地球科学进展 ›› 2018, Vol. 33 ›› Issue (8): 783 -793. doi: 10.11867/j.issn.1001-8166.2018.08.0783

综述与评述 上一篇    下一篇

海洋微生物气溶胶的丰度、群落结构及影响机制
王芳慧( ), 陈莹 *( ), 王波, 李好文, 周升钱   
  1. 复旦大学环境科学与工程系,上海 200438
  • 收稿日期:2018-04-02 修回日期:2018-06-06 出版日期:2018-08-10
  • 通讯作者: 陈莹 E-mail:16210740014@fudan.edu.cn;yingchen@fudan.edu.cn
  • 基金资助:
    国家重点研发计划项目“海洋生源活性气体在大气中的迁移转化及气候效应”(编号:2016YFA0601304);国家自然科学基金项目“东海微生物气溶胶的丰度和群落结构变化及影响机制”(编号:41775145)资助.

Abundance and Community Structure of Airborne Microorganisms over the Ocean and Their Influencing Mechanisms

Fanghui Wang( ), Ying Chen *( ), Bo Wang, Haowen Li, Shengqian Zhou   

  1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
  • Received:2018-04-02 Revised:2018-06-06 Online:2018-08-10 Published:2018-09-14
  • Contact: Ying Chen E-mail:16210740014@fudan.edu.cn;yingchen@fudan.edu.cn
  • About author:

    First author: Wang Fanghui(1991-), female, Puyang City, He'nan Province, Ph. D student. Research areas include airborne microorganisms. E-mail: 16210740014@fudan.edu.cn

  • Supported by:
    Project supported by the National Key Research and Development Program of China “Transport and transformation of marine biogenic reactive gas in the atmosphere and their climate effects” (No.2016YFA0601304);The National Natural Science Foundation of China “Variation of abundance and community structure of airborne microorganisms and affecting mechanism over the East China Sea” (No.41775145).

微生物气溶胶在微生物传播和生态系统多样性维护上发挥着核心作用,并且可成为有效的冰核(IN)和云凝结核(CCN)对气候产生显著影响。海洋是大气中微生物的重要源和汇,然而,关于海洋微生物气溶胶丰度和多样性分布的信息知之甚少。系统梳理了已研究报道的海洋微生物气溶胶的丰度、粒径分布和群落结构,以及影响其分布的各种环境和气象因素;列出了微生物气溶胶的常用测定方法及发展态势;最后指出该研究领域亟待解决的问题和未来方向,包括建立标准的海洋微生物气溶胶采集和处理技术,增加开阔大洋的航次观测资料,采用先进的分子生物学技术与传统分析手段结合等。为后续海洋微生物气溶胶的深入研究,揭示其来源、活性、气候和生态效应提供了全面重要的信息。

Airborne microorganisms play an essential role in the microbial propagation and maintenance of the ecosystem diversity, and also significantly affect the climate by acting as effective Ice Nucleus (IN) and Cloud Condensation Nuclei (CCN). The ocean is a vital source and destination for airborne microbes. Nevertheless, little information has been obtained on the distribution of abundance and diversity of airborne microorganisms over the ocean. This paper systematically reviewed the abundance, size distribution, and community structure of airborne microorganisms over the ocean, as well as various environmental and meteorological factors that control the distribution of microbes in marine aerosols. The commonly used methods for detecting airborne microorganisms and their development prospects were also discussed. We pointed out that sampling and detection of extremely low concentration microorganisms in marine aerosols are key problems to be solved in this field, and future research directions include the increase of the cruising observation in open oceans and combination of advanced molecular techniques and other traditional methods. This paper provides extensive and crucial information for subsequently in-depth research on airborne microorganisms over the ocean, revealing their sources, activities, climate and ecological effects.

中图分类号: 

图1 全球海洋上空细菌气溶胶在门分类水平上的群落结构分布
Fig.1 Distribution of community structure of airborne bacteria at the phylum level over global oceans
图1 全球海洋上空细菌气溶胶在门分类水平上的群落结构分布
Fig.1 Distribution of community structure of airborne bacteria at the phylum level over global oceans
图2 全球海洋上空细菌气溶胶在纲分类水平上的群落结构分布
Fig.2 Distribution of community structure of airborne bacteria at the class level over global oceans
图2 全球海洋上空细菌气溶胶在纲分类水平上的群落结构分布
Fig.2 Distribution of community structure of airborne bacteria at the class level over global oceans
[1] Seifried J S, Wichels A, Gerdts G.Spatial distribution of marine airborne bacterial communities[J]. Microbiologyopen, 2015, 4(3): 475-490.
doi: 10.1002/mbo3.253     URL     pmid: 25800495
Seifried J S, Wichels A, Gerdts G.Spatial distribution of marine airborne bacterial communities[J]. Microbiologyopen, 2015, 4(3): 475-490.
doi: 10.1002/mbo3.253     URL     pmid: 25800495
[2] Prospero J M, Blades E, Mathison G, et al. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust[J]. Aerobiologia, 2005, 21(1): 1-19.
doi: 10.1007/s10453-004-5872-7     URL    
Prospero J M, Blades E, Mathison G, et al. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust[J]. Aerobiologia, 2005, 21(1): 1-19.
doi: 10.1007/s10453-004-5872-7     URL    
[3] Mayol E, Jimenez M A, Herndl G J, et al. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean[J]. Frontiers in Microbiology, 2014, 5: 557. DOI: 10.3389/fmicb.2014.00557.
