Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (8): 794-807    DOI: 10.11867/j.issn.1001-8166.2018.08.0794
综述与评述     
全球海洋再分析产品的研究现状
王世红1,3(), 赵一丁1, 尹训强1,2,3, 乔方利1,2,3,*()
1.国家海洋局第一海洋研究所,山东 青岛 266061
2.青岛海洋科学与技术国家实验室区域海洋动力学与数值模拟功能实验室,山东 青岛 266061
3.海洋环境科学和数值模拟国家海洋局重点实验室,山东 青岛 266061
Current Status of Global Ocean Reanalysis Datasets
Shihong Wang1,3(), Yiding Zhao1, Xunqiang Yin1,2,3, Fangli Qiao1,2,3,*()
1.The First Institute of Oceanography, SOA, Qingdao 266061, China
2.Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
3.Key Laboratory of Marine Science and Numerical Modeling, SOA, Qingdao 266061, China
 全文: PDF(1484 KB)   HTML
摘要:

随着海洋观测资料的积累和日益丰富,以及海洋数值模式与数据同化方法的不断发展,利用同化系统将海洋数值模式和历史观测资料结合起来,对重构海洋过去的演变以形成再分析资料的作用和意义越来越显著。再分析产品为人们深入了解多时空尺度的海洋运动和探究海洋在气候变化中的作用提供了不可替代的资料基础。受海洋模式与数据同化方法的发展水平和庞大的计算资源需求等方面的限制,全球海洋再分析产品主要由海洋科技强国制作与发布。就当前国内外一些主要的全球海洋再分析计划及其产品进行分析,对各产品的特点及应用中存在的一些问题进行介绍,最后对全球海洋再分析产品未来的发展趋势进行了展望和讨论。

关键词: 全球海洋再分析产品再分析资料比较计划资料同化数值模拟    
Abstract:

With the development of the ocean satellite remote sensing technology, the reanalysis of past oceanic observations using modern data assimilation technique and the restructuring of the long-term and consistent gridded data products have made great progress. Such datasets provide us with the most primary research tools to identify the state and evolution of ocean, and understand the role of ocean in climate change and variability at different spatial-temporal scales. In this paper, the current research status in the global reanalysis datasets including some of international global ocean reanalysis projects and the corresponding reanalyzed products were systematically reviewed. In addition, the present status of the domestic research of ocean reanalysis datasets was briefly introduced. The validation of the reanalysis datasets and some quality problems represented by the reanalyzed products, and the Ocean Reanalyses Intercomparison Project were systematically reviewed. Moreover, the prospects of the studies of oceanic reanalysis in the future were also discussed in this paper.

Key words: Ocean reanalysis datasets    The Ocean Reanalyses Intercomparison Project    Assimilation    Numerical simulation.
收稿日期: 2018-02-12 出版日期: 2018-09-14
ZTFLH:  P717  
基金资助: 中国科学技术部资助国际合作项目“中—澳海洋工程研究”(编号:2016YFE0101400);国家自然科学基金委员会—山东省人民政府联合资助海洋科学研究中心项目“海洋环境动力学和数值模拟”(编号:U1606405)资助.
通讯作者: 乔方利     E-mail: wangshh@fio.org.cn;qiaofl@fio.org.cn
作者简介:

作者简介:王世红(1989-),女,山东莒县人,博士后,主要从事海洋动力学研究.E-mail:wangshh@fio.org.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王世红
赵一丁
尹训强
乔方利

引用本文:

王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.

