1 |
Bjerknes V. Dynamic Meteorology and Hydrograph, Part II. Kinematics[M].New York: Camegie Institute, Gibson Bros,1911.
|
2 |
Key J, Maslanik J, Schweiger A. Classification of merged AVHRR and SMMR Arctic data with neural networks[J]. Photogrammetric Engineering and Remote Sensing, 1989, 55(9):1 331-1 338.
|
3 |
Bankert R. Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network[J]. Journal of Applied Meteorology, 1994,33(8):909-918.
|
4 |
Marzban C, Stumpf G. A neural network for tornado prediction based on Doppler radar-derived attributes[J]. Journal of Applied Meteorology, 1996, 35(5):617-626.
|
5 |
Lakshmanan V, Stumpf G, Witt A. A neural network for detecting and diagnosing tornadic circulations using the mesocyclone detection and near storm environment algorithms[C]//21st International Conference on Information Processing Systems, San Diego, American Meteorological Society, J5.2, 2005.
|
6 |
Marzban C, Stumpf G. A neural network for damaging wind prediction[J]. Weather and Forecasting, 1998, 13 (1):151-163.
|
7 |
Marzban C, Witt A. A Bayesian neural network for severe-hail size prediction[J]. Weather and Forecasting, 2001, 16(5):600-610.
|
8 |
Manzato A. Hail in northeast Italy: A neural network ensemble forecast using sounding-derived indices[J]. Weather and Forecasting, 2013, 28(1):3-28.
|
9 |
Anagnostou E. A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations[J]. Meteorological Applications, 2004, 11(4):291-300.
|
10 |
Lakshmanan V, Karstens C, Krause J, et al. Quality control of weather radar data using polarimetric variables[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(6):1 234-1 249.
|
11 |
Lakshmanan V, Rabin R, DeBrunner V. Identifying and tracking storms in satellite images[C]//Second Artificial Intelligence Conference, Long Beach, CA, American Meteorological Society, 90-95, 2000.
|
12 |
Lakshmanan V, Fritz A, Smith T, et al. An automated technique to quality control radar reflectivity data[J]. Journal of Applied Meteorology, 2007, 46(3): 288-305.
|
13 |
Newman J, Lakshmanan V, Heinselman P L, et al. Range- correcting azimuthal shear in Doppler radar data[J]. Weather and Forecasting, 2013, 28:194-211.
|
14 |
Trafalis T B, Ince H, Richman M B. Tornado detection with support vector machines[C]//International Conference on Computational Science. Berlin, Heidelberg:Springer, 2003: 289-298.
|
15 |
Adrianto I, Trafalis T, Lakshmanan V. Support vector machines for spatiotemporal tornado prediction[J]. International Journal of General Systems, 2007, 38(7): 759-776.
|
16 |
Dai Lijie, Zhang Changjiang, Xue Licheng, et al. Eyed tropical cyclone intensity objective estimation model based on infrared satellite image and relevance vector machine[J]. Journal of Remote Sensing, 2018, 22(4): 581-590.
|
|
戴李杰,张长江,薛利成, 等. 红外卫星云图和相关向量机的有眼热带气旋客观定强模型[J]. 遥感学报,2018, 22(4):581-590.
|
17 |
Chisholm D, Ball J, Veigas K, et al. The diagnosis of upper-level humidity[J]. Journal of Applied Meteorology, 1968, 7(4):613-619.
|
18 |
Williams J D, Dettling A S, Steiner M. Combining observations and model data for short-term storm forecasting[C]//Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support, SanDiego, CA, International Society for Optics and Photonics, 2008.
|
19 |
Williams J, Sharman R, Craig J, et al. Remote detection and diagnosis of thunderstorm turbulence[C]//Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support, San Diego, CA, International Society for Optics and Photonics. 2008.
|
20 |
Gagne II D J, McGovern A, Brotzge J. Classification of convective areas using decision trees[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1 341-1 353.
|
21 |
McGovern A, Gagne II D J, Williams J K, et al. Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning[J]. Machine Learning, 2014, 95(1): 27-50.
|
22 |
McGovern A, Gagne II D J, Basara J. Solar energy prediction: An international contest to initiate interdisciplinary research on compelling meteorological problems[J]. Bulletin of the American Meteorological Society, 2015, 96(8):1 388-1 395.