Mayol E, Jimenez M A, Herndl G J, et al. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean[J]. Frontiers in Microbiology, 2014, 5: 557. DOI: 10.3389/fmicb.2014.00557.
[4] Xu Z, Wu Y, Shen F, et al. Bioaerosol science, technology, and engineering: Past, present, and future[J]. Aerosol Science and Technology, 2011, 45(11): 1 337-1 349.
doi: 10.1080/02786826.2011.593591     URL    
Xu Z, Wu Y, Shen F, et al. Bioaerosol science, technology, and engineering: Past, present, and future[J]. Aerosol Science and Technology, 2011, 45(11): 1 337-1 349.
doi: 10.1080/02786826.2011.593591     URL    
[5] Smets W, Moretti S, Denys S, et al. Airborne bacteria in the atmosphere: Presence, purpose, and potential[J]. Atmospheric Environment, 2016, 139: 214-221. DOI: 10.1016/j.atmosenv.2016.05.038.
doi: 10.1016/j.atmosenv.2016.05.038     URL    
Smets W, Moretti S, Denys S, et al. Airborne bacteria in the atmosphere: Presence, purpose, and potential[J]. Atmospheric Environment, 2016, 139: 214-221. DOI: 10.1016/j.atmosenv.2016.05.038.
doi: 10.1016/j.atmosenv.2016.05.038     URL    
[6] ?antl-Temkiv T, Sahyoun M, Finster K, et al. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments[J]. Atmospheric Environment, 2015, 109: 105-117. DOI: 10.1016/j.atmosenv.2015.02.060.
doi: 10.1016/j.atmosenv.2015.02.060     URL    
Šantl-Temkiv T, Sahyoun M, Finster K, et al. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments[J]. Atmospheric Environment, 2015, 109: 105-117. DOI: 10.1016/j.atmosenv.2015.02.060.
doi: 10.1016/j.atmosenv.2015.02.060     URL    
[7] Després V, Huffman J A, Burrows S M, et al. Primary biological aerosol particles in the atmosphere: A review[J]. Tellus B: Chemical and Physical Meteorology, 2012, 64(1): 15 598.
Després V, Huffman J A, Burrows S M, et al. Primary biological aerosol particles in the atmosphere: A review[J]. Tellus B: Chemical and Physical Meteorology, 2012, 64(1): 15 598.
[8] Delort A-M, Va?tilingom M, Amato P, et al. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes[J]. Atmospheric Research, 2010, 98(2/4): 249-260.
doi: 10.1016/j.atmosres.2010.07.004     URL    
Delort A-M, Vaïtilingom M, Amato P, et al. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes[J]. Atmospheric Research, 2010, 98(2/4): 249-260.
doi: 10.1016/j.atmosres.2010.07.004     URL    
[9] Bowers R M, Lauber C L, Wiedinmyer C, et al. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei[J]. Applied and Environmental Microbiology, 2009, 75(15): 5 121-5 130.
doi: 10.1128/AEM.00447-09     URL    
Bowers R M, Lauber C L, Wiedinmyer C, et al. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei[J]. Applied and Environmental Microbiology, 2009, 75(15): 5 121-5 130.
doi: 10.1128/AEM.00447-09     URL    
[10] Amato P, Parazols M, Sancelme M, et al. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome: Major groups and growth abilities at low temperatures[J]. FEMS Microbiology Ecology, 2007, 59(2): 242-254.
doi: 10.1111/fem.2007.59.issue-2     URL    
Amato P, Parazols M, Sancelme M, et al. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome: Major groups and growth abilities at low temperatures[J]. FEMS Microbiology Ecology, 2007, 59(2): 242-254.
doi: 10.1111/fem.2007.59.issue-2     URL    
[11] Va?tilingom M, Attard E, Gaiani N, et al. Long-term features of cloud microbiology at the puy de D?me (France)[J]. Atmospheric Environment, 2012, 56: 88-100.DOI: 10.1016/j.atmosenv.2012.03.072.
doi: 10.1016/j.atmosenv.2012.03.072     URL    
Vaïtilingom M, Attard E, Gaiani N, et al. Long-term features of cloud microbiology at the puy de Dôme (France)[J]. Atmospheric Environment, 2012, 56: 88-100.DOI: 10.1016/j.atmosenv.2012.03.072.
doi: 10.1016/j.atmosenv.2012.03.072     URL    
[12] Spracklen D V, Heald C L.The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates[J]. Atmospheric Chemistry and Physics, 2014, 14(17): 9 051-9 059.
doi: 10.5194/acp-14-9051-2014     URL    
Spracklen D V, Heald C L.The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates[J]. Atmospheric Chemistry and Physics, 2014, 14(17): 9 051-9 059.
doi: 10.5194/acp-14-9051-2014     URL    
[13] Wilson T W, Ladino L A, Alpert P A, et al. A marine biogenic source of atmospheric ice-nucleating particles[J]. Nature, 2015, 525(7 568): 234-238.
doi: 10.1038/nature14986     URL     pmid: 26354482
Wilson T W, Ladino L A, Alpert P A, et al. A marine biogenic source of atmospheric ice-nucleating particles[J]. Nature, 2015, 525(7 568): 234-238.