Shihong Wang, Yiding Zhao, Xunqiang Yin, Fangli Qiao. Current Status of Global Ocean Reanalysis Datasets. Advances in Earth Science, 2018, 33(8): 794-807.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.08.0794        http://www.adearth.ac.cn/CN/Y2018/V33/I8/794

版本号 时间段 风场资料 观测数据 产品分辨率
1.2 1948—2003年 NCEP/NCAR WOD01
1.4.0 1958—2001年 ERA-40 Simulation
1.4.2 1958—2001年 ERA-40 WOD01
1.4.3 2000—2005年 QuikSCAT WOD01
1.4.4 1992—2001年 ERA-40 WOD01
2.0.2 1958—2001年 ERA-40 WOD05 0.5°×0.5° 月平均
2.0.3 2002—2005年 QuikSCAT WOD05
2.0.4 2002—2007年 QuikSCAT WOD05 0.5°×0.5° 月平均
2.1.0 1958—2007年 ERA-40 WOD05
2.1.2 1958—2001年 ERA-40 Reprocessed Levitus
2.1.3 2002—2007年 QuikSCAT Reprocessed Levitus
2.1.4 1958—2007年 ERA-40 Reprocessed Wijffels
2.1.6 1958—2008年 ERA-40/ERA-Interim WOD09, COADS, SST 0.5°×0.5° 5天平均/月平均
2.2.0 1890—2003年 CR20v2 Simulation
2.2.2 1890—2007年 CR20v2 WOD09
2.2.4 1871—2010年 CR20v2 Ensemble Mean WOD09,COADS, SST 0.5°×0.5° 月平均
3.3.0 1980—2015年 MERRA2 Simulation 0.5°×0.5° 5天平均/月平均
3.3.1 1980—2015年 MERRA2 WOD09, SST 0.5°×0.5° 5天平均/月平均
3.3.2 1980—2016年 MERRA2 WOD09, COADS, SST 0.5°×0.5° 5天平均/月平均
3.4.0 1980—2015年 ERA-Interim Simulation 0.5°×0.5° 5天平均/月平均
3.4.1 1980—2015年 ERA-Interim WOD09, COADS, SST 0.5°×0.5° 5天平均/月平均
3.4.2 1980—2016年 ERA-Interim WOD09, COADS, SST 0.5°×0.5° 5天平均/月平均
3.5.1 1980—2010年 ERA20C WOD09, COADS, SST
3.6.1 1980—2009年 CORE2 WOD09, COADS, SST 0.5°×0.5° 5天平均/月平均
3.7.0 1980—2013年 JRA-55 Simulation
3.7.2 1980—2013年 JRA-55 WOD09, COADS, SST 0.5°×0.5° 5天平均/月平均
表1  SODA 再分析数据产品
变量 观测数据类型
Sea level TOPEX/Poseidon (1993-2005), Jason-1 (2002-2008), Jason-2 (2008-2015), Geosat-Follow-On(2001-2007),CryoSat-2(2011-2015),ERS-1/2 (1992-2001), ENVISAT (2002-2012), SARAL/AltiKa (2013-2015)
Temperature profiles Argo floats (1995-2015), XBTs (1992-2008), CTDs (1992-2011), Southern Elephant seals as Oceanographic Samplers (SEaOS,2004-2010), Ice-Tethered Profilers (ITP, 2004-2011)
Salinity profiles Argo floats (1997-2015), CTDs (1992-2011), SEaOS (2004-2010)
Sea surface temperature AVHRR (1992-2013), AMSR-E (2002-2010)
Sea surface salinity Aquarius (2011-2013)
Sea-ice concentration SSM/I DMSP-F11 (1992-2000) and -F13 (1995-2009) and SSMIS DMSP-F17 (2006-2015)
Ocean bottom pressure GRACE (2002-2014)
TS climatology World Ocean Atlas 2009
Mean dynamic topography DTU13 (1992-2012)
