地球科学进展 ›› 2007, Vol. 22 ›› Issue (1): 66 -73. doi: 10.11867/j.issn.1001-8166.2007.01.0066

综述与评述 上一篇    下一篇

资料同化在空气质量预报中的应用
白晓平 1 ,李 红 1,方 栋 1,胡 非 2,Francesca Costabile 3,王芬娟 1   
  1. 1.清华大学核能与新能源技术研究院,北京 100084;2.中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京 100029;3.Institute for Atmospheric Pollution Italian National Research Council, Rome Italy
  • 收稿日期:2006-05-22 修回日期:2006-10-23 出版日期:2007-01-10
  • 通讯作者: 白晓平(1976-),女,山西五台人,博士研究生,主要从事空气污染预报的研究.E-mail:bxp03@mails.tsinghua.edu.cn E-mail:bxp03@mails.tsinghua.edu.cn

Applications of Data Assimilation in Air Quality Prediction

BAI  Xiao-ping 1, LI Hong 1, FANG Dong 1, HU Fei 2,Francesca Costabile 3,WANG Fen-juan 1   

  1. 1.Institute of Nuclear and Energy Technology, Tsinghua University, Beijing 100084,China;2.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics Chinese Academy of Sciences, Beijing 100029,China;3.Institute for Atmospheric Pollution Italian National Research Council, Rome Italy
  • Received:2006-05-22 Revised:2006-10-23 Online:2007-01-10 Published:2007-01-10

随着数值模式的不断完善和观测技术的不断提高,资料同化逐渐成为能够进一步提高数值预报水平的一种有效方法。20世纪70年代,资料同化开始引入空气质量预报领域,成为当前大气环境科学研究的一个新方向。简要介绍了资料同化的含义,较详细地介绍了Kalman滤波法、四维变分同化法、牛顿松弛法的基本思想和优缺点,重点阐述了国内外资料同化在空气质量预报中的研究应用情况,最后指出资料同化应用于空气质量预报时存在的问题和今后的研究方向。

Along with the improvement of numerical models and the enhancement of observation technology, data assimilation has become an efficient method that can further improve numerical prediction level. Since the seventies of last century, data assimilation has been used in air quality prediction, and has become a new direction in the research on the atmospheric environmental science. The meaning of data assimilation is briefly described, and the basic principle, advantages and drawbacks of Kalman filter, four-dimensional variational assimilation and nudging methods are introduced in detail. The research progress of data assimilation in air quality prediction is mainly reviewed. The existing problems and further research directions of data assimilation applied in air quality prediction are discussed.

中图分类号: 

