地球科学进展 ›› 2018, Vol. 33 ›› Issue (6): 568 -577. doi: 10.11867/j.issn.1001-8166.2018.06.0568

所属专题: “沙尘天气追因、影响及治理”虚拟专刊

综述与评述 上一篇    下一篇

沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响
祁建华 1( ), 李孟哲 1, 高冬梅 1, 甄毓 1, 张大海 2   
  1. 1.中国海洋大学海洋环境与生态教育部重点实验室,山东 青岛 266100
    2.中国海洋大学化学化工学院,山东 青岛 266100
  • 收稿日期:2018-01-29 修回日期:2018-04-11 出版日期:2018-06-20
  • 基金资助:
    *国家自然科学基金项目“沙尘天气对近海大气中生物气溶胶粒径分布和微生物活性及群落结构的影响”(编号:41375143);教育部新世纪优秀人才支持计划(编号:NCET-13-0531)资助.

Impact of Dust Events on the Concentration, Property and Distribution of Atmospheric Bioaerosols

Jianhua Qi 1( ), Mengzhe Li 1, Dongmei Gao 1, Yu Zhen 1, Dahai Zhang 2   

  1. 1.Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
    2 .College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2018-01-29 Revised:2018-04-11 Online:2018-06-20 Published:2018-07-23
  • About author:

    First author: Qi Jianhua(1973-),female,Lanzhou City, Gansu Province,Professor. Research areas include atmospheric environment.E-mail:qjianhua@ouc.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “The impact of dust weather on the characteristics of the size distribution, microbial activity and community of bioaerosols in the coastal region (No. 41375143);The Program for New Century Excellent Talents in University (No.NCET-13-0531).

生物气溶胶对全球气候、空气质量、大气过程和人体健康均具有重要影响。每年爆发的沙尘事件,使得生物气溶胶可借助沙尘进行长距离输运,从而影响到下风向地区生物气溶胶的浓度和性质。综述了沙尘天气下生物气溶胶中微生物的浓度、特性和分布特征的研究现状。已有研究显示,沙尘发生时,生物气溶胶中不同类别微生物的组成比例会有显著变化,细菌和真菌相对贡献随之改变。可培养细菌、真菌和总微生物浓度,均在沙尘天气下显著增加,但不同地区不同种类微生物在沙尘天气下的增加幅度相差很大。生物气溶胶中微生物主要分布于粗粒子中,其粒径分布受到沙尘天气的较大影响,而且不同种类微生物粒径分布的变化并不相同。沙尘发生时,生物气溶胶中的微生物群落结构与优势微生物也会发生明显改变。沙尘天气对生物气溶胶浓度、粒径分布、群落结构和活性的影响程度和影响机制,还需要进一步深入研究。

Atmospheric bioaerosols have great impact on the global climate, air quality, atmospheric process and human health. The dust events have a role in transporting bioaerosols and affecteing the concentration and property of bioaerosols in the downwind area by facilitating long-distance dispersal events every year. This paper reviewed the study progress on the concentration, characteristics and distribution of bioaerosols in dust weather. The references showed that the ratio of different kind of bioaerosols changed in dust weather with the changing of contribution of bacteria and fungi. The concentration of cultural bacteria, fungi and the total microbes increased on dust days. However, the increase ratio was different for different microbes in different areas. Microbes in bioaerosols mainly distributed in coarse particles; the size distribution of bioaerosols was affected greatly by dust events with different variation for different kinds of bioaerosols. The microbial community and predominant species of microorganism in bioaerosols changed in dust weather. The impact and mechanism of dust on the concentration, size distribution, microbial community and activity of bioaerosols need to be studied further.