doi: 10.1038/nature14986     URL     pmid: 26354482
[14] M?hler O, DeMott P, Vali G, et al. Microbiology and atmospheric processes: The role of biological particles in cloud physics[J]. Biogeosciences, 2007, 4(6): 1 059-1 071.
doi: 10.5194/bg-4-1059-2007     URL    
Möhler O, DeMott P, Vali G, et al. Microbiology and atmospheric processes: The role of biological particles in cloud physics[J]. Biogeosciences, 2007, 4(6): 1 059-1 071.
doi: 10.5194/bg-4-1059-2007     URL    
[15] Mayol E, Arrieta J M, Jiménez M A, et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean[J]. Nature Communications, 2017, 8(1): 201.
doi: 10.1038/s41467-017-00110-9     URL     pmid: 5544686
Mayol E, Arrieta J M, Jiménez M A, et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean[J]. Nature Communications, 2017, 8(1): 201.
doi: 10.1038/s41467-017-00110-9     URL     pmid: 5544686
[16] Aller J Y, Kuznetsova M R, Jahns C J, et al. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols[J]. Journal of Aerosol Science, 2005, 36(5/6): 801-812.
doi: 10.1016/j.jaerosci.2004.10.012     URL    
Aller J Y, Kuznetsova M R, Jahns C J, et al. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols[J]. Journal of Aerosol Science, 2005, 36(5/6): 801-812.
doi: 10.1016/j.jaerosci.2004.10.012     URL    
[17] Fr?hlich-Nowoisky J, Burrows S M, Xie Z, et al. Biogeography in the air: Fungal diversity over land and oceans[J]. Biogeosciences, 2012, 9(3): 1 125-1 136.
doi: 10.5194/bg-9-1125-2012     URL    
Fröhlich-Nowoisky J, Burrows S M, Xie Z, et al. Biogeography in the air: Fungal diversity over land and oceans[J]. Biogeosciences, 2012, 9(3): 1 125-1 136.
doi: 10.5194/bg-9-1125-2012     URL    
[18] Maki T, Kakikawa M, Kobayashi F,et al. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan[J]. Atmospheric Environment, 2013, 74: 73-82. DOI: 10.1016/j.atmosenv.2013.03.029.
doi: 10.1016/j.atmosenv.2013.03.029     URL    
Maki T, Kakikawa M, Kobayashi F,et al. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan[J]. Atmospheric Environment, 2013, 74: 73-82. DOI: 10.1016/j.atmosenv.2013.03.029.
doi: 10.1016/j.atmosenv.2013.03.029     URL    
[19] Zweifel U L, Hagstr?m ?, Holmfeldt K, et al. High bacterial 16S rRNA gene diversity above the atmospheric boundary layer[J]. Aerobiologia, 2012, 28(4): 481-498.
doi: 10.1007/s10453-012-9250-6     URL    
Zweifel U L, Hagström Å, Holmfeldt K, et al. High bacterial 16S rRNA gene diversity above the atmospheric boundary layer[J]. Aerobiologia, 2012, 28(4): 481-498.
doi: 10.1007/s10453-012-9250-6     URL    
[20] Maki T, Hara K, Kobayashi F,et al. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula[J]. Atmospheric Environment, 2015, 119: 282-293. DOI: 10.1016/j.atmosenv.2015.08.052.
doi: 10.1016/j.atmosenv.2015.08.052     URL    
Maki T, Hara K, Kobayashi F,et al. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula[J]. Atmospheric Environment, 2015, 119: 282-293. DOI: 10.1016/j.atmosenv.2015.08.052.
doi: 10.1016/j.atmosenv.2015.08.052     URL    
[21] Katra I, Arotsker L, Krasnov H, et al. Richness and diversity in dust stormborne biomes at the southeast mediterranean[J]. Scientific Reports, 2014, 4: 5 265. DOI: 10.1038/srep05265.
doi: 10.1038/srep05265     URL     pmid: 4053720
Katra I, Arotsker L, Krasnov H, et al. Richness and diversity in dust stormborne biomes at the southeast mediterranean[J]. Scientific Reports, 2014, 4: 5 265. DOI: 10.1038/srep05265.
doi: 10.1038/srep05265     URL     pmid: 4053720
[22] Gat D, Mazar Y, Cytryn E, et al. Origin-dependent variations in the atmospheric microbiome community in eastern Mediterranean dust storms[J]. Environmental Science and Technology, 2017, 51(12): 6 709-6 718.
doi: 10.1021/acs.est.7b00362     URL    
Gat D, Mazar Y, Cytryn E, et al. Origin-dependent variations in the atmospheric microbiome community in eastern Mediterranean dust storms[J]. Environmental Science and Technology, 2017, 51(12): 6 709-6 718.
doi: 10.1021/acs.est.7b00362     URL    
[23] Rahav E, Ovadia G, Paytan A, et al. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition[J]. Geophysical Research Letters, 2016, 43(2): 719-727.
doi: 10.1002/2015GL066898     URL    
Rahav E, Ovadia G, Paytan A, et al. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition[J]. Geophysical Research Letters, 2016, 43(2): 719-727.
doi: 10.1002/2015GL066898     URL    
[24] Gandolfi I, Bertolini V, Ambrosini R,et al. Unravelling the bacterial diversity in the atmosphere[J]. Applied Microbiology Biotechnology, 2013, 97(11): 4 727-4 736.
