[1] Marks F D. Advancing tropical cyclone forecasts using aircraft observations[M]∥Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change. Netherlands: Springer, 2014. [2] Zhu P, Zhang J A, Masters F J. Wavelet analyses of turbulence in the hurricane surface layer during landfalls[J]. Journal of the Atmospheric Sciences, 2010, 67(12): 3 793-3 805. [3] Hirth B, Schroeder J, Weiss C, et al. Research radar analyses of the internal boundary layer over Cape Canaveral, Florida, during the landfall of Hurricane Frances (2004)[J]. Weather and Forecasting, 2012, 27(6): 1 349-1 372. [4] Lei Xiaotu. Progress of unmanned aerial vehicles and its application in the detection of tropical cyclone[J]. Advances in Earth Science,2015, 30(2): 276-283.[雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.] [5] Rogers R, Aberson S, Black M, et al. The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts[J]. Bulletin of the American Meteorological Society, 2006, 87(11): 1 523-1 537. [6] Houze R A, Chen S S, Lee W C, et al. The hurricane rainband and intensity change experiment[J]. Bulletin of the American Meteorological Society, 2006, 87(11): 1 503-1 521. [7] Elsberry R L, Harr P A. Tropical Cyclone Structure (TCS08) field experiment science basis, observational platforms, and strategy[J]. Asia-Pacific Journal of Atmospheric Sciences,2008,44(3): 209-231. [8] Rogers R, Lorsolo S, Reasor P, et al. Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites[J]. Monthly Weather Review, 2012, 140(1): 77-99. [9] Montgomery M T, Kallenbach R J. A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(538): 435-465. [10] Wu L, Ni Z, Duan J, et al. Sudden tropical cyclone track changes over the western North Pacific: A composite study[J]. Monthly Weather Review, 2013, 141(8): 2 597-2 610. [11] Murata A. Precipitation efficiency in numerically simulated orographic rainfall associated with typhoon Meari (2004)[J]. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, 2007, 37: 5-17. [12] Atallah E, Bosart L F, Aiyyer A R. Precipitation distribution associated with landfalling tropical cyclones over the eastern United States[J]. Monthly Weather Review, 2007, 135(6): 2 185-2 206. [13] Chen S, Zhao W, Donelan M A, et al. Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: Results from CBLAST-hurricane[J]. Journal of the Atmospheric Sciences, 2013, 70(10): 3 198-3 215. [14] Rotunno R, Chen Y, Wang W, et al. Large-eddy simulation of an idealized tropical cyclone[J]. Bulletin of the American Meteorological Society, 2009, 90(12): 1 783-1 788. [15] Zhang F, Li J. Doubling-adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization[J]. Journal of the Atmospheric Sciences, 2013, 70(10): 3 084-3 101. [16] Tong M, Xue M. Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability[J]. Monthly Weather Review, 2008, 136(5): 1 630-1 648. [17] Katz R W. Stochastic modeling of hurricane damage[J]. Journal of Applied Meteorology and Climatology, 2002, 41(7): 754-762. [18] Emanuel K, Sai R, Emmanuel V, et al. A statistical deterministic approach to hurricane risk assessment[J]. Bulletin of the American Meteorological Society, 2006, 87(3): 299-314. [19] Hallegatte S. The use of synthetic hurricane tracks in risk analysis and climate change damage assessment[J]. Journal of Applied Meteorology and Climatology, 2007, 46(11): 1 956-1 966. [20] Chen Dake, Lei Xiaotu, Wang Wei, et al. Upper ocean response and feedback mechanisms to typhoon[J]. Advances in Earth Science, 2013, 28(10): 1 077-1 086.[陈大可,雷小途,王伟,等. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1 077-1 086.] [21] Duan Yihong, Chen Lianshou, Liang Jianyin, et al. Research progress in the unusual variations of typhoons before and after landfalling[J]. Acta Meteorologica Sinica, 2014, 72(5): 969-986.