表2  ECCO-V4-R3同化所用观测资料及其时段[32]
产品 机构 时间段 水平分辨率 层数 参考文献
ECCO-V4-R3 MIT/AER/JPL 1992—2015年 50 [31]
ECCO2 JPL 1992年至今 50 [29]
GECCO UH 1950—2000年 23 [33]
GECCO2 UH 1948—2014年 50 [34]
ECCO-JPL JPL 1993年至今 46 [35]
ECCO-GODAS-V4 MIT 1993—2004年 23 [36]
ECCO-SIO UH 1992—2002年 23 [37]
表3  ECCO 系列全球海洋再分析数据
图1  ORA-S3同化的观测资料及其强迫场年表[41]
图2  ORA-S4同化的观测资料及其强迫场年表[42]
产品及机构 强迫场 模式及分辨率 同化方案及变量 参考文献
CFSR
NOAA NCEP
Coupled DA 1/2° MOM4 coupled 3DVAR (T/SST/SIC) [70]
C-GLORS05V3
CMCC
ERAicorr+ Bulk 1/2° NEMO3.2 3DVAR (SLA/T/S/SST/SIC) [71]
ECCO-NRT
JPL/NASA
NCEP-R1+ CORE Bulk 1° MITgcm KF-FS (SLA/T) [35]
ECCO-v4
MIT/AER/JPL
ERAi+CORE Bulk 1° MITgcm 4DVAR (SLA/SSH/T/S/SST) [31]
GECCO2
UH
NCEP-R1+Bulk 1°×1/3° MITgcm 4DVAR (SLA/T/S/MDT/SST) [34]
ECDA
GFDL/NOAA
Coupled DA 1/3° MOM4 coupled EnKF (T/S/SST) [72,73]
GloSea5
UK MetOffice
ERAi+CORE Bulk 1/4° NEMO3.2 3DVAR (SLA/T/S/SST/SIC) [74]
MERRA Ocean
GSFC/NASA/GMAO
Merra + Bulk 1/2° MOM4 EnOI (SLA/T/S/SST/
SIC)
GODAS
NOAA NCEP
NCEP-R2 Flux 1°×1/3° MOM3 3DVAR (SST/T)
GLORYS2V1(G2V1)
Mercator Océan
ERAicorr+CORE Bulk 1/4° NEMO3.1 KF+3DVAR (SLA/T/S/SST/SIC) [44]
GLORYS2V3(G2V3)
Mercator Océan
ERAicorr+CORE Bulk 1/4° NEMO3.1 KF+3DVAR (SLA/T/S/SST/SIC) [45]
K7-ODA(ESTOC)
JAMSTEC/RCGC
NCEP-R1 corr. Flux 1° MOM3 4DVAR (SLA/T/S/SST) [51]
K7-CDA
JAMSTEC/CEIST
Coupled DA 1° MOM3 coupled 4DVAR (SLA/SST) [23]
PEODAS
CAWCR(BoM)
ERA40 to 2002; NCEP-R2 thereafter. Flux 1°×2° MOM2 EnKF (T/S/SST) [75]
ORAS4
ECMWF
ERA40 to 1988; ERAi thereafter. Flux. 1° NEMO3 3DVAR (SLA/T/S/SST) [42]
MOVE-C
MRI/JMA
Coupled DA 1° MRI.COM2 coupled 3DVAR (SLA/T/S/SST) [76]
MOVE-G2
MRI/JMA
JRA-55 corr+ Bulk 0.5°×1° MRI.COM3 3DVAR (SLA/T/S/SST) [77]
MOVE-CORE
MRI/JMA
CORE.2 Bulk 0.5°×1° MRI.COM3 3DVAR (T/S) [78,79]
SODA
U. of Maryland and TAMU
ERA40 to 2002; ERAi thereafter. Bulk 1/4° POP2.1 OI (T/S/SST) [59]
UR025.4
U. of Reading
ERAi+CORE Bulk 1/4° NEMO3.2 OI (SLA/T/S/SST/SIC) [80]
表4  ORA-IP计划中模式再分析数据集
[1] Ingleby B, Huddleston M.Quality control of ocean temperature and salinity profiles: Historical and real-time data[J]. Journal of Marine Systems, 2007, 65(1/4):158-175.
doi: 10.1016/j.jmarsys.2005.11.019
[2] Guinehut S, Dhomps A L, Larnicol G, et al. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations[J]. Ocean Science, 2012, 8(5):1 313-1 347.