[1]Panofsky H.Objective weather-map analysis[J]. Journal of Applled Meteorology,1949,(6):386-392.
[2]Chou Jifan. On the problems of utilizing past data in numerical weather forecasting[J]. Science in China, 1974,(6):635-644.[丑纪范.天气数值预报中使用过去资料的问题[J].中国科学,1974,(6):635-644.]
[3]Charney J,Halem M,Jastrow R. Use of incomplete historical data to infer the present state of the atmosphere[J].Atomospheric  Science,1969,26:1 160-1 163.
[4]Wang Bin, Zou Xiaolei, Zhu Jiang. Data assimilation and its applications[J].PNAS,2000,97(21): 11 143-11 144.
[5]Zhu Jiang,Wang Hui,Masafumi Kamachi.The improvement made by a modified TLM in 4DVAR with a geophysical boundary layer model[J]. Advances in Atmospheric Sciences,2002,19(4):563-582.
[6]Gao Shanhong, Wu Zengmao,Xie Hongqin. The developments and applications of Kalman filters in meteorological data assimilation[J]. Advances in Earth Science,2000,15(5):571-575.[高山红,吴增茂,谢红琴.Kalman滤波在气象数据同化中的发展与应用[J].地球科学进展, 2000,15(5):571-575.]
[7]Zhu Jiang,Zhou Guangqing,Wang Hui.An adaptive variational method of sea surface temperature[J] .Chinese Science Bulletin, 2002,47(19):1 517-1 521.[朱江,周广庆,王辉.海表温度的自适应变分同化[J].科学通报,2002, 47(19):1 517-1 521.] 
[8]Desalu A A, Gould L A, Schweppe F C. Dynamic estimation of air pollution[J]. IEEE Transactions on Automatic,Control, 1974,19:904-910.
[9]Fronza G, Spirito A, Tonielli A. Real-time Forecast of Air Pollution Episodes in the Venetian Region, Part 2: the Kalman Predictor[M].1979.
[10]Segers A J, Heemink A W,Verlaan M,et al. Large scale data assimilation based on RRSQRT-filters: Application on atmospheric chemistry models[C]//.Brebbia  C A,eds. Proceedings Air Pollution IV. Computational Mechanics Publications, Wessex Institute of Technology, 1998:25-34.
[11]Van Loon M,Builtjes P J H, Segers A J .Data assimilation of ozone in the atmospheric transport chemistry model LOTOS[J]. Environmental Modelling & Software,2000,15:603-609.
[12]Stauffer D R, Seaman N L. Use of four-dimensional data assimilation in a limited-area mesoscale model. Part-I: Experiments with synoptic-scale data[J]. Monthly Weather Review,1990(118):1 250-1 277.
[13]Elbern H, Schmidt H. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modelling[J].Journal of Geophysical Reasearch,1999,(104):18 583-18 598.
[14]Wang Yingchun,Liu Fenghui,Zhang Xiaoling,et al. Interpretation of the nonhydrostatic mesoscale NWP products in terms of local weather phenomena and air pollution in Beijing area[J]. Quarterly Journal of Applied Meteorology,2002,13(3):312-321.[王迎春,刘凤辉,张小玲,等.北京地区中尺度非静力数值预报产品释用技术研究[J]. 应用气象学报,2002,13(3):312-321.]
[15]Zhou Shijun,Song Yu,Wu Shijie. The application of Kalman filter approach in air pollutant forecast[J].Environmental Monitoring in China,2000,16(4):50-52.[周势俊,宋煜,吴士杰.Kalman滤波法在城市空气污染预报中的应用[J].中国环境监测,2000,16(4):50-52.]
[16]Smedstad O M,O’Brien J J. Variational data assimilation and parameter estimation in an equatorial paciflc ocean model prog[J]. Oceanogaphy,1992,26:179-241.
[17]Kalman R E.A new approach to linear filtering and prediction problems[J].Journal of Basic, Engineering,Transaction of the ASME(Series D),1960,82:35-45.
[18]Kalman R E,Bucy R.New results in linear filtering and prediction problems[J]. Journal of Basic, Engineering,Transaction of the ASME(Series D),1961,83:95-108.
[19]Evensen G. Using the extended Kalman filtering with a multilayer quasti-geostrophic ocean model[J]. Journal of Geophysical Research,1992,97:17 904-17 905.
[20]Dee D P. Simplification of the Kalman filter for meteorological data assimilation[J]. Quarterly Journal of the Royal Meteorological Society,1991,117:365-384.
[21]Cohn S E, Parrish D P. The behavior of forecast error covariances for a Kalman filter in two dimensions[J].Monthlry Weather Review,1991,119:1 757-1 785.
[22]Sasaki Y. Some basic formulisms in numerical variational analysis[J].Monthly Weather Review,1970, 98(12):875-883.
[23]Lewis J M,Derber J C.The use of adjoint equations to solve a variational adjustment problem with advective constrains[J].Tellus,1985,37A:309-322.
[24]Anthes R A.Data assimilation and initialization of hurricane prediction models[J]. Journal of Atmospheric Science, 1974,31:702-719.
[25]Sistla G,Zhou N,Hao W,et al.Effects of uncertainties in meteorological inputs on Urban Airshed Model Predictions and ozone control strategies[J]. Atmospheric Environment,1996,30:2 011-2 025.
[26]Kumar N,Russel A. Comparing prognostic and diagnostic meteorological fields and their impacts on photochemical air quality modelling[J].Atmospheric Environment,1996,30:1 989-2 010.
[27]Lamprecht R, Berlowitz D. Evaluation of diagnostic and prognostic flow fields over prealpine complex terrain by comparison of the lagrangian prediction of concentrations with tracer measurements[J]. Atmospheric Environment,1998,32:1 283-1 300.
