969/j.issn.1001-7313.2001.03.002     URL    
[22] Wang H, Xue M, Zhang X, et al.Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing-Jin-Ji (China) and its nearby surrounding region-Part 1: Aerosol distributions and meteorological features[J]. Atmospheric Chemistry and Physics, 2015, 15(6): 3 257-3 275.
doi: 10.5194/acp-15-3257-2015     URL    
[23] Fang Xiaoyi, Jiang Weimei, Wu Jian, et al.Study on the development of numerical model system to predict urban air quality[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 111-115.
[房小怡, 蒋维楣, 吴涧, 等. 城市空气质量数值预报模式系统及其应用[J]. 环境科学学报, 2004, 24(1): 111-115.]
doi: 10.3321/j.issn:0253-2468.2004.01.022     URL    
[24] Wang T, Li S, Shen F, et al. Investigations on direct Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system[J]. Journal of Geophysical Research, 2010, 115: D00K19. DOI:10.1029/2009JD013165.
[25] Fernando H J S, Weil J C. Whither the stable boundary layer? A shift in the research agenda[J]. Bulletin of the American Meteorological Society, 2010, 91(11): 1 475-1 484.
doi: 10.1175/2010BAMS2770.1     URL    
[26] Hu X M, Klein P M, Xue M.Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments[J]. Journal of Geophysical Research, 2013, 118(18): 10 490-10 505.
doi: 10.1002/jgrd.50823     URL    
[27] Kulmala M, Laaksonen A, Pirjola L.Parametrizations for sulfuric acid/water nucleation rates[J]. Journal of Geophysical Research, 1998, 103(D7): 8 301-8 308.
doi: 10.1029/97JD03718     URL    
[28] Merikanto J, Napari I, Vehkamäki H, et al. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions[J]. Journal of Geophysical Research, 2007, 112: D15207. DOI:10.1029/2006JD007977.
doi: 10.1029/2006JD007977     URL    
[29] Yu F.Ion-mediated nucleation in the atmosphere: Key controlling parameters, implications, and look-up table[J]. Journal of Geophysical Research, 2010, 115: D03206. DOI:10.1029/2009JD012630.
doi: 10.1029/2009JD012630     URL    
[30] Chen X, Wang Z, Li J, et al. Development of a regional chemical transport model with size-resolved aerosol microphysics and its application on aerosol number concentration simulation over China[J]. Scientific Online Letters on the Atmosphere, 2014, 10: 83-87.
doi: 10.2151/sola.2014-017     URL    
[31] Wang Y, Zhang Q, Jiang J, et al.Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models[J]. Journal of Geophysical Research, 2014, 119(17): 10 425-10 440.
doi: 10.1002/2013JD021426     URL    
[32] Huang X, Song Y, Zhao C, et al.Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China[J]. Journal of Geophysical Research, 2014, 119(24): 14 165-14 179.
doi: 10.1002/2014JD022301     URL    
[33] He H, Wang Y, Ma Q, et al.Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days[J]. Science Report, 2014, 4:4 172. DOI:10.1038/srep04172.
doi: 10.1038/srep04172     URL     pmid: 3933828
[34] Hung H M, Hoffmann M R.Oxidation of gas-phase SO2 on the surfaces of acidic microdroplets: Implications for sulfate and sulfate radical anion formation in the atmospheric liquid phase[J]. Environmental Science and Technology, 2015, 49(23): 13 768-13 776.
doi: 10.1021/acs.est.5b01658     URL    
[35] Zheng B, Zhang Q, Zhang Y, et al.Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China[J]. Atmospheric Chemistry and Physics, 2015, 15(4): 2 031-2 049.
doi: 10.5194/acp-15-2031-2015     URL    
[36] Wang G, Zhang R, Gomez M E, et al.Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13 630-13 635.
doi: 10.1073/pnas.1616540113     URL     pmid: 27849598
[37] Xue J, Yuan Z, Griffith S M, et al.Sulfate formation enhanced by a cocktail of high NOx, SO2, particulate matter, and droplet pH during haze-fog events in megacities in China: An observation-based modeling investigation[J]. Environmental Science and Technology, 2016, 50(14): 7 325-7 334.
doi: 10.1021/acs.est.6b00768     URL    
[38] Huang R, Zhang Y, Bozzetti C, et al.High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7 512): 218-222.
doi: 10.1038/nature13774     URL     pmid: 25231863
[39] Guo S, Hu M, Zamora M L, et al.Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17 373-17 378.
doi: 10.1073/pnas.1419604111     URL     pmid: 25422462
[40] Zhang X, Wang J, Wang Y, et al.Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors[J]. Atmospheric Chemistry and Physics, 2015, 15(22): 12 935-12 952.
doi: 10.5194/acp-15-12935-2015     URL    
[41] Jiang F, Liu Q, Huang X, et al.Regional modeling of secondary organic aerosol over China using WRF/Chem[J]. Journal of Aerosol Science, 2012, 43(1): 57-73.