doi: 10.1007/s00253-013-4901-2     URL     pmid: 23604562
Gandolfi I, Bertolini V, Ambrosini R,et al. Unravelling the bacterial diversity in the atmosphere[J]. Applied Microbiology Biotechnology, 2013, 97(11): 4 727-4 736.
doi: 10.1007/s00253-013-4901-2     URL     pmid: 23604562
[25] Yu J, Hu Q, Xie Z, et al. Concentration and size distribution of fungi aerosol over oceans along a cruise path during the fourth chinese arctic research expedition[J]. Atmosphere, 2013, 4: 337-348.DOI: 10.3390/atmos4040337.
doi: 10.3390/atmos4040337     URL    
Yu J, Hu Q, Xie Z, et al. Concentration and size distribution of fungi aerosol over oceans along a cruise path during the fourth chinese arctic research expedition[J]. Atmosphere, 2013, 4: 337-348.DOI: 10.3390/atmos4040337.
doi: 10.3390/atmos4040337     URL    
[26] Li M, Yu X, Kang H, et al. Concentrations and size distributions of bacteria-containing particles over oceans from china to the arctic ocean[J]. Atmosphere, 2017, 8(5): 82.DOI: 10.3390/atmos8050082.
doi: 10.3390/atmos8050082     URL    
Li M, Yu X, Kang H, et al. Concentrations and size distributions of bacteria-containing particles over oceans from china to the arctic ocean[J]. Atmosphere, 2017, 8(5): 82.DOI: 10.3390/atmos8050082.
doi: 10.3390/atmos8050082     URL    
[27] Hu W, Murata K, Zhang D.Applicability of live/dead baclight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater[J]. Journal of Environmental Sciences, 2017, 51: 202-213.DOI: 10.1016/j.jes.2016.05.030.
doi: 10.1016/j.jes.2016.05.030     URL    
Hu W, Murata K, Zhang D.Applicability of live/dead baclight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater[J]. Journal of Environmental Sciences, 2017, 51: 202-213.DOI: 10.1016/j.jes.2016.05.030.
doi: 10.1016/j.jes.2016.05.030     URL    
[28] Yuan H, Zhang D, Shi Y, et al. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing[J]. Journal of Environmental Sciences, 2017, 55: 33-40.DOI: 10.1016/j.jes.2016.03.033.
doi: 10.1016/j.jes.2016.03.033     URL    
Yuan H, Zhang D, Shi Y, et al. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing[J]. Journal of Environmental Sciences, 2017, 55: 33-40.DOI: 10.1016/j.jes.2016.03.033.
doi: 10.1016/j.jes.2016.03.033     URL    
[29] Harrison R M, Jones A M, Biggins P D, et al. Climate factors influencing bacterial count in background air samples[J]. International Journal of Biometeorology, 2005, 49(3): 167-178.
doi: 10.1007/s00484-004-0225-3     URL     pmid: 15290434
Harrison R M, Jones A M, Biggins P D, et al. Climate factors influencing bacterial count in background air samples[J]. International Journal of Biometeorology, 2005, 49(3): 167-178.
doi: 10.1007/s00484-004-0225-3     URL     pmid: 15290434
[30] Maki T, Puspitasari F, Hara K, et al. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event[J]. Science of the Total Environment, 2014, (488/489): 75-84.DOI: 10.1016/j.scitotenv.2014.04.044.
Maki T, Puspitasari F, Hara K, et al. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event[J]. Science of the Total Environment, 2014, (488/489): 75-84.DOI: 10.1016/j.scitotenv.2014.04.044.
[31] Chen P S, Li C S.Bioaerosol characterization by flow cytometry with fluorochrome[J]. Journal of Environmental Monitoring, 2005, 7(10): 950-959.
doi: 10.1039/b505224f     URL    
Chen P S, Li C S.Bioaerosol characterization by flow cytometry with fluorochrome[J]. Journal of Environmental Monitoring, 2005, 7(10): 950-959.
doi: 10.1039/b505224f     URL    
[32] Griffin D W.Atmospheric movement of microorganisms in clouds of desert dust and implications for human health[J]. Clinical Microbiology Reviews, 2007, 20(3): 459-477.
doi: 10.1128/CMR.00039-06     URL    
Griffin D W.Atmospheric movement of microorganisms in clouds of desert dust and implications for human health[J]. Clinical Microbiology Reviews, 2007, 20(3): 459-477.
doi: 10.1128/CMR.00039-06     URL    
[33] Liang L, Engling G, Cheng Y,et al. Rapid detection and quantification of fungal spores in the urban atmosphere by flow cytometry[J]. Journal of Aerosol Science, 2013, 66: 179-186. DOI: 10.1016/j.jaerosci.2013.08.013.
doi: 10.1016/j.jaerosci.2013.08.013     URL    
Liang L, Engling G, Cheng Y,et al. Rapid detection and quantification of fungal spores in the urban atmosphere by flow cytometry[J]. Journal of Aerosol Science, 2013, 66: 179-186. DOI: 10.1016/j.jaerosci.2013.08.013.
doi: 10.1016/j.jaerosci.2013.08.013     URL    
[34] Ou F, McGoverin C, Swift S,et al. Absolute bacterial cell enumeration using flow cytometry[J]. Journal of applied microbiology, 2017, 123: 464-477. DOI: 10.1111/jam.13508.