中图分类号: 

图1 全球沙尘期间生物气溶胶的浓度水平(数据来源于参考文献[33,46~48,50~52,54~57])
a.采样位置为34.999°N, 122.177°E;b.采样位置为33.229°N,125.216°E
Fig.1 Concentration levels of bioaerosols during global dust period (adapted from references[33,46~48,50~52,54~57])
a.Sampling located at 34.999°N,122.177°E;b.Sampling located at 33.229°N,125.216°E
图1 全球沙尘期间生物气溶胶的浓度水平(数据来源于参考文献[33,46~48,50~52,54~57])
a.采样位置为34.999°N, 122.177°E;b.采样位置为33.229°N,125.216°E
Fig.1 Concentration levels of bioaerosols during global dust period (adapted from references[33,46~48,50~52,54~57])
a.Sampling located at 34.999°N,122.177°E;b.Sampling located at 33.229°N,125.216°E
表1 大气生物气溶胶中细菌、真菌和总微生物的中值粒径
Table 1 The median particle size of bacteria, fungi and total microbes in atmospheric bioaerosols
表1 大气生物气溶胶中细菌、真菌和总微生物的中值粒径
Table 1 The median particle size of bacteria, fungi and total microbes in atmospheric bioaerosols
[1] Matthias-Maser S, Jaenicke R.The size distribution of primary biological aerosol particles with radii >0.2 μm in an urban/rural influenced region[J]. Atmospheric Research, 1995, 39(4): 279-286.
doi: 10.1016/B978-008042030-1/50127-X     URL    
[2] Mandrioli P.Basic aerobiology[J]. Aerobiologia, 1998, 14(2/3): 89-94.
doi: 10.1007/BF02694191     URL    
[3] Hu Jiajun, Zhou Qunying.Environmental Engineering Microbiology[M]. Beijing: Higher Education Press, 1988.
[胡家骏, 周群英. 环境工程微生物学[M]. 北京: 高等教育出版社, 1988.]
[4] Maki L R, Galyan E L, Changchien M M, et al. Ice nucleation induced by Pseudomonas syringae[J]. Applied Microbiology, 1974, 28(3): 456-459.
[5] Vali G, Christensen M, Fresh R W, et al. Biogenic ice nuclei. Part II: Bacterial sources[J]. Journal of the Atmospheric Sciences, 1976, 33(8): 1 565-1 570.
doi: 10.1175/1520-0469(1976)0332.0.CO;2     URL    
[6] Franc G D, DeMott P J. Cloud activation characteristics of airborne Erwinia carotovora cells[J]. Journal of Applied Meteorology, 1998, 37(10): 1 293-1 300.
doi: 10.1175/1520-0450(1998)0372.0.CO;2     URL    
[7] Bauer H, Giebl H, Hitzenberger R, et al. Airborne bacteria as cloud condensation nuclei[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D21):4 658.DOI:10.1029/2012JD018343.
doi: 10.1029/2003JD003545     URL    
[8] Garcia E, Hill T C J, Prenni A J, et al. Biogenic ice nuclei in boundary layer air over two U.S. high plains agricultural regions[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D18).DOI:10.1029/2012JD018343.
doi: 10.1029/2012JD018343     URL    
[9] Vaïtilingom M, Attard E, Gaiani N, et al. Long-term features of cloud microbiology at the puy de Dôme (France)[J]. Atmospheric Environment, 2012, 56: 88-100.
doi: 10.1016/j.atmosenv.2012.03.072     URL    
[10] Lu Wenxi,Wu Jian.Aerosol’s impacts on the Indian summer monsoon and the East Asian summer monsoon:An overview[J]. Advances in Earth Science, 2016, 31(3): 248-257.
[陆雯茜,吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.]
doi: 10.11867/j.issn.1001-8166.2016.03.0248     URL    
[11] Fang Xiuqi, Zhang Diyang.Patterns of the impacts of climate change on civilization[J]. Advances in Earth Science, 2017, 32(11): 1 218-1 225.
[方修琦, 张頔旸. 气候变化影响区域文明发展演化的主要表现方式[J]. 地球科学进展, 2017, 32(11): 1 218-1 225.]