[3] Mulet S, Rio M H, Mignot A, et al. A new estimate of the global 3D geostrophic ocean circulation based on satellite data. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 77/80(1/2):70-81.
[4] Qiao Fangli, Zhang Shaoqing.The unification and application reviews of modern oceanic/atomospheric data assimilation algorithms[J]. Advances in Marine Science, 2002, 20(4):79-93.
doi: 10.3969/j.issn.1671-6647.2002.04.013
[4] [乔方利, Zhang Shaoqing.现代海洋/大气资料同化方法的统一性及其应用进展[J]. 海洋科学进展, 2002, 20(4):79-93.]
doi: 10.3969/j.issn.1671-6647.2002.04.013
[5] Bengtsson L, Shukla J.Integration of space and in situ observations to study global climate change[J]. Bulletin of the American Meteorological Society, 1988, 69(10):1 130-1 143.
doi: 10.1109/ISIC.1992.225129
[6] Trenberth K E, Olson J G.Anevaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts[J]. Bulletin of the American Meteorological Society, 1988, 69(9):1 047-1 056.
doi: 10.1175/1520-0477(1988)069<1047:AEAIOG>2.0.CO;2
[7] Hurlburt H E, Brassington G B, Drillet Y, et al. High-resolution global and basin-scale ocean analyses and forecasts[J]. Oceanography, 2009, 22(3):110-127.
doi: 10.5670/oceanog.2009.70
[8] Fischer M, Latif M, Flügel M, et al. The impact of data assimilation on ENSO simulations and predictions[J]. Monthly Weather Review, 1914, 125(5):1-5.
doi: 10.1175/1520-0493(1997)1252.0.CO;2
[9] Behringer D W, Ji M, Leetmaa A.An Improved Coupled Model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system[C]∥IEEE International Symposium on Electromagnetic Compatibility. IEEE, 1914:1 022.
[10] Zhao Tianbao, Fu Congbin, Ke Zongjian, et al. Global atmosphere reanalysis datasets: Current status and recent advances[J]. Advances in Earth Science, 2010, 25(3): 241-254.
[10] [赵天保,符淙斌,柯宗建,等. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 241-254.]
[11] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-Year Reanalysis Project[J]. Bulletin of the American Meteorological Society, 1996, 77(3):437-472.
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[12] Kistler R, Collins W, Saha S, et al. The NCEP-NCAR 50-year Reanalysis: Monthly means CD-ROM and documentation[J]. Bulletin of the American Meteorological Society, 2001, 82(2):247-268.
doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
[13] Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-II Reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 2002, 83(11):1 631-1 643.
doi: 10.1175/BAMS-83-11-1631
[14] Suarez M J, Takacs L L, Molod A, et al. Volume 1 documentation of the Goddard Earth Observing System (GEOS) general circulation Model—Version 1[J]. Journal of Medical Imaging & Radiation Oncology, 2012, 56(5):499-509.
[15] Suarez M J, Schubert S, Rood R, et al. Technical report series on global modeling and data assimilation. Volume 6: A multiyear assimilation with the GEOS-1 system: Overview and results[C]∥NASA Technical Memorandum, 1995.
[16] Gibson J K, Kallberg P, Uppala S, et al. ERA-15 description (version 2—January 1999)[J]. ECMWF Re-Analysis Project Report Series, 1999, 1: 84.
[17] Uppala S M, Kallberg P W, Simmons A J, et al. The ERA-40 reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(612):2 961-3 012.
doi: 10.1256/qj.04.176
[18] Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597.
doi: 10.1002/qj.v137.656
[19] Onogi K, Tsutsui J, Koide H, et al. The JRA-25 Reanalysis[J]. Journal of the Meteorological Society of Japan, 2007, 85(3):369-432.
doi: 10.2151/jmsj.85.369
[20] Daley R.Atmospheric Data Analysis[M]. England: Cambridge University Press, 1993.