[28]Fisher B E A. COST Action 710. Final Report, Harmonisation of the Pre-processing of Meteorological Data for Atmospheric Dispersion Models[R].L-2985 European Commission, Luxembourg,EUR 18195 EN (ISBN 92-828-3302-X),1998.
[29]Scire J. A users guide for the CALMET meteorological model[EB/OL].http://www.src.com/calpuff/calpuffl.htm,2000.
[30]Seaman N L.Meteorological modelling for air-quality assessments[J]. Atmospheric Environment,2000,34:2 231-2 259.
[31]Seaman N L, Stauffer D R, Lario A M.Multiscale four-dimensional data assimilation system applied in the San Joaquin Valley during SARMAP. Part I: Modeling design and basic performance characteristics[J]. Journal of Applied Meteorology,1995,34:1 739-1 761.
[32]Michelson S A, Seaman N L. Assimilation of NEXRADVAD winds in meteorological simulations over the Northeast U.S. [J].Journal of Applied Meteorology,2000,39:367-383. 
[33]Tanrikulu S, Stauffer D R, Seaman N L, et al. A field-coherence technique filed-program design for air-quality studies. Part II: Evaluation in the San Joaquin Valley[J]. Journal of Applied Meteorology,2000,39:317-334.
[34]Seaman N L,Michelson S A. Mesoscale meteorological structure of a high-ozone episode during the 1995 NARSTO-northeast study[J]. Journal of Applied Meteorology,2000,39:384-398.
[35]Seaman N L, Deng A, Hunter G K,et al. Numerical study of the influences on pollutant transport due to multiple convergence zones in the sea breezes of Cape Cod and southeastern Massachusetts[C]//The Application of Air Pollution Meteorology. 12th American Meteorological Society Conference with the Air and Waste Mange Assoc, Norfolk,VA,2002: 17-18.
[36]Seaman N L, Stauffer D R, Deng A, et al. Evaluation of a rapidly relocatable high-resolution numerical model for meteorological nowcasting based on MM5[C]//Weather Analysis and Numerical Weather Prediction. 19th American Meteorological Society and the 15th FCST Joint Conference, San Antonio, TX,2002:47-50.
[37]Egan B A, Seaman N L, Yamartino R, et al. Modeling pollutant dispersion from elevated and ground level sources affected by sea-breeze circulations produced by Cape Cod and its surroundings[C]//Application of Air Pollution Meteorology. 12th American Meteorological Society Conference, Held Jointly with the Air and Waste Mange Assoc, Norfolk, VA, 2002:11-12.
[38]Hurley P, Manins P,Lee S, et al. Year-long, high resolution, urban airshed modelling: Verification of TAPM predictions of smog and particles in Melbourne, Australia[J]. Atmospheric Environment,2003,37:1 899-1 910.
[39]Mulholland M,Seinfeld J H. Inverse air pollution modeling of urban-scale carbon monoxide emissions[J]. Atmospheric Environment,1995,29:497-516.
[40]Haas-Laursen D E,Hartley D E.Optimizing an inverse method to deduce time-varying emissions of trace gases[J]. Journal of Geophysical Research,1996,101:22 823-22 831.
[41]Chang M E,Hartley D E, Cardelino C, et al. On using inverse methods for resolving emissions with large spatial inhomogeneities[J]. Journal of Geophysical Research,1997,102 (D13):16 023-16 036.
[42]Elbern H, Schmidt H, Ebel A. Variational data assimilation for tropospheric chemistry modelling[J]. Journal of Geophysical Research,1997,102(D13): 15 967-15 985.
[43]Elbern H, Schmidt H,Talagrand O,et al. 4D-variational data assimilation with an adjoint air quality model for emission analysis[J].Environmental Modelling & Software,2000,15:539-548.
[44]Ligtmans R, Builtjes P J H, Heemink A W.An introductory study into data assimilation techniques for an atmospheric chemical transport model[J]. Transactions on Ecology and Environment,1996,(8):1 743-3 541.
[45]Kahn R A,Ogren J A,Ackerman T P,et al. Aerosol data sources and their roles within PARAGON[J]. American Meteorological Society,2004,(10):1 511-1 521.
[46]Yang Liu,Sarnat J A,Kilaru V,et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental Science & Technology, 2005,39(9):3 269-3 278.
[47]Zhang X F, Heemink A W. Data assimilation in transport models[J].Applied Mathematical Modelling,1997,21:2-14.
[48]Zhang X F,Heemink A W,Janssen L H J M,et al. A computationally efficient Kalman smoother for the evaluation of the CH4 budget in Europe[J]. Applied Mathematical Modelling,1999,23:109-129.

[1] 马雷鸣. 天气预报中的人工智能技术进展[J]. 地球科学进展, 2020, 35(6): 551-560.
[2] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[3] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[4] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[5] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[6] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[7] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.
[8] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[9] 李耀辉;;赵建华;薛纪善;陈德辉;沈学顺;王红;陈勇. 基于GRAPES的西北地区沙尘暴数值预报模式及其应用研究[J]. 地球科学进展, 2005, 20(9): 999-1011.
[10] 钱正安,焦彦军. 青藏高原气象学的研究进展和问题[J]. 地球科学进展, 1997, 12(3): 207-216.
阅读次数
全文


摘要