doi: 10.1111/jam.2017.123.issue-2     URL    
Ou F, McGoverin C, Swift S,et al. Absolute bacterial cell enumeration using flow cytometry[J]. Journal of applied microbiology, 2017, 123: 464-477. DOI: 10.1111/jam.13508.
doi: 10.1111/jam.2017.123.issue-2     URL    
[35] Smith C J, Osborn A M.Advantages and limitations of quantitative PCR (Q-PCR)—Based approaches in microbial ecology[J]. FEMS Microbiology Ecology, 2009, 67(1): 6-20.
doi: 10.1111/fem.2008.67.issue-1     URL    
Smith C J, Osborn A M.Advantages and limitations of quantitative PCR (Q-PCR)—Based approaches in microbial ecology[J]. FEMS Microbiology Ecology, 2009, 67(1): 6-20.
doi: 10.1111/fem.2008.67.issue-1     URL    
[36] Li K, Dong S, Wu Y, et al. Comparison of the biological content of air samples collected at ground level and at higher elevation[J]. Aerobiologia, 2010, 26(3): 233-244.
doi: 10.1007/s10453-010-9159-x     URL    
Li K, Dong S, Wu Y, et al. Comparison of the biological content of air samples collected at ground level and at higher elevation[J]. Aerobiologia, 2010, 26(3): 233-244.
doi: 10.1007/s10453-010-9159-x     URL    
[37] Choi D H, Noh J H.Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea[J]. FEMS Microbiology Ecology, 2009, 69(3): 439-448.
doi: 10.1111/fem.2009.69.issue-3     URL    
Choi D H, Noh J H.Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea[J]. FEMS Microbiology Ecology, 2009, 69(3): 439-448.
doi: 10.1111/fem.2009.69.issue-3     URL    
[38] Yoo K, Lee T K, Choi E J, et al. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review[J]. Journal of Environmental Sciences, 2017, 51: 234-247. DOI: 10.1016/j.jes.2016.07.002.
doi: 10.1016/j.jes.2016.07.002     URL    
Yoo K, Lee T K, Choi E J, et al. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review[J]. Journal of Environmental Sciences, 2017, 51: 234-247. DOI: 10.1016/j.jes.2016.07.002.
doi: 10.1016/j.jes.2016.07.002     URL    
[39] Parameswaran P, Zhang H, Torres C I, et al. Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers[J]. Biotechnology and Bioengineering, 2010, 105(1): 69-78.
doi: 10.1002/bit.v105:1     URL    
Parameswaran P, Zhang H, Torres C I, et al. Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers[J]. Biotechnology and Bioengineering, 2010, 105(1): 69-78.
doi: 10.1002/bit.v105:1     URL    
[40] Bragg L, Stone G, Imelfort M, et al. Fast, accurate error-correction of amplicon pyrosequences using Acacia[J]. Nature Methods, 2012, 9(5): 425-426.
doi: 10.1038/nmeth.1990     URL    
Bragg L, Stone G, Imelfort M, et al. Fast, accurate error-correction of amplicon pyrosequences using Acacia[J]. Nature Methods, 2012, 9(5): 425-426.
doi: 10.1038/nmeth.1990     URL    
[41] Degnan P H, Ochman H.Illumina-based analysis of microbial community diversity[J]. The International Society for Microbial Ecology Journal, 2011, 6(1): 183-194.
doi: 10.1038/ismej.2011.74     URL     pmid: 21677692
Degnan P H, Ochman H.Illumina-based analysis of microbial community diversity[J]. The International Society for Microbial Ecology Journal, 2011, 6(1): 183-194.
doi: 10.1038/ismej.2011.74     URL     pmid: 21677692
[42] Zhou H W, Li D F, Tam N F, et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity[J]. The International Society for Microbial Ecology Journal, 2011, 5(4): 741-749.
doi: 10.1038/ismej.2010.160     URL     pmid: 3105743
Zhou H W, Li D F, Tam N F, et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity[J]. The International Society for Microbial Ecology Journal, 2011, 5(4): 741-749.
doi: 10.1038/ismej.2010.160     URL     pmid: 3105743
[43] Griffin D W, Westphal D L, Gray M A.Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209[J]. Aerobiologia, 2006, 22(3): 211-226.
doi: 10.1007/s10453-006-9033-z     URL    
Griffin D W, Westphal D L, Gray M A.Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209[J]. Aerobiologia, 2006, 22(3): 211-226.
doi: 10.1007/s10453-006-9033-z     URL    
[44] Cho B C, Hwang C Y.Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea)[J]. FEMS Microbiology Ecology, 2011, 76(2): 327-341.
doi: 10.1111/fem.2011.76.issue-2     URL    
Cho B C, Hwang C Y.Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea)[J]. FEMS Microbiology Ecology, 2011, 76(2): 327-341.
doi: 10.1111/fem.2011.76.issue-2     URL    
[45] Kellogg C A, Griffin D W.Aerobiology and the global transport of desert dust[J]. Trends in Ecology and Evolution, 2006, 21(11): 638-644.
doi: 10.1016/j.tree.2006.07.004     URL    
Kellogg C A, Griffin D W.Aerobiology and the global transport of desert dust[J]. Trends in Ecology and Evolution, 2006, 21(11): 638-644.