[21] Kalman R E.A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering Transactions, 1960, 82:35-45.
doi: 10.1115/1.3662552
[22] Sasaki Y.An objective analysis based on the variational method[J]. Journal of the Meteorological Society of Japan, 2007, 36(3):77-88.
doi: 10.1002/qj.49703615402
[23] Sugiura N, Awaji T, Masuda S, et al. Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations[J].Journal of Geophysical Research Oceans, 2008, 113(C10):2 601-2 613.
[24] Pacanowski R.MOM 2 Version 2 Documentation User's Guide and Reference Manual[R]. Princeton, New Jersey:GFDL,1996:1-3.
[25] Smith R D, Gent P.The Parallel Ocean Program (POP) Reference Manual[R]. Los Alamos, New Mexico: LANL, 2010:4-5.
[26] Ricciardulli L, Wentz F J.Ascatterometer geophysical godel function for climate-quality winds: QuikSCAT Ku-2011[J]. Journal of Atmospheric & Oceanic Technology, 2014, 32(10):150904131243002.
doi: 10.1175/JTECH-D-15-0008.1
[27] Marotzke J, Giering R, Zhang K Q, et al. Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity[J]. Journal of Geophysical Research Oceans, 1999, 104(C12):29 529-29 547.
doi: 10.1029/1999JC900236
[28] Wunsch C, Heimbach P, Rui M P, et al. Theglobal general circulation of the ocean estimated by the ECCO-consortium[J]. Oceanography, 2009, 22(2):88-103.
doi: 10.5670/oceanog.2009.41
[29] Menemenlis D, Hill C, Adcrocft A, et al. NASA supercomputer improves prospects for ocean climate research[J]. Eos Transactions American Geophysical Union, 2005, 86(9):89-96.
doi: 10.1029/2005EO090002
[30] Menemenlis D, Campin J, Heimbach P, et al. ECCO2:High Resolution Global Ocean and Sea Ice Data Synthesis[C]∥AGU Fall Meeting. AGU Fall Meeting Abstracts, 2008.
[31] Forget G, Campin J M, Heimbach P, et al. ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation[J]. Geoscientific Model Development Discussions, 2015, 8(5):3 653-3 743.
[32] Forget G, Campin J M, Heimbach P, et al. ECCO Version 4 Release 3[EB/OL].[2017-12-20]. ,2016.
[33] K?hl A, Stammer D.Decadal sea level changes in the 50-year GECCO Ocean Synthesis[J].Journal of Physical Oceanography, 2008, 21(9):1 876-1 890.
doi: 10.1175/2007JCLI2081.1
[34] K?hl A.Evaluation of the GECCO2 ocean synthesis: Transports of volume, heat and freshwater in the Atlantic[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(686):166-181.
doi: 10.1002/qj.2347
[35] Wunsch C, Heimbach P.Theglobal zonally integrated ocean circulation, 1992-2006: Seasonal and decadal variability[J]. Journal of Physical Oceanography, 2009, 39(2):351-368.
doi: 10.1175/2008JPO4012.1
[36] Fukumori I.Apartitioned kalman filter and smoother[J]. Monthly Weather Review, 2002, 130(5):1 370-1 383.
doi: 10.1175/1520-0493(2002)1302.0.CO;2
[37] K?hl A, Stammer D, Cornuelle B.Interannual to decadal changes in the ECCO global synthesis[J]. Journal of Physical Oceanography, 2007, 37(37):313-337.
doi: 10.1175/JPO3014.1
[38] Bleck R, Boudra D B.Initialtesting of a numerical ocean circulation model using a hybrid (Quasi-Isopycnic) vertical coordinate[J]. Journal of Physical Oceanography, 1981, 11(11):755-770.