[端义宏,陈联寿,梁建茵,等.台风登陆前后异常变化的研究进展[J].气象学报, 2014,72(5):969-986.] [22] Zhao Zhongkuo, Liang Jianyin, Wan Qilin, et al. Observational analysis of air-sea momentum exchange in strong wind condition[J]. Journal of Tropical Meteorology, 2011, 27(6): 899-904.[赵中阔,梁建茵,万齐林,等. 强风天气条件下海气动量交换参数的观测分析[J]. 热带气象学报, 2011, 27(6): 899-904.] [23] Zhao K, Xue M, Lee W-C. Assimilation of GBVTD-retrieved winds from single-Doppler radar for short-term forecasting of Super Typhoon Saomai (0608) at landfall[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(665): 1 055-1 071. [24] Li X, Ming J, Wang Y, et al. Assimilation of T-TREC-retrieved wind data with WRF 3DVAR for the short-term forecasting of Typhoon Meranti (2010) near landfall[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 10 361-10 375. [25] Zhuge X, Yu F, Zhang C. Rainfall retrieval and nowcasting based on multispectral satellite images. Part I: Retrieval study on daytime 10-minute rain rate[J]. Journal of Hydrometeorology, 2011, 12(6): 1 255-1 270. [26] Yu F, Zhuge X, Zhang C. Rainfall retrieval and nowcasting based on multispectral satellite images. Part II: Retrieval study on daytime half-hour rain rate[J]. Journal of Hydrometeorology, 2011, 12(6): 1 271-1 285. [27] Xu X, Peng S, Yang X, et al. Does warmer China land attract more super typhoons ?[J]. Scientific Reports, 2013, 3: 1 522. [28] Xu Hongxiong, Xu Xiangde, Chen Bin, et al. The structure change and energy moisture transport physical image in the development and decay processes of Binary typhoon vortices[J]. Acta Meteorologica Sinica, 2013, 71(5): 825-838.[徐洪雄,徐祥德,陈斌,等.双台风生消过程涡旋能量、水汽输送相互影响的三维物理图像[J].气象学报,2013,71(5):825-838.] [29] Meng Z, Zhang Y. On the squall lines preceding landfalling tropical cyclones in China[J]. Monthly Weather Review, 2012, 140(2): 445-470. [30] Chen L, Li Y, Cheng Z. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones[J]. Advances in Atmospheric Sciences, 2010, 27(5): 967-976. [31] Zhong W, Zhang D L, Lu H C. A theory for mixed vortex Rossby-gravity waves in tropical cyclones[J]. Journal of the Atmospheric Sciences, 2009, 66(11): 3 366-3 381. [32] Xin Q, Tan Z M, Xiao Q. The roles of vortex Rossby waves in hurricane secondary eyewall formation[J]. Monthly Weather Review, 2010, 138(6): 2 092-2 109. [33] Qiu X, Tan Z M. The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation[J]. Journal of the Atmospheric Sciences, 2013, 70(3): 953-974. [34] Sun Y, Jiang Y, Tan B, et al. The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008)[J]. Journal of the Atmospheric Sciences, 2013, 70(12): 3 818-3 837. [35] Dong M, Chen L, Li Y, et al. Rainfall reinforcement associated with landfalling tropical cyclones[J]. Journal of the Atmospheric Sciences, 2010, 67(11): 3 541-3 558. [36] Yu Z, Wang Y, Xu H. Observed rainfall asymmetry in tropical cyclones making landfall over China[J]. Journal of Applied Meteorology and Climatology, 2015, 54(1): 117-136. [37] Li Q, Wang Y. A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone[J]. Monthly Weather Review, 2012, 140(9): 2 782-2 805. [38] Li Q, Wang Y. Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone[J]. Journal of the Atmospheric Sciences, 2012, 69(3): 997-1 020. [39] Liu J, Yang S, Ma L, et al. An initialization scheme for tropical cyclone numerical prediction by enhancing humidity in deep-convection region[J]. Journal of Applied Meteorology and Climatology, 2013, 52(10): 2 260-2 277. [40] Ma L, Tan Z M. Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger[J]. Atmospheric Research, 2009, 92(2): 190-211. |