[12] Kalogerakis N, Paschali D, Lekaditis V, et al. Indoor air quality—Bioaerosol measurements in domestic and office premises[J]. Journal of Aerosol Science, 2005, 36(5/6): 751-761.
doi: 10.1016/j.jaerosci.2005.02.004     URL    
[13] Ho J, Duncan S.Estimating aerosol hazards from an anthrax letter[J]. Journal of Aerosol Science, 2005, 36(5/6): 701-719.
doi: 10.1016/j.jaerosci.2004.11.019     URL    
[14] Morey P R, Hodgson M J, Sorenson W G, et al. Environmental studies in moldy office buildings[J]. Ashrae Transactions, 1986, 92(1B):399-419.
URL    
[15] Morey P R, McPhaul D E, Bauer M J. The use of rank order assessment for chemical and microbial species in indoor air quality evaluations[C]//American Industrial Hygiene Conference on Industrial Hygiene in the World of Tomorrow, Orlando, FL (USA), 1990: 118.
[16] Kodama A M, Mcgee R I.Airborne microbial contaminants in indoor environments. Naturally ventilated and air-conditioned homes[J]. Archives of Environmental Health, 1986, 41(5): 306-311.
doi: 10.1080/00039896.1986.9936702     URL    
[17] Kellogg C A, Griffin D W.Aerobiology and the global transport of desert dust[J]. Trends in Ecology & Evolution, 2006, 21(11): 638-644.
doi: 10.1016/j.tree.2006.07.004     URL     pmid: 16843565
[18] China Meteorological Administration.Sand-dust Weather Almanac 2012[M]. Beijing: China Meterological Press, 2014.
[中国气象局. 沙尘天气年鉴2012年[M]. 北京: 气象出版社, 2014.]
[19] Nicholson W L.Roles of Bacillus endospores in the environment[J]. Cellular and Molecular Life Sciences, 2002, 59(3): 410-416.
doi: 10.1007/s00018-002-8433-7     URL     pmid: 11964119
[20] Tong Y, Lighthart B.Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere[J]. Photochemistry & Photobiology, 1997, 65(1): 103-106.
doi: 10.1111/j.1751-1097.1997.tb01884.x     URL    
[21] Garrison V H, Shinn E A, Foreman W T, et al. African and Asian dust: From desert soils to coral reefs[J]. AIBS Bulletin, 2003, 53(5): 469-480.
doi: 10.1641/0006-3568(2003)053[0469:AAADFD]2.0.CO;2     URL    
[22] Kellogg C A, Griffin D W, Garrison V H, et al. Characterization of aerosolized bacteria and Fungi from desert dust events in Mali, West Africa[J]. Aerobiologia, 2004, 20(2): 99-110.
doi: 10.1023/B:AERO.0000032947.88335.bb     URL    
[23] Chiapello I, Prospero J M, Herman J R, et al. Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D8): 9 277-9 291.
doi: 10.1029/1998JD200083     URL    
[24] Prospero J M, Blades E, Mathison G, et al. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust[J]. Aerobiologia, 2005, 21(1): 1-19.
doi: 10.1007/s10453-004-5872-7     URL    
[25] Griffin D W, Garrison V H, Herman J R, et al. African desert dust in the Caribbean atmosphere: Microbiology and public health[J]. Aerobiologia, 2001, 17(3): 203-213.
doi: 10.1023/A:1011868218901     URL    
[26] Weir-Brush J R, Garrison V H, Smith G W, et al.The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms[J]. Aerobiologia, 2004, 20(2): 119-126.
doi: 10.1023/B:AERO.0000032949.14023.3a     URL    
[27] Iwasaka Y, Shi G Y, Yamada M, et al. Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: Possibility of long-range transport[J]. Air Quality Atmosphere & Health, 2009, 2(1): 29-38.
[28] Pratt K A, DeMott P J, French J R, et al. In situ detection of biological particles in cloud ice-crystals[J]. Nature Geoscience, 2009, 2(6): 398-401.