doi: 10.1175/1520-0485(1981)011<0755:ITOANO>2.0.CO;2
[39] Bleck R, Benjamin S G.Regionalweather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description[J]. Monthly Weather Review, 1993, 121(6):1 770.
doi: 10.1175/1520-0493(1993)121<1770:RWPWAM>2.0.CO;2
[40] Chassignet E P, Hurlburt H E, Smedstad O M, et al. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system[J]. Journal of Marine Systems, 2007, 65(1/4):60-83.
doi: 10.1016/j.jmarsys.2005.09.016
[41] Balmaseda M A, Vidard A, Anderson D L T. The ECMWF ocean analysis system: ORA-S3[J]. Monthly Weather Review, 2008, 136(8):3 018.
doi: 10.1175/2008MWR2433.1
[42] Balmaseda M A, Mogensen K, Weaver A T.Evaluation of the ECMWF ocean reanalysis system ORAS4[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674):1 132-1 161.
doi: 10.1002/qj.2063
[43] Zuo H, Balmaseda M A, Mogensen K.The new eddy-permitting ORAP5 ocean reanalysis: Description, evaluation and uncertainties in climate signals[J]. Climate Dynamics, 2017,49:791-811.
doi: 10.1007/s00382-015-2675-1
[44] Ferry N, Parent L, Garric G, et al. Mercator global eddy permitting, ocean reanalysis GLORYS1V1: Description and results[J]. Mercator-Ocean Quarterly Newsletter, 2010,36:15-27.
[45] Parent L, Ferry N, Garric G, et al. GLORYS2: A Global Ocean Reanalysis Simulation of the Period 1992-Present[Z]. Geophysical Reearch Abstracts,2011.
[46] Fichefet T, Maqueda M A M. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics[J]. Journal of Geophysical Research Oceans, 1997, 102(C6):12 609-12 646.
doi: 10.1029/97JC00480
[47] Toyoda T, Fujii Y, Yasuda T, et al. Improved analysis of the seasonal-interannual fields by a global ocean data assimilation system[C]∥NCTAM Papers, National Congress of Theoretical and Applied Mechanics, Japan. National Committee for IUTAM, 2012:50-50.
[48] Tsujino H, MotoI T, Ishikawa I, et al. Reference Manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) Version 3[R]. Tsukuba:Meteorological Research Institute,2010:9-23.
[49] Kobayashi S, Ota Y, Harada Y, et al. The JRA-55 reanalysis: General specifications and basic characteristics[J]. Journal of the Meteorological Society of Japan, 2015, 93(1):5-48.
doi: 10.2151/jmsj.2015-001
[50] Fujii Y, Kamachi M.Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity EOF modes[J]. Journal of Geophysical Research Oceans, 2003, 108(C9):11-19.
[51] Masuda S, Awaji T, Sugiura N, et al. Simulated rapid warming of abyssal North Pacific waters[J]. Science, 2010, 329(5 989):319.
doi: 10.1126/science.1188703 pmid: 20576848
[52] Yuan Yeli, Qiao Fangli, Hua Feng, et al. The development of a coastal circulation numerical model: 1. Wave-induced mixing and wave-current interaction[J].Journal of Hydrodynamics (Series A), 1999, 14(4B): 1-8.
[52] [袁业立,乔方利,华锋,等. 近海环流数值模式的建立,部分1:海波的搅拌和波—流相互作用[J]. 水动力学研究与进展:A辑,1999,14(4B):1-8.]
[53] Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model[J]. Geophysical Research Letters, 2004, 31(11):293-317.
