[1] |
Seinfeld J H, Pandis S N.Atmospheric Chemistry and Physics: From Air Pollution to Climate Change[M]. New York: John Wiley & Sons, Inc., 2006.
|
[2] |
Flatøy F, Hov O, Schlager H.Chemical forecasts used for measurement flight planning during POLINAT 2[J]. Geophysical Research Letters, 2000, 27(7): 951-954.
doi: 10.1029/1999GL010805
URL
|
[3] |
Peters L K, Berkowitz C M, Carmichael G R, et al.The current state and future direction of Eulerian models in simulating the tropospheric chemistry and transport of trace species: A review[J]. Atmospheric Environment, 1995, 29(2): 189-222.
doi: 10.1016/1352-2310(94)00235-D
URL
|
[4] |
Russell A, Dennis R.NARSTO critical review of photochemical models and modeling[J]. Atmospheric Environment, 2000, 34(12/13/14): 2 283-2 324.
doi: 10.1016/S1352-2310(99)00468-9
URL
|
[5] |
Zhang Y.Online coupled meteorology and chemistry models: History, current status, and outlook[J]. Atmospheric Chemistry and Physics, 2008, 8(11): 2 895-2 932.
doi: 10.5194/acpd-8-1833-2008
URL
|
[6] |
Zhang Y, Bocquet M, Mallet V, et al.Real-time air quality forecasting, part I: History, techniques, and current status[J]. Atmospheric Environment, 2012, 60: 632-655.
doi: 10.1016/j.atmosenv.2012.06.031
URL
|
[7] |
Han Zhiwei, Du Shiyong, Lei Xiaoen, et al.Numerical model system of urban air pollution prediction and its application[J]. China Environmental Science, 2002, 22(3): 202-206.
|
|
[韩志伟, 杜世勇, 雷孝恩, 等. 城市空气污染数值预报模式系统及其应用[J]. 中国环境科学, 2002, 22(3): 202-206.]
doi: 10.3321/j.issn:1000-6923.2002.03.003
URL
|
[8] |
Wang Zifa, Wu Qizhong, Gbaguidi A, et al.Ensemble air quality multi-model forecast system for Beijing (EMS-Beijing): Model description and preliminary application[J]. Journal of Nanjing University of Science and Technology (Natural Science Edition), 2009, 1(1): 19-26.
|
|
[王自发, 吴其重, Gbaguidi A, 等. 北京空气质量多模式集成预报系统的建立及初步应用[J]. 南京信息工程大学学报:自然科学版, 2009, 1(1): 19-26.]
|
[9] |
Byun D W, Ching J K S. Science Algorithms of the EPA MODELS-3 Community Multi-scale Air Quality (CMAQ) Modeling System[M]. Washington DC: Environmental Protection Agency, 1999.
|
[10] |
Kukkonen J, Olsson T, Schultz D M, et al.A review of operational, regional-scale, chemical weather forecasting models in Europe[J]. Atmospheric Chemistry and Physics, 2012, 12(1): 1-87.
doi: 10.5194/acpd-11-5985-2011
URL
|
[11] |
Grell G A, Peckham S E, Schmitz R, et al.Fully coupled “online” chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37): 6 957-6 975.
doi: 10.1016/j.atmosenv.2005.04.027
URL
|
[12] |
Wong D C, Pleim J, Mathur R, et al.WRF-CMAQ two-way coupled system with aerosol feedback: Software development and preliminary results[J]. Geoscience Model Development, 2012, 5(2): 299-312.
doi: 10.5194/gmdd-4-2417-2011
URL
|
[13] |
Zhang Y, Bocquet M, Mallet V, et al.Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects[J]. Atmospheric Environment, 2012, 60: 656-676.
doi: 10.1016/j.atmosenv.2012.02.041
URL
|
[14] |
Grell G A, Baklanov A.Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches[J]. Atmospheric Environment, 2011, 45(38): 6 845-6 851.
doi: 10.1016/j.atmosenv.2011.01.017
URL
|
[15] |
Zhang Y, Karamchandani P, Glotfelty T, et al.Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem)[J]. Journal of Geophysical Research, 2012, 117: D20206. DOI: 10.1029/2012JD017966.