|
23 |
Elmore K L, Grams H. Using mping data to generate random forests for precipitation type forecasts[C]//14th Conference on Artificial and Computational Intelligence and its Applications to the Environmental Sciences, 4.2, 2016.
|
24 |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
|
25 |
Friedman J H. Stochastic gradient boosting[J]. Computational Statistics and Data Analysis, 2002, 38(4): 367-378.
|
26 |
Schapire R E. The boosting approach to machine learning: An overview[M]//Denison D D,Hansen M H,Holmes C,et al.Nonlinear Estimation and Classification. New York: Springer, 2003.
|
27 |
Baldwin M, Kain J, Lakshmivarahan S. Development of an automated classification procedure for rainfall systems[J]. Monthly Weather Review, 2005, 133(4):844-862.
|
28 |
Lakshmanan V, Smith T. Evaluating a storm tracking algorithm[C]//26th Conference on Interactive Information Processing Systems. Atlanta, GA: American Meteorological Society, 2010.
|
29 |
Miller M L, Lakshmanan V, Smith T M. An automated method for depicting meso-cyclone paths and intensities[J]. Weather and Forecasting, 2013, 28: 570-585.
|
30 |
Pathak J, Wikner A, Fussell R, et al. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(4): 041101.
|
31 |
McNicholas C. Smartphone pressure analysis with machine learning and kriging[C]//Oral Presentation, 1B.2. The 100th American Meteorological Society Annual Meeting, Boston, MA, USA, 2020.
|
32 |
Chakraborty T. Creating bias-corrected global radiation datasets from climate reanalysis products using supervised learning[C]//Oral Presentation, 1A.3. The 100th American Meteorological Society Annual Meeting, Boston, MA, USA, 2020.
|
33 |
Lakshmanan V, Herzog B, Kingfield D. A method for extracting postevent storm tracks[J]. Journal of Applied Meteorology and Climatology, 2015, 54(2): 451-462.
|
34 |
Adams-Selin R D, Ziegler C L. Forecasting hail using a one-dimensional hail growth model within WRF[J]. Monthly Weather Review, 2016, 144: 4 919-4 939.
|
35 |
Sobash R A, Schwartz C S, Romine G S, et al. Severe weather prediction using storm surrogates from an Ensemble Forecasting System[J]. Weather Forecasting, 2016, 31(1): 255-271.
|
36 |
Smith T M, Lakshmanan V, Stumpf G J, et al. Multi-radar multi-sensor (mrms) severe weather and aviation products: Initial operating capabilities[J]. Bulletin of the American Meteorological Society, 2016, 97(9):1 617-1 630.
|
37 |
Witt A, Eilts M, Stumph G, et al. An enhanced hail detection algorithm for the WSR-88D[J]. Weather Forecasting, 1998, 13: 286-303.
|
38 |
Clark A J, MacKenzie A, McGovern A, et al. An automated, multi-parameter dryline identification algorithm[J]. Weather and Forecasting, 2015, 30(6): 1 781-1 794.
|
39 |
Ma Leiming, Bao Xuwei, Research progress on physical parameterization schemes in numerical weather prediction models[J]. Advances in Earth Science, 2017, 32(7): 679-687.
|
|
马雷鸣,鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展,2017, 32(7): 679-687.
|
40 |
Ma L M,Tan Z M. Improving the behavior of the cumulus parameterization for tropical cyclone prediction convection trigger[J]. Atmospheric Research, 2009, 92(2): 190-211.
|
41 |
Ma Leiming. Research progress on major structures of tropical cyclone boundary layer[J]. Progress in Geophysics, 2013, 28(3):1 259-1 268.
|
|
马雷鸣.热带气旋边界层关键结构研究进展[J]. 地球物理学进展, 2013, 28(3): 1 259-1 268.
|
42 |
Ma L M, Bao X W. Parametrization of planetary boundary-layer height with helicity and verification with tropical cyclone prediction[J]. Boundary Layer Meteorology, 2016, 160(3):569-593.
|
43 |
Glahn H R, Lowry D A. The use of model output statistics (mos) in objective weather forecasting[J]. Journal of Applied Meteorology,1972, 11(8): 1 203-1 211.
|
44 |
Ma L M. Convection forecast enhanced by the deep learning of radar observation and numerical prediction[C]//Oral Presentation, 1B.1. The 100th American Meteorological Society Annual Meeting, Boston, MA, USA, 2020.
|