doi: 10.1016/j.tree.2006.07.004     URL    
[46] Polymenakou P N, Mandalakis M, Stephanou E G, et al. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean[J]. Environmental Health Perspectives, 2007, 116(3): 292-296.
doi: 10.1289/ehp.10684     URL    
Polymenakou P N, Mandalakis M, Stephanou E G, et al. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean[J]. Environmental Health Perspectives, 2007, 116(3): 292-296.
doi: 10.1289/ehp.10684     URL    
[47] Stramski D, Boss E, Bogucki D,et al. The role of seawater constituents in light backscattering in the ocean[J]. Progress in Oceanography, 2004, 61(1): 27-56.
doi: 10.1016/j.pocean.2004.07.001     URL    
Stramski D, Boss E, Bogucki D,et al. The role of seawater constituents in light backscattering in the ocean[J]. Progress in Oceanography, 2004, 61(1): 27-56.
doi: 10.1016/j.pocean.2004.07.001     URL    
[48] Facchini M C, Rinaldi M, Decesari S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates[J]. Geophysical Research Letters, 2008, 35(17): L17814. DOI: 10.1029/2008GL034210.
doi: 10.1029/2008GL034210     URL    
Facchini M C, Rinaldi M, Decesari S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates[J]. Geophysical Research Letters, 2008, 35(17): L17814. DOI: 10.1029/2008GL034210.
doi: 10.1029/2008GL034210     URL    
[49] O'Dowd C D, Langmann B, Varghese S, et al. A combined organic-inorganic sea-spray source function[J]. Geophysical Research Letters, 2008, 35(1): L01801. DOI: 10.1029/2007GL030331.
doi: 10.1029/2007GL030331     URL    
O'Dowd C D, Langmann B, Varghese S, et al. A combined organic-inorganic sea-spray source function[J]. Geophysical Research Letters, 2008, 35(1): L01801. DOI: 10.1029/2007GL030331.
doi: 10.1029/2007GL030331     URL    
[50] Ceburnis D, O'Dowd C D, Jennings G S, et al. Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes[J]. Geophysical Research Letters, 2008, 35(7): L07804. DOI: 10.1029 /2008GL033462.
doi: 10.1029/2008GL033462     URL    
Ceburnis D, O'Dowd C D, Jennings G S, et al. Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes[J]. Geophysical Research Letters, 2008, 35(7): L07804. DOI: 10.1029 /2008GL033462.
doi: 10.1029/2008GL033462     URL    
[51] O'Dowd C D, de Leeuw G. Marine aerosol production: A review of the current knowledge[J]. Philosophical Transactions of the Royal Society AMathematical Physical and Engineering Sciences, 2007, 365(1 856): 1 753-1774.
doi: 10.1098/rsta.2007.2043     URL     pmid: 17513261
O'Dowd C D, de Leeuw G. Marine aerosol production: A review of the current knowledge[J]. Philosophical Transactions of the Royal Society AMathematical Physical and Engineering Sciences, 2007, 365(1 856): 1 753-1774.
doi: 10.1098/rsta.2007.2043     URL     pmid: 17513261
[52] Tong Y, Lighthart B.The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon[J]. Aerosol Science and Technology, 2000, 32(5): 393-403.
doi: 10.1080/027868200303533     URL    
Tong Y, Lighthart B.The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon[J]. Aerosol Science and Technology, 2000, 32(5): 393-403.
doi: 10.1080/027868200303533     URL    
[53] Wang C C, Fang G C, Lee L Y.The study of ambient air bioaerosols during summer daytime and nighttime periods in Taichung, Central Taiwan[J].Environmental Forensics, 2008, 9(1): 6-14.
doi: 10.1080/15275920701729175     URL    
Wang C C, Fang G C, Lee L Y.The study of ambient air bioaerosols during summer daytime and nighttime periods in Taichung, Central Taiwan[J].Environmental Forensics, 2008, 9(1): 6-14.
doi: 10.1080/15275920701729175     URL    
[54] Lu Longfei, Zhang Rui, Xu Jie, et al. Influence of virus upon the marine bacterial metabolism and its biogeochemical effects[J]. Advances in Earth Science, 2018, 33(3): 225-235.
Lu Longfei, Zhang Rui, Xu Jie, et al. Influence of virus upon the marine bacterial metabolism and its biogeochemical effects[J]. Advances in Earth Science, 2018, 33(3): 225-235.
[卢龙飞, 张锐, 徐杰, 等. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展,2018,33(3): 225-235.]
[卢龙飞, 张锐, 徐杰, 等. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展,2018,33(3): 225-235.]
[55] Fahlgren C, Hagstrom A, Nilsson D,et al. Annual variations in the diversity, viability, and origin of airborne bacteria[J]. Applied and Environmental Microbiology, 2010, 76(9): 3 015-3 025.
doi: 10.1128/AEM.02092-09     URL     pmid: 2863461
Fahlgren C, Hagstrom A, Nilsson D,et al. Annual variations in the diversity, viability, and origin of airborne bacteria[J]. Applied and Environmental Microbiology, 2010, 76(9): 3 015-3 025.
doi: 10.1128/AEM.02092-09     URL     pmid: 2863461
[56] Xu C, Wei M, Chen J,et al. Investigation of diverse bacteria in cloud water at Mt. Tai, China[J]. Science of the Total Environment, 2017, 580: 258-265. DOI: 10.1016/j.scitotenv.2016.12.081.
doi: 10.1016/j.scitotenv.2016.12.081     URL     pmid: 28011017
Xu C, Wei M, Chen J,et al. Investigation of diverse bacteria in cloud water at Mt. Tai, China[J]. Science of the Total Environment, 2017, 580: 258-265. DOI: 10.1016/j.scitotenv.2016.12.081.
doi: 10.1016/j.scitotenv.2016.12.081     URL     pmid: 28011017
[57] Innocente E, Squizzato S, Visin F, et al. Influence of seasonality. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy[J]. Science of the Total Environment, 2017, 593/594: 677-687. DOI: 10.1016/j.scitotenv.2017.03.199.