doi: 10.1029/2012JD017966
URL
|
[16] |
Jacobson M Z, Kaufmann Y J, Rudich Y.Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions[J]. Journal of Geophysical Research, 2007, 112: D24205. DOI:10.1029/2007JD008922.
doi: 10.1029/2007JD008922
URL
|
[17] |
Kaminski J W, Neary L, Struzewska J, et al.GEM-AQ, an on-line global multiscale chemical weather modelling system: Model description and evaluation of gas phase chemistry processes[J]. Atmospheric Chemistry and Physics, 2008, 8(12): 3 255-3 281.
doi: 10.5194/acpd-7-14895-2007
URL
|
[18] |
Wang Zifa, Xie Fuying, Wang Xiquan, et al.Development and application of nested air quality prediction modeling system[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5): 778-790.
|
|
[王自发, 谢付莹, 王喜全, 等. 嵌套网格空气质量预报模式系统的发展与应用[J]. 大气科学, 2006, 30(5): 778-790.]
doi: 10.3878/j.issn.1006-9895.2006.05.07
|
[19] |
An J, Ueda H, Wang Z, et al.Simulations of monthly mean nitrate concentrations in precipitation[J]. Atmospheric Environment, 2002, 36(26): 4 159-4 171.
doi: 10.1016/S1352-2310(02)00412-0
URL
|
[20] |
Chen H, Wang Z, Li J, et al.GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: Model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions[J]. Geoscience Model Development, 2015, 8(9): 2 857-2 876.
doi: 10.5194/gmd-8-2857-2015
URL
|
[21] |
Zhu Rong, Xu Dahai, Meng Yanjun, et al.City air pollution numerical prediction system and its application[J]. Quarterly Journal of Applied Meteorology, 2001, 12(3): 267-277.
|
|
[朱蓉, 徐大海, 孟燕君, 等. 城市空气污染数值预报系统CAPPS及其应用[J]. 应用气象学报, 2001, 12(3): 267-277.]
doi: 10.3969/j.issn.1001-7313.2001.03.002
URL
|
[22] |
Wang H, Xue M, Zhang X, et al.Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing-Jin-Ji (China) and its nearby surrounding region-Part 1: Aerosol distributions and meteorological features[J]. Atmospheric Chemistry and Physics, 2015, 15(6): 3 257-3 275.
doi: 10.5194/acp-15-3257-2015
URL
|
[23] |
Fang Xiaoyi, Jiang Weimei, Wu Jian, et al.Study on the development of numerical model system to predict urban air quality[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 111-115.
|
|
[房小怡, 蒋维楣, 吴涧, 等. 城市空气质量数值预报模式系统及其应用[J]. 环境科学学报, 2004, 24(1): 111-115.]
doi: 10.3321/j.issn:0253-2468.2004.01.022
URL
|
[24] |
Wang T, Li S, Shen F, et al. Investigations on direct Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system[J]. Journal of Geophysical Research, 2010, 115: D00K19. DOI:10.1029/2009JD013165.
|
[25] |
Fernando H J S, Weil J C. Whither the stable boundary layer? A shift in the research agenda[J]. Bulletin of the American Meteorological Society, 2010, 91(11): 1 475-1 484.
doi: 10.1175/2010BAMS2770.1
URL
|
[26] |
Hu X M, Klein P M, Xue M.Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments[J]. Journal of Geophysical Research, 2013, 118(18): 10 490-10 505.
doi: 10.1002/jgrd.50823
URL
|
[27] |
Kulmala M, Laaksonen A, Pirjola L.Parametrizations for sulfuric acid/water nucleation rates[J]. Journal of Geophysical Research, 1998, 103(D7): 8 301-8 308.
doi: 10.1029/97JD03718
URL
|
[28] |
Merikanto J, Napari I, Vehkamäki H, et al. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions[J]. Journal of Geophysical Research, 2007, 112: D15207. DOI:10.1029/2006JD007977.
doi: 10.1029/2006JD007977
URL
|
[29] |
Yu F.Ion-mediated nucleation in the atmosphere: Key controlling parameters, implications, and look-up table[J]. Journal of Geophysical Research, 2010, 115: D03206. DOI:10.1029/2009JD012630.