doi: 10.1038/ngeo521     URL    
[29] Creamean J M, Suski K J, Rosenfeld D, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US[J]. Science, 2013, 339(6 127): 1 572-1 578.
doi: 10.1126/science.1227279     URL    
[30] Liu B, Ichinose T, He M, et al. Lung inflammation by fungus, Bjerkandera adusta isolated from Asian Sand Dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice[J]. Allergy, Asthma & Clinical Immunology, 2014, 10(1): 10.
[31] Ichinose T, Yoshida S, Hiyoshi K, et al. The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(3): 348-357.
doi: 10.1007/s00244-007-9128-8     URL     pmid: 18227959
[32] Xu Wenbing, Qi Jianhua, Jin Chuan, et al. Concentration distribution of bioaerosols in summer and autumn in the Qingdao Coastal region[J]. Environmental Science, 2011, 32(1): 9-17.
[徐文兵, 祁建华, 金川, 等. 青岛近海夏、秋季生物气溶胶分布特征研究[J]. 环境科学, 2011, 32(1): 9-17.]
[33] Li Hongtao, Qi Jianhua, Dong Lijie, et al. Influence of dust events on the concentration and size distribution of microorganisms in bioaerosols[J]. Environmental Science, 2017, 38(8): 3 169-3 177.
[李鸿涛, 祁建华, 董立杰, 等. 沙尘天气对生物气溶胶中总微生物浓度及粒径分布的影响[J]. 环境科学, 2017, 38(8): 3 169-3 177.]
doi: 10.13227/j.hjkx.201701011     URL    
[34] Li M, Qi J, Zhang H, et al. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region[J]. Science of the Total Environment, 2011, 409(19): 3 812.
doi: 10.1016/j.scitotenv.2011.06.001     URL    
[35] Dong L, Qi J, Shao C, et al. Concentration and size distribution of total airborne microbes in hazy and foggy weather[J]. Science of the Total Environment, 2016, 541: 1 011-1 018.
doi: 10.1016/j.scitotenv.2015.10.001     URL    
[36] Sahu A, Grimberg S J, Holsen T M.A static water surface sampler to measure bioaerosol deposition and characterize microbial community diversity[J]. Journal of Aerosol Science, 2005, 36(5): 639-650.
doi: 10.1016/j.jaerosci.2004.10.001     URL    
[37] Hu Qingxuan, Cai Zenglin.Relationship between atmospheric bacteria and fungal particles in Shenyang City[J]. Shanghai Environmental Sciences, 1995, 14(5): 29-32.
[胡庆轩, 蔡增林. 沈阳市大气细菌与真菌粒子的关系[J]. 上海环境科学, 1995, 14(5): 29-32.]
[38] Hu Qingxuan, Che Fengxiang, Zhang Songle, et al. Concentration of atmospheric microbes in Beijing and Tianjin area[J]. Environmental Science, 1989, 10(5): 30-35.
[胡庆轩, 车凤翔, 张松乐, 等. 京、津地区大气微生物的浓度[J]. 环境科学, 1989, 10(5): 30-35.]
URL    
[39] Chen Meiling, Hu Qingxuan.Survey of atmospheric microorganism pollution in Nanjing City[J]. Chinese Journal of Public Health, 2000, 16(6): 504-505.
[陈梅玲, 胡庆轩. 南京市大气微生物污染情况调查[J]. 中国公共卫生, 2000, 16(6): 504-505.]
doi: 10.3321/j.issn:1001-0580.2000.06.015     URL    
[40] Chen Haowen.Spatial and temporal distribution of air microorganism content in Beihai City[J]. Guangxi Sciences, 1998, 5(2): 83-86.
[陈皓文. 北海市空气微生物含量时空分布[J]. 广西科学, 1998, 5(2): 83-86.]
URL    
[41] Chen Haowen.Determination of the air microorganism in Qingdao[J]. Shandong Science, 2003, 16(1): 9-13.
[陈皓文. 青岛空气微生物状况的测定[J]. 山东科学, 2003, 16(1): 9-13.]
doi: 10.3969/j.issn.1002-4026.2003.01.002     URL    
[42] Li Wanxin, Lu Rui, Xie Zhengsheng, et al. Concentration and size distribution characteristics of culturable bioaerosols at various air quality levels in Fall and Winter in Xi’an, China[J]. Environmental Science, 2017, 38(11): 4 494-4 500.