[54] Qiao Fangli, Yuan Yeli, Ezer T, et al. A three-dimensional surface wave-ocean circulation coupled model and its initial testing[J]. Ocean Dynamics, 2010, 60(5):1 339-1 355.
doi: 10.1007/s10236-010-0326-y
[55] Dai Dejun, Qiao Fangli, Sulisz W, et al. An experiment on the nonbreaking surface-wave-induced vertical mixing[J]. Journal of Physical Oceanography, 2010, 40(9):2 180-2 188.
doi: 10.1175/2010JPO4378.1
[56] Huang N E, Hu K, Yang A C C, et al. On Holo-Hilbert spectral analysis: A full informational spectral representation for nonlinear and non-stationary data[J].Philosophical Transactions, 2016, 374(2 065):20150206.
doi: 10.1098/rsta.2015.0206
[57] Qiao Fangli, Yuan Yeli, Deng Jia, et al. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models[J]. Philosophical Transactions, 2016, 374(2 065):20150201.
doi: 10.1098/rsta.2015.0201 pmid: 4792408
[58] Lü Xingang, Qiao Fangli, Wang Guansuo, et al. Upwelling off the west coast of Hainan Island in summer: Its detection and mechanisms[J]. Geophysical Research Letters, 2008, 35(2):196-199.
doi: 10.1029/2007GL032440
[59] Qiao Fangli, Zhao Wei, Yin Xunqiang, et al.A highly effective global surface wave numerical simulation with Ultra-High Resolution[C]∥International Conference for High PERFORMANCE Computing, Networking, Storage and Analysis. IEEE Press, 2016:5.
[60] Yin Xunqiang, Qiao Fangli, Yang Yongzeng, et al. Argo data assimilation in ocean general circulation model of Northwest Pacific Ocean[J]. Ocean Dynamics, 2012, 62(7):1 059-1 071.
doi: 10.1007/s10236-012-0549-1
[61] Shi Junqiang, Yin Xunqiang, Shu Qi, et al. Evaluation on data assimilation of a global high resolution wave-tide-circulation coupled model using the tropical Pacific TAO buoy observations[J]. Acta Oceanologica Sinica, 2018, 37(3):8-20.
[62] Borgia L,Valberg S,Mccue M, et al. Sensitivity of the ERA40 reanalysis to the observing system:Determination of the global atmospheric circulation from reduced observation[J].Tellus Series ADynamic Meteorology & Oceanography,2004, 56(5):456-471.
[63] Bengtsson L, Arkin P, Berrisford P, et al. Theneed for a dynamical climate reanalysis[J]. Bulletin of the American Meteorological Society, 2007, 88(4):495-501.
doi: 10.1175/BAMS-88-4-495
[64] Carton J A, Chepurin G, Cao X, et al. Asimpleocean data assimilation analysis of the global upper ocean 1950-1995, Part 1: Methodology[J]. Journal of Physical Oceanography, 2000, 30: 294-309.
doi: 10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2
[65] Carton J A, Giese B S.Areanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(136):2 999.
doi: 10.1175/2007MWR1978.1
[66] Carton J A, Chepurin G, Cao X.A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part II: Results[J]. Journal of Physical Oceanography, 2000, 30(30):311-326.
doi: 10.1175/1520-0485(2000)030<0311:ASODAA>2.0.CO;2
[67] Fischer M, Latif M, Flügel M, et al. Theimpact of data assimilation on ENSO simulations and predictions[J]. Monthly Weather Review, 1914, 125(5):1-5.
doi: 10.1175/1520-0493(1997)1252.0.CO;2
[68] Oldenborgh G J V. The impact of variational assimilation of altimetry data on ocean analysis and ENSO forecasting[J]. Angewandte Chemie, 2005, 44(46):7 612-7 615.
doi: 10.1002/anie.200501552 pmid: 16247812
[69] Schneider E K, Huang B, Zhu Z, et al. Oceandata assimilation, initialization, and predictions of ENSO with a coupled GCM[J]. Monthly Weather Review, 2010, 127(6):1 187-1 207.
doi: 10.1175/1520-0493(1999)127<1187:ODAIAP>2.0.CO;2
[70] Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 2010, 91(8):1 015-1 057.
doi: 10.1175/2010BAMS3001.1
[71] Storto A, Dobricic S, Masina S, et al. Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system[J]. Monthly Weather Review, 2011, 139(3):738-754.
doi: 10.1175/2010MWR3350.1
[72] Zhang S, Harrison M J, Rosati A, et al. System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies[J]. Monthly Weather Review, 2006, 135:3 541-3 564.