doi: 10.1016/j.jaerosci.2011.09.003     URL    
[42] Fu Y, Liao H.Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol[J]. Atmospheric Environment, 2012, 59: 170-185.
doi: 10.1016/j.atmosenv.2012.05.053     URL    
[43] Lin J, An J, Qu Y, et al.Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer[J]. Atmospheric Environment, 2016, 124: 176-185.
doi: 10.1016/j.atmosenv.2015.08.098     URL    
[44] Han Z, Xie Z, Wang G, et al.Modeling organic aerosols over east China using a volatility basis-set approach with aging mechanism in a regional air quality model[J]. Atmospheric Environment, 2016, 124: 186-198.
doi: 10.1016/j.atmosenv.2015.05.045     URL    
[45] Jimenez J L, Canagaratna M R, Donahue N M, et al.Evolution of organic aerosols in the atmosphere[J]. Science, 2009, 326(5 959): 1 525-1 529.
doi: 10.1126/science.1180353     URL     pmid: 20007897
[46] Chen Q, Heald C L, Jimenez J L, et al.Elemental composition of organic aerosol: The gap between ambient and laboratory measurements[J]. Geophysical Research Letters, 2015, 42(10): 4 182-4 189.
doi: 10.1002/2015GL063693     URL    
[47] Li N, Fu T, Cao J, et al.Sources of secondary organic aerosols in the Pearl River Delta region in fall: Contributions from the aqueous reactive uptake of dicarbonyls[J]. Atmospheric Environment, 2013, 76: 200-207.
doi: 10.1016/j.atmosenv.2012.12.005     URL    
[48] Liu J, Mauzerall D L, Chen Q, et al.Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7 756-7 761.
doi: 10.1073/pnas.1604537113     URL     pmid: 27354524
[49] Zhou W, Jiang J, Duan L, et al.Evolution of submicrometer organic aerosols during a complete residential coal combustion process[J]. Environmental Science and Technology, 2016, 50(14): 7 861-7 869.
doi: 10.1021/acs.est.6b00075     URL     pmid: 27298095
[50] Dunker A M, Yarwood G, Ortmann J P, et al.The decoupled direct method for sensitivity analysis in a three-dimensional air quality model implementation, accuracy, and efficiency[J]. Environmental Science and Technology, 2002, 36(13): 2 965-2 976.
doi: 10.1021/es0112691     URL     pmid: 12144274
[51] Menut L, Vautard R, Beekmann M, et al.Sensitivity of photochemical pollution using the adjoint of a simplified chemistry-transport model[J]. Journal of Geophysical Research, 2000, 105(D12): 15 379-15 402.
doi: 10.1029/1999JD900953     URL    
[52] Carmichael G R, Sandu A, Potra F A.Sensitivity analysis for atmospheric chemistry models via automatic differentiation[J]. Atmospheric Environment, 1997, 31(13): 475-489.
doi: 10.1016/S1352-2310(96)00168-9     URL    
[53] Ying Q, Kleeman M J.Source contributions to the regional distribution of secondary particulate matter in California[J]. Atmospheric Environment, 2006, 40(4): 736-752.
doi: 10.1016/j.atmosenv.2005.10.007     URL    
[54] Wagstrom K M, Pandis S N, Yarwood G, et al.Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model[J]. Atmospheric Environment, 2008, 42(22): 5 650-5 659.
doi: 10.1016/j.atmosenv.2008.03.012     URL    
[55] Wang Z S, Chien C J, Tonnesen G S.Development of a tagged species source apportionment algorithm to characterize three-dimensional transport and transformation of precursors and secondary pollutants[J]. Journal of Geophysical Research, 2009, 114:D21206. DOI:10.1029/2008JD010846.
doi: 10.1029/2008JD010846     URL    
[56] Kwok R H F, Napelenok S L, Baker K R. Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model[J]. Atmospheric Environment, 2013, 80: 398-407.
doi: 10.1016/j.atmosenv.2013.08.017     URL    
[57] Li Y, Lau A K H, Fung J C H, et al. Ozone Source Apportionment (OSAT) to differentiate local regional and super-regional source contributions in the Pearl River Delta region, China[J]. Journal of Geophysical Research, 2012, 117: D15305. DOI:10. 1029/2011JD017340.
doi: 10.1029/2011JD017340     URL    
[58] Wu D, Fung J C H, Yao T, et al. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method[J]. Atmospheric Environment, 2013, 76: 147-161.
doi: 10.1016/j.atmosenv.2012.11.069     URL    
[59] Liu Zhuo, Zeng Qingcun.The preliminary application of adaptive mesh in the problems of atmosphere and ocean[J]. Chinese Journal of Atmospheric Sciences, 1994, 18(6): 641-648.