[李婉欣, 路瑞, 谢铮胜, 等. 西安市秋冬季不同空气质量下可培养微生物气溶胶浓度和粒径分布[J]. 环境科学, 2017, 38(11): 4 494-4 500.]
URL    
[43] Agarwal S, Mandal P, Majumdar D, et al. Characterization of Bioaerosols and their relation with OC, EC and Carbonyl VOCs at a busy roadside restaurants-cluster in New Delhi[J]. Aerosol & Air Quality Research, 2016, 16(12): 3 198-3 211.
[44] Karbowska-Berent J, Górny R L, Strzelczyk A B, et al. Airborne and dust borne microorganisms in selected Polish libraries and archives[J]. Building and Environment, 2011, 46(10): 1 872-1 879.
doi: 10.1016/j.buildenv.2011.03.007     URL    
[45] Han Chen, Xie Miance, Qi Jianhua, et al. Size distribution characteristics of culturable bioaerosols in relation to air quality levels in Qingdao[J]. Research of Environmental Sciences, 2016, 29(9): 1 264-1 271.
[韩晨, 谢绵测, 祁建华, 等. 青岛市不同空气质量下可培养生物气溶胶分布特征及影响因素[J]. 环境科学研究, 2016, 29(9): 1 264-1 271.]
doi: 10.13198/j.issn.1001-6929.2016.09.03     URL    
[46] Soleimani Z, Goudarzi G, Sorooshian A, et al. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol[J]. Atmospheric Environment, 2016, 138: 135-143.
doi: 10.1016/j.atmosenv.2016.05.023     URL    
[47] Schlesinger P, Mamane Y, Grishkan I.Transport of microorganisms to Israel during Saharan dust events[J]. Aerobiologia, 2006, 22(4): 259-273.
doi: 10.1007/s10453-006-9038-7     URL    
[48] Griffin D W, Kellogg C A, Garrison V H, et al. Atmospheric microbiology in the northern Caribbean during African dust events[J]. Aerobiologia, 2003, 19(3): 143-157.
doi: 10.1023/B:AERO.0000006530.32845.8d     URL    
[49] Griffin D W, Westphal D L, Gray M A.Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209[J]. Aerobiologia, 2006, 22(3): 211-226.
doi: 10.1007/s10453-006-9033-z     URL    
[50] Jeon E M, Kim H J, Jung K, et al. Impact of Asian dust events on airborne bacterial community assessed by molecular analyses[J]. Atmospheric Environment, 2011, 45(25): 4 313-4 321.
doi: 10.1016/j.atmosenv.2010.11.054     URL    
[51] Yuan H, Zhang D, Shi Y, et al. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing[J]. Journal of Environmental Sciences, 2017, 55(5): 33-40.
doi: 10.1016/j.jes.2016.03.033     URL    
[52] Ho H M, Rao C Y, Hsu H H, et al. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan[J]. Atmospheric Environment, 2005, 39(32): 5 839-5 850.
doi: 10.1016/j.atmosenv.2005.06.034     URL    
[53] Maki T, Puspitasari F, Hara K, et al. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event[J]. Science of the Total Environment, 2014, 488: 75-84.
[54] Tang K, Huang Z, Huang J, et al. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign[J]. Atmospheric Chemistry and Physics, 2017. DOI: org/10.5194/acp-2017-1172.
[55] Jeon E M, Yong P K, Jeong K, et al. Impacts of Asian dust events on atmospheric fungal communities[J]. Atmospheric Environment, 2013, 81(2): 39-50.
doi: 10.1016/j.atmosenv.2013.08.039     URL    
[56] Hara K, Zhang D.Bacterial abundance and viability in long-range transported dust[J]. Atmospheric Environment, 2012, 47: 20-25.
doi: 10.1016/j.atmosenv.2011.11.050     URL    