doi: 10.1029/2009JD012630
URL
|
[30] |
Chen X, Wang Z, Li J, et al. Development of a regional chemical transport model with size-resolved aerosol microphysics and its application on aerosol number concentration simulation over China[J]. Scientific Online Letters on the Atmosphere, 2014, 10: 83-87.
doi: 10.2151/sola.2014-017
URL
|
[31] |
Wang Y, Zhang Q, Jiang J, et al.Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models[J]. Journal of Geophysical Research, 2014, 119(17): 10 425-10 440.
doi: 10.1002/2013JD021426
URL
|
[32] |
Huang X, Song Y, Zhao C, et al.Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China[J]. Journal of Geophysical Research, 2014, 119(24): 14 165-14 179.
doi: 10.1002/2014JD022301
URL
|
[33] |
He H, Wang Y, Ma Q, et al.Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days[J]. Science Report, 2014, 4:4 172. DOI:10.1038/srep04172.
doi: 10.1038/srep04172
URL
pmid: 3933828
|
[34] |
Hung H M, Hoffmann M R.Oxidation of gas-phase SO2 on the surfaces of acidic microdroplets: Implications for sulfate and sulfate radical anion formation in the atmospheric liquid phase[J]. Environmental Science and Technology, 2015, 49(23): 13 768-13 776.
doi: 10.1021/acs.est.5b01658
URL
|
[35] |
Zheng B, Zhang Q, Zhang Y, et al.Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China[J]. Atmospheric Chemistry and Physics, 2015, 15(4): 2 031-2 049.
doi: 10.5194/acp-15-2031-2015
URL
|
[36] |
Wang G, Zhang R, Gomez M E, et al.Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13 630-13 635.
doi: 10.1073/pnas.1616540113
URL
pmid: 27849598
|
[37] |
Xue J, Yuan Z, Griffith S M, et al.Sulfate formation enhanced by a cocktail of high NOx, SO2, particulate matter, and droplet pH during haze-fog events in megacities in China: An observation-based modeling investigation[J]. Environmental Science and Technology, 2016, 50(14): 7 325-7 334.
doi: 10.1021/acs.est.6b00768
URL
|
[38] |
Huang R, Zhang Y, Bozzetti C, et al.High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7 512): 218-222.
doi: 10.1038/nature13774
URL
pmid: 25231863
|
[39] |
Guo S, Hu M, Zamora M L, et al.Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17 373-17 378.
doi: 10.1073/pnas.1419604111
URL
pmid: 25422462
|
[40] |
Zhang X, Wang J, Wang Y, et al.Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors[J]. Atmospheric Chemistry and Physics, 2015, 15(22): 12 935-12 952.
doi: 10.5194/acp-15-12935-2015
URL
|
[41] |
Jiang F, Liu Q, Huang X, et al.Regional modeling of secondary organic aerosol over China using WRF/Chem[J]. Journal of Aerosol Science, 2012, 43(1): 57-73.
doi: 10.1016/j.jaerosci.2011.09.003
URL
|
[42] |
Fu Y, Liao H.Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol[J]. Atmospheric Environment, 2012, 59: 170-185.
doi: 10.1016/j.atmosenv.2012.05.053
URL
|
[43] |
Lin J, An J, Qu Y, et al.Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer[J]. Atmospheric Environment, 2016, 124: 176-185.
doi: 10.1016/j.atmosenv.2015.08.098
URL
|
[44] |
Han Z, Xie Z, Wang G, et al.Modeling organic aerosols over east China using a volatility basis-set approach with aging mechanism in a regional air quality model[J]. Atmospheric Environment, 2016, 124: 186-198.
doi: 10.1016/j.atmosenv.2015.05.045
URL
|
[45] |
Jimenez J L, Canagaratna M R, Donahue N M, et al.Evolution of organic aerosols in the atmosphere[J]. Science, 2009, 326(5 959): 1 525-1 529.
doi: 10.1126/science.1180353
URL
pmid: 20007897
|
[46] |
Chen Q, Heald C L, Jimenez J L, et al.Elemental composition of organic aerosol: The gap between ambient and laboratory measurements[J]. Geophysical Research Letters, 2015, 42(10): 4 182-4 189.
doi: 10.1002/2015GL063693
URL
|
[47] |
Li N, Fu T, Cao J, et al.Sources of secondary organic aerosols in the Pearl River Delta region in fall: Contributions from the aqueous reactive uptake of dicarbonyls[J]. Atmospheric Environment, 2013, 76: 200-207.