[刘卓, 曾庆存. 自适应网格在大气海洋问题中的初步应用[J]. 大气科学, 1994, 18(6): 641-648.]
doi: 10.1007/BF02658170     URL    
[60] Li Hongli, Shen Tongli.A study on application of adaptive grids technique to MM5 model[J]. Journal of Nanjing Institute of Meteorology, 2015, 28(1): 44-53.
[李红莉, 沈桐立. 自适应网格技术在MM5中的应用研究[J]. 南京气象学院学报, 2015, 28(1): 44-53.]
doi: 10.3969/j.issn.1674-7097.2005.01.006     URL    
[61] Tomlin A, Berzins M, Ware J, et al.On the use of adaptive gridding methods for modelling chemical transport from multi-scale sources[J]. Atmospheric Environment, 1997, 31(18): 2 945-2 959.
doi: 10.1016/S1352-2310(97)00120-9     URL    
[62] Constantinescu E M, Sandu A, Carmichael G R.Modeling atmospheric chemistry and transport with dynamic adaptive resolution[J]. Computers and Geosciences, 2008, 12(2): 133-151.
doi: 10.1007/s10596-007-9065-7     URL    
[63] Garcia-Menendez F, Yano A, Hu Y, et al.An adaptive grid version of CMAQ for improving the resolution of plumes[J]. Atmospheric Pollution Research, 2010, 1(4): 239-249.
doi: 10.5094/APR.2010.031     URL    
[64] Zheng J, Zhu J, Wang Z, et al.Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)[J]. Geoscience Model Development, 2015, 8(10): 3 421-3 440.
doi: 10.5194/gmd-8-3421-2015     URL    
[65] Bocquet M, Elbern H, Eskes H, et al.Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models[J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5 325-5 358.
doi: 10.5194/acp-15-5325-2015     URL    
[66] Elbern H, Schmidt H.A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling[J]. Journal of Geophysical Research, 1999, 104(D15): 18 583-18 598.
doi: 10.1029/1999JD900280     URL    
[67] Carmichael G R, Sandu A, Chai T, et al.Predicting air quality: Improvements through advanced methods to integrate models and measurements[J]. Journal of Computational Physics, 2008, 227(7): 3 540-3 571.
doi: 10.1016/j.jcp.2007.02.024     URL    
[68] Pagowski M, Grell G A, McKeen S A, et al. Three-dimensional variational data assimilation of ozone and fine particulate matter observations: some results using the Weather Research and Forecasting-Chemistry model and Grid-point Statistical Interpolation[J]. Quarterly Journal of Royal Meteorological Society, 2010, 136(653): 2 013-2 024.
[69] Elbern H, Strunk A, Schmidt H, et al.Emission rate and chemical state estimation by 4-dimensional variational inversion[J]. Atmospheric Chemistry and Physics, 2007, 7(14): 3 749-3 769.
doi: 10.5194/acpd-7-1725-2007     URL    
[70] Niu T, Gong S, Zhu G, et al.Data assimilation of dust aerosol observations for the CUACE/dust forecasting system[J]. Atmospheric Chemistry and Physics, 2008, 8(13): 3 473-3 482.
doi: 10.5194/acpd-7-8309-2007     URL    
[71] Lin C, Wang Z, Zhu J.An Ensemble Kalman Filter for severe dust storm data assimilation over China[J]. Atmospheric Chemistry and Physics, 2008, 8(11): 2 975-2 983.
doi: 10.5194/acpd-7-17511-2007     URL    
[72] Dai T, Schutgens N A J, Goto D, et al. Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model[J]. Environmental Pollution, 2014, 195: 319-329.
doi: 10.1016/j.envpol.2014.06.021     URL     pmid: 25017412
[73] Zang Z, Hao Z, Li Y, et al.Background error covariance with balance constraints for aerosol species and applications in variational data assimilation[J]. Geoscience Model Development, 2016, 9(8): 2 623-2 638.
doi: 10.5194/gmdd-8-10053-2015     URL    
[74] Xu X, Xie L, Cheng X, et al.Application of an adaptive nudging scheme in air quality forecasting in China[J]. Journal of Applied Meteorology and Climatology, 2008, 47(8): 2 105-2 114.
doi: 10.3200/AEOH.60.4.223-228     URL    
[75] Tang X, Zhu J, Wang Z, et al.Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions[J]. Atmospheric Chemistry and Physics, 2011, 11(24): 12 901-12 916.
doi: 10.5194/acp-11-12901-2011     URL    
[76] Liu Feng, Hu Fei, Zhu Jiang.Optimization of the spatial distribution of multiple industry emission sources using the adjoint method[J]. Science in China (Series D), 2005, 35(1): 64-71.
[刘峰, 胡非, 朱江. 用伴随方法求解多个工业污染源优化布局问题[J]. 中国科学:D辑, 2005, 35(1): 64-71.]
[1] 白晓平,李红,方栋,胡非,FrancescaCostabile,王芬娟. 资料同化在空气质量预报中的应用[J]. 地球科学进展, 2007, 22(1): 66-73.
阅读次数
全文


摘要