[73] Chang Y S, Zhang S, Rosati A, et al. An assessment of oceanic variability for 1960-2010 from the GFDL ensemble coupled data assimilation[J]. Climate Dynamics, 2013, 40(3/4):775-803.
doi: 10.1007/s00382-012-1412-2
[74] Waters J, Lea D J, Martin M J, et al. Implementing a variational data assimilation system in an operational 1/4 degree global ocean model[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(687):333-349.
doi: 10.1002/qj.2015.141.issue-687
[75] Yin Y, Alves O, Oke P R.Anensemble ocean data assimilation system for seasonal prediction[J]. Monthly Weather Review, 2011, 139(3):786-808.
doi: 10.1175/2010MWR3419.1
[76] Fujii Y, Nakaegawa T, Matsumoto S, et al. Coupled climate simulation by constraining ocean fields in a coupled model with ocean data[J]. Journal of Climate, 2009, 22(20):5 541-5 557.
doi: 10.1175/2009JCLI2814.1
[77] Toyoda T, Fujii Y, Yasuda T, et al. Improved analysis of seasonal-interannual fields using a global ocean data assimilation system[J]. Theoretical & Applied Mechanics Japan, 2013, 61:31-48.
doi: 10.11345/nctam.61.31
[78] Tsujino H, Nakano H, Yasuda T, et al. Simulating present climate of the global ocean-ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): Simulation characteristics and variability in the Pacific sector[J]. Journal of Oceanography, 2011, 67(4):449-479.
doi: 10.1007/s10872-011-0050-3
[79] Danabasoglu G, Yeager S G, Bailey D, et al. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states[J]. Ocean Modelling, 2014, 73(1):76-107.
doi: 10.1016/j.ocemod.2013.10.005
[80] Haines K, Valdivieso M, Zuo H, et al. Transports and budgets in a 1/4° global ocean reanalysis 1989-2010[J]. Ocean Science Discussions, 2012, 9(1):261-290.
doi: 10.5194/os-8-333-2012
[81] Balmaseda M A, Hernandez F, Storto A, et al. Theocean Reanalyses Intercomparison Project (ORA-IP)[J]. Journal of Operational Oceanography, 2015, 8(Suppl.1):80-97.
doi: 10.1080/1755876X.2015.1014667
[82] Luan Yihua, Yu Yongqiang, Zheng Weipeng.Review of development and application of high resolution global climate system model[J]. Advances in Earth Science, 2016, 31(3): 258-268.
doi: 10.11867/j.issn.1001-8166.2016.03.0258.
[82] [栾贻花, 俞永强, 郑伟鹏.全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.]
doi: 10.11867/j.issn.1001-8166.2016.03.0258.
[1] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[2] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[3] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[4] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[5] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展*[J]. 地球科学进展, 2015, 30(5): 539-551.
[6] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[7] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[8] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[9] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
[10] 蔡树群,何建玲,谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7): 703-710.
[11] 李大鹏,陈岳龙,靳野. 板块俯冲带研究中的数值实验[J]. 地球科学进展, 2010, 25(6): 582-596.
[12] 唐学远,孙波,李院生,崔祥斌,李鑫. 南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1210-1218.
[13] 鲍颖,兰健,王毅. 南海在1997/1998年El Niño事件后的异常变化[J]. 地球科学进展, 2008, 23(10): 1027-1036.
[14] 程雪玲,胡非,赵松年,姜金华. 格子玻尔兹曼方法及其在大气湍流研究中的应用[J]. 地球科学进展, 2007, 22(3): 249-260.
[15] 靳立亚,陈发虎. 千百年尺度气候快速变化及其数值模拟研究进展[J]. 地球科学进展, 2007, 22(10): 1054-1065.