doi: 10.1016/j.atmosenv.2012.12.005
URL
|
[48] |
Liu J, Mauzerall D L, Chen Q, et al.Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7 756-7 761.
doi: 10.1073/pnas.1604537113
URL
pmid: 27354524
|
[49] |
Zhou W, Jiang J, Duan L, et al.Evolution of submicrometer organic aerosols during a complete residential coal combustion process[J]. Environmental Science and Technology, 2016, 50(14): 7 861-7 869.
doi: 10.1021/acs.est.6b00075
URL
pmid: 27298095
|
[50] |
Dunker A M, Yarwood G, Ortmann J P, et al.The decoupled direct method for sensitivity analysis in a three-dimensional air quality model implementation, accuracy, and efficiency[J]. Environmental Science and Technology, 2002, 36(13): 2 965-2 976.
doi: 10.1021/es0112691
URL
pmid: 12144274
|
[51] |
Menut L, Vautard R, Beekmann M, et al.Sensitivity of photochemical pollution using the adjoint of a simplified chemistry-transport model[J]. Journal of Geophysical Research, 2000, 105(D12): 15 379-15 402.
doi: 10.1029/1999JD900953
URL
|
[52] |
Carmichael G R, Sandu A, Potra F A.Sensitivity analysis for atmospheric chemistry models via automatic differentiation[J]. Atmospheric Environment, 1997, 31(13): 475-489.
doi: 10.1016/S1352-2310(96)00168-9
URL
|
[53] |
Ying Q, Kleeman M J.Source contributions to the regional distribution of secondary particulate matter in California[J]. Atmospheric Environment, 2006, 40(4): 736-752.
doi: 10.1016/j.atmosenv.2005.10.007
URL
|
[54] |
Wagstrom K M, Pandis S N, Yarwood G, et al.Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model[J]. Atmospheric Environment, 2008, 42(22): 5 650-5 659.
doi: 10.1016/j.atmosenv.2008.03.012
URL
|
[55] |
Wang Z S, Chien C J, Tonnesen G S.Development of a tagged species source apportionment algorithm to characterize three-dimensional transport and transformation of precursors and secondary pollutants[J]. Journal of Geophysical Research, 2009, 114:D21206. DOI:10.1029/2008JD010846.
doi: 10.1029/2008JD010846
URL
|
[56] |
Kwok R H F, Napelenok S L, Baker K R. Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model[J]. Atmospheric Environment, 2013, 80: 398-407.
doi: 10.1016/j.atmosenv.2013.08.017
URL
|
[57] |
Li Y, Lau A K H, Fung J C H, et al. Ozone Source Apportionment (OSAT) to differentiate local regional and super-regional source contributions in the Pearl River Delta region, China[J]. Journal of Geophysical Research, 2012, 117: D15305. DOI:10. 1029/2011JD017340.
doi: 10.1029/2011JD017340
URL
|
[58] |
Wu D, Fung J C H, Yao T, et al. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method[J]. Atmospheric Environment, 2013, 76: 147-161.
doi: 10.1016/j.atmosenv.2012.11.069
URL
|
[59] |
Liu Zhuo, Zeng Qingcun.The preliminary application of adaptive mesh in the problems of atmosphere and ocean[J]. Chinese Journal of Atmospheric Sciences, 1994, 18(6): 641-648.
|
|
[刘卓, 曾庆存. 自适应网格在大气海洋问题中的初步应用[J]. 大气科学, 1994, 18(6): 641-648.]
doi: 10.1007/BF02658170
URL
|
[60] |
Li Hongli, Shen Tongli.A study on application of adaptive grids technique to MM5 model[J]. Journal of Nanjing Institute of Meteorology, 2015, 28(1): 44-53.
|
|
[李红莉, 沈桐立. 自适应网格技术在MM5中的应用研究[J]. 南京气象学院学报, 2015, 28(1): 44-53.]
doi: 10.3969/j.issn.1674-7097.2005.01.006
URL
|
[61] |
Tomlin A, Berzins M, Ware J, et al.On the use of adaptive gridding methods for modelling chemical transport from multi-scale sources[J]. Atmospheric Environment, 1997, 31(18): 2 945-2 959.