Innocente E, Squizzato S, Visin F, et al. Influence of seasonality. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy[J]. Science of the Total Environment, 2017, 593/594: 677-687. DOI: 10.1016/j.scitotenv.2017.03.199.
[58] Kwak M J, Song J Y, Kim B K, et al. Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. strain G7[J]. Journal of Bacteriology, 2012, 194(24): 6 961-6 962.
doi: 10.1128/JB.01931-12     URL     pmid: 3510564
Kwak M J, Song J Y, Kim B K, et al. Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. strain G7[J]. Journal of Bacteriology, 2012, 194(24): 6 961-6 962.
doi: 10.1128/JB.01931-12     URL     pmid: 3510564
[59] Kourtev P S, Hill K A, Shepson P B, et al. Atmospheric cloud water contains a diverse bacterial community[J]. Atmospheric Environment, 2011, 45(30): 5 399-5 405.
doi: 10.1016/j.atmosenv.2011.06.041     URL    
Kourtev P S, Hill K A, Shepson P B, et al. Atmospheric cloud water contains a diverse bacterial community[J]. Atmospheric Environment, 2011, 45(30): 5 399-5 405.
doi: 10.1016/j.atmosenv.2011.06.041     URL    
[60] Latifi A, Ruiz M, Zhang C C.Oxidative stress in cyanobacteria[J]. FEMS Microbiology Reviews, 2009, 33(2): 258-278.
doi: 10.1111/j.1574-6976.2008.00134.x     URL    
Latifi A, Ruiz M, Zhang C C.Oxidative stress in cyanobacteria[J]. FEMS Microbiology Reviews, 2009, 33(2): 258-278.
doi: 10.1111/j.1574-6976.2008.00134.x     URL    
[61] Gao Huiwang, Yao Xiaohong, Guo Zhigang, et al. Atmospheric deposition connected with marine primary production and nitrogen cycle: A review[J]. Advances in Earth Science, 2014, 29(12): 1 325-1 332.
doi: 10.11867/j.issn.1001-8166.2014.12.1325     URL    
Gao Huiwang, Yao Xiaohong, Guo Zhigang, et al. Atmospheric deposition connected with marine primary production and nitrogen cycle: A review[J]. Advances in Earth Science, 2014, 29(12): 1 325-1 332.
[高会旺, 姚小红, 郭志刚,等.大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1 325-1 332.]
doi: 10.11867/j.issn.1001-8166.2014.12.1325     URL    
[高会旺, 姚小红, 郭志刚,等.大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1 325-1 332.]
doi: 10.11867/j.issn.1001-8166.2014.12.1325     URL    
[62] Chen Ying, Zhuang Guoshun, Guo Zhigang.Atmospheric desposition of nutrients and trace elements to the coastal oceans: A review[J]. Advances in Earth Science, 2010, 25(7): 682-690.
doi: 10.11867/j.issn.1001-8166.2010.07.0682     URL    
Chen Ying, Zhuang Guoshun, Guo Zhigang.Atmospheric desposition of nutrients and trace elements to the coastal oceans: A review[J]. Advances in Earth Science, 2010, 25(7): 682-690.
[陈莹, 庄国顺, 郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010,25(7): 682-690.]
doi: 10.11867/j.issn.1001-8166.2010.07.0682     URL    
[陈莹, 庄国顺, 郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010,25(7): 682-690.]
doi: 10.11867/j.issn.1001-8166.2010.07.0682     URL    
[63] Liu Qingchun, Qian Huaisui.International geosphere biosphere program: Progress and prospect[J]. Meteorological Technology and Science, 2005, 33(1):91-95.
Liu Qingchun, Qian Huaisui.International geosphere biosphere program: Progress and prospect[J]. Meteorological Technology and Science, 2005, 33(1):91-95.
[刘清春, 千怀遂. 国际地圈—生物圈计划研究进展和展望[J]. 气象科技, 2005, 33(1): 91-95.]
[刘清春, 千怀遂. 国际地圈—生物圈计划研究进展和展望[J]. 气象科技, 2005, 33(1): 91-95.]