doi: 10.1016/S1352-2310(97)00120-9
URL
|
[62] |
Constantinescu E M, Sandu A, Carmichael G R.Modeling atmospheric chemistry and transport with dynamic adaptive resolution[J]. Computers and Geosciences, 2008, 12(2): 133-151.
doi: 10.1007/s10596-007-9065-7
URL
|
[63] |
Garcia-Menendez F, Yano A, Hu Y, et al.An adaptive grid version of CMAQ for improving the resolution of plumes[J]. Atmospheric Pollution Research, 2010, 1(4): 239-249.
doi: 10.5094/APR.2010.031
URL
|
[64] |
Zheng J, Zhu J, Wang Z, et al.Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)[J]. Geoscience Model Development, 2015, 8(10): 3 421-3 440.
doi: 10.5194/gmd-8-3421-2015
URL
|
[65] |
Bocquet M, Elbern H, Eskes H, et al.Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models[J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5 325-5 358.
doi: 10.5194/acp-15-5325-2015
URL
|
[66] |
Elbern H, Schmidt H.A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling[J]. Journal of Geophysical Research, 1999, 104(D15): 18 583-18 598.
doi: 10.1029/1999JD900280
URL
|
[67] |
Carmichael G R, Sandu A, Chai T, et al.Predicting air quality: Improvements through advanced methods to integrate models and measurements[J]. Journal of Computational Physics, 2008, 227(7): 3 540-3 571.
doi: 10.1016/j.jcp.2007.02.024
URL
|
[68] |
Pagowski M, Grell G A, McKeen S A, et al. Three-dimensional variational data assimilation of ozone and fine particulate matter observations: some results using the Weather Research and Forecasting-Chemistry model and Grid-point Statistical Interpolation[J]. Quarterly Journal of Royal Meteorological Society, 2010, 136(653): 2 013-2 024.
|
[69] |
Elbern H, Strunk A, Schmidt H, et al.Emission rate and chemical state estimation by 4-dimensional variational inversion[J]. Atmospheric Chemistry and Physics, 2007, 7(14): 3 749-3 769.
doi: 10.5194/acpd-7-1725-2007
URL
|
[70] |
Niu T, Gong S, Zhu G, et al.Data assimilation of dust aerosol observations for the CUACE/dust forecasting system[J]. Atmospheric Chemistry and Physics, 2008, 8(13): 3 473-3 482.
doi: 10.5194/acpd-7-8309-2007
URL
|
[71] |
Lin C, Wang Z, Zhu J.An Ensemble Kalman Filter for severe dust storm data assimilation over China[J]. Atmospheric Chemistry and Physics, 2008, 8(11): 2 975-2 983.
doi: 10.5194/acpd-7-17511-2007
URL
|
[72] |
Dai T, Schutgens N A J, Goto D, et al. Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model[J]. Environmental Pollution, 2014, 195: 319-329.
doi: 10.1016/j.envpol.2014.06.021
URL
pmid: 25017412
|
[73] |
Zang Z, Hao Z, Li Y, et al.Background error covariance with balance constraints for aerosol species and applications in variational data assimilation[J]. Geoscience Model Development, 2016, 9(8): 2 623-2 638.
doi: 10.5194/gmdd-8-10053-2015
URL
|
[74] |
Xu X, Xie L, Cheng X, et al.Application of an adaptive nudging scheme in air quality forecasting in China[J]. Journal of Applied Meteorology and Climatology, 2008, 47(8): 2 105-2 114.
doi: 10.3200/AEOH.60.4.223-228
URL
|
[75] |
Tang X, Zhu J, Wang Z, et al.Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions[J]. Atmospheric Chemistry and Physics, 2011, 11(24): 12 901-12 916.
doi: 10.5194/acp-11-12901-2011
URL
|
[76] |
Liu Feng, Hu Fei, Zhu Jiang.Optimization of the spatial distribution of multiple industry emission sources using the adjoint method[J]. Science in China (Series D), 2005, 35(1): 64-71.
|
|
[刘峰, 胡非, 朱江. 用伴随方法求解多个工业污染源优化布局问题[J]. 中国科学:D辑, 2005, 35(1): 64-71.]
|