[64] Sorooshian A, MacDonald A B, Dadashazar H, et al. A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds[J]. Scientific Data, 2018, 5: 180026. DOI: 10.1038/sdata.2018.26.
doi: 10.1038/sdata.2018.26     URL    
Sorooshian A, MacDonald A B, Dadashazar H, et al. A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds[J]. Scientific Data, 2018, 5: 180026. DOI: 10.1038/sdata.2018.26.
doi: 10.1038/sdata.2018.26     URL    
[65] Brodie E L, DeSantis T Z, Parker J P, et al. Urban aerosols harbor diverse and dynamic bacterial populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 299-304.
doi: 10.1073/pnas.0608255104     URL     pmid: 17182744
Brodie E L, DeSantis T Z, Parker J P, et al. Urban aerosols harbor diverse and dynamic bacterial populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 299-304.
doi: 10.1073/pnas.0608255104     URL     pmid: 17182744
[66] Amato P, Parazols M, Sancelme M, et al. An important oceanic source of micro-organisms for cloud water at the Puy de D?me (France)[J]. Atmospheric Environment, 2007, 41(37): 8 253-8 263.
doi: 10.1016/j.atmosenv.2007.06.022     URL    
Amato P, Parazols M, Sancelme M, et al. An important oceanic source of micro-organisms for cloud water at the Puy de Dôme (France)[J]. Atmospheric Environment, 2007, 41(37): 8 253-8 263.
doi: 10.1016/j.atmosenv.2007.06.022     URL    
[67] Spracklen D V, Arnold S R, Sciare J, et al. Globally significant oceanic source of organic carbon aerosol[J]. Geophysical Research Letters, 2008, 35(12): L12811. DOI: 10.1029/2008GL033359.
doi: 10.1029/2008GL033359     URL    
Spracklen D V, Arnold S R, Sciare J, et al. Globally significant oceanic source of organic carbon aerosol[J]. Geophysical Research Letters, 2008, 35(12): L12811. DOI: 10.1029/2008GL033359.
doi: 10.1029/2008GL033359     URL    
[68] O'dowd C D, Facchini M C, Cavalli F, et al. Biogenically driven organic contribution to marine aerosol[J]. Nature, 2004, 431(7 009): 676.
doi: 10.1038/nature02959     URL    
O'dowd C D, Facchini M C, Cavalli F, et al. Biogenically driven organic contribution to marine aerosol[J]. Nature, 2004, 431(7 009): 676.
doi: 10.1038/nature02959     URL    
[69] Meskhidze N, Nenes A.Phytoplankton and cloudiness in the Southern Ocean[J]. Science, 2006, 314(5 804): 1 419-1 423.
doi: 10.1126/science.1131779     URL     pmid: 17082422
Meskhidze N, Nenes A.Phytoplankton and cloudiness in the Southern Ocean[J]. Science, 2006, 314(5 804): 1 419-1 423.
doi: 10.1126/science.1131779     URL     pmid: 17082422
[70] Vaitilingom M, Amato P, Sancelme M, et al. Contribution of microbial activity to carbon chemistry in clouds[J]. Applied and Environmental Microbiology, 2010, 76(1): 23-29.
doi: 10.1128/AEM.01127-09     URL     pmid: 1620548
Vaitilingom M, Amato P, Sancelme M, et al. Contribution of microbial activity to carbon chemistry in clouds[J]. Applied and Environmental Microbiology, 2010, 76(1): 23-29.
doi: 10.1128/AEM.01127-09     URL     pmid: 1620548
[71] Kawahara H.The structures and functions of ice crystal-controlling proteins from bacteria[J]. Journal of Bioscience and Bioengineering, 2002, 94(6): 492-496.
doi: 10.1016/S1389-1723(02)80185-2     URL     pmid: 16233340
Kawahara H.The structures and functions of ice crystal-controlling proteins from bacteria[J]. Journal of Bioscience and Bioengineering, 2002, 94(6): 492-496.
doi: 10.1016/S1389-1723(02)80185-2     URL     pmid: 16233340
[72] Gandolfi I, Bertolini V, Bestetti G,et al. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas[J]. Applied Microbiology and Biotechnology, 2015, 99(11): 4 867-4 877.
doi: 10.1007/s00253-014-6348-5     URL    
Gandolfi I, Bertolini V, Bestetti G,et al. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas[J]. Applied Microbiology and Biotechnology, 2015, 99(11): 4 867-4 877.
doi: 10.1007/s00253-014-6348-5     URL    
[73] Mbareche H, Brisebois E, Veillette M,et al. Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain[J]. Science of the Total Environment, 2017, (599/600): 2 095-2 104. DOI: 10.1016/j.scitotenv.2017.05.076.
doi: 10.1016/j.scitotenv.2017.05.076     URL     pmid: 28558432
Mbareche H, Brisebois E, Veillette M,et al. Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain[J]. Science of the Total Environment, 2017, (599/600): 2 095-2 104. DOI: 10.1016/j.scitotenv.2017.05.076.
doi: 10.1016/j.scitotenv.2017.05.076     URL     pmid: 28558432
[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[3] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[4] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[5] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[6] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[7] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[8] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[9] 杜志恒,效存德,李向应. 生物活性元素Fe来源及其溶解度影响因素研究综述[J]. 地球科学进展, 2013, 28(5): 597-607.
[10] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[11] 李云春,王显祥,赵茂俊. 纳米零价铁原位修复有机卤化物的影响因素[J]. 地球科学进展, 2013, 28(10): 1106-1118.
[12] 阚泽忠,金立新,李忠惠,杨振鸿,张 华,包雨函. 成都经济区不同地貌景观区土壤有机碳分布特征及储量估算[J]. 地球科学进展, 2012, 27(10): 1126-1133.
[13] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[14] 徐晓斌,葛宝珠,林伟立. 臭氧生成效率(OPE)相关研究进展[J]. 地球科学进展, 2009, 24(8): 845-853.
[15] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
阅读次数
全文


摘要