[57] Li Hongtao.Influence of Haze and Dust on the Concentration and Size Distribution of Total Airborne Microbes in Bioaerosols[D]. Qingdao: Ocean University of China,2017.
[李鸿涛. 霾、沙尘等特殊天气对生物气溶胶中总微生物浓度和粒径分布的影响[D].青岛:中国海洋大学,2017.]
[58] Lighthart B, Shaffer B T.Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral[J]. Aerobiologia, 1995, 11(1): 19-25.
doi: 10.1007/BF02136140     URL    
[59] Sturm R.Modeling the deposition of bioaerosols with variable size and shape in the human respiratory tract—A review[J]. Journal of Advanced Research, 2012, 3(4): 295-304.
doi: 10.1016/j.jare.2011.08.003     URL    
[60] Glikson M, Rutherford S, Simpson R W, et al. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia[J]. Atmospheric Environment, 1995, 29(4): 549-562.
doi: 10.1016/1352-2310(94)00278-S     URL    
[61] Fang Zhiguo, Ouyang Zhiyun, Hu Lifeng, et al. Granularity distribution of airborne microbes in summer in Beijing[J]. Environmental Science, 2004, 25(6): 1-5.
[方治国, 欧阳志云, 胡利锋, 等. 北京市夏季空气微生物粒度分布特征[J]. 环境科学, 2004, 25(6): 1-5.]
[62] Liu Miaomiao.Study on Distribution of Biological Aerosol in Fall and Winter in Qingdao Coastal Region[D]. Qingdao:Ocean University of China, 2008.
[刘苗苗. 青岛近海秋冬季生物气溶胶分布特征研究[D]. 青岛:中国海洋大学, 2008.]
[63] Yao Wenchong, Lou Xiuqin, Fang Zhiguo, et al. The size distribution of airborne microbes in typical tourist city in southeast China[J]. China Environmental Science, 2016, 36(10): 2 938-2 943.
[姚文冲, 楼秀芹, 方治国, 等. 南方典型旅游城市空气微生物粒径分布特征[J]. 中国环境科学, 2016, 36(10): 2 938-2 943.]
[64] Gao M, Qiu T, Jia R, et al. Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing[J]. Environmental Science and Pollution Research, 2015, 22(6): 4 359-4 368.
doi: 10.1007/s11356-014-3675-0     URL    
[65] Hu Qingxuan, Che Fengxiang, Zhang Songle, et al. Determination on diameter of atmosphere particles with bacteria over beijing-tianjin area[J]. Chinese Journal of Public Health, 1989, 8(4): 222-224.
[胡庆轩, 车凤翔, 张松乐, 等. 京、津地区大气带菌粒子径测定[J]. 中国公共卫生学报, 1989, 8(4): 222-224.]
[66] Wang Y F, Wang C H, Hsu K L.Size and seasonal distributions of airborne bioaerosols in commuting trains[J]. Atmospheric Environment, 2010, 44(35): 4 331-4 338.
doi: 10.1016/j.atmosenv.2010.08.029     URL    
[67] Wang C C, Fang G C, Kuo C H.Bioaerosols as contributors to poor air quality in Taichung City, Taiwan[J]. Environmental Monitoring and Assessment, 2010, 166(1): 1-9.
doi: 10.1007/s10661-009-0980-z     URL     pmid: 19484364
[68] Lin W H, Li C S.Size characteristics of fungus allergens in the subtropical climate[J]. Aerosol Science and Technology, 1996, 25(2): 93-100.
doi: 10.1080/02786829608965382     URL    
[69] Tong Y, Lighthart B.The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon[J]. Aerosol Science & Technology, 2000, 32(5): 393-403.
[70] Nasir Z A, Colbeck I.Winter time concentrations and size distribution of bioaerosols in different residential settings in the UK[J]. Water, Air, & Soil Pollution, 2012, 223(9): 5 613-5 622.
[71] Zuraimi M S, Fang L, Tan T K, et al. Airborne fungi in low and high allergic prevalence child care centers[J]. Atmospheric Environment, 2009, 43(15): 2 391-2 400.
doi: 10.1016/j.atmosenv.2009.02.004     URL    
[72] Bovallius A K E, Bucht B, Roffey R, et al.Three-year investigation of the natural airborne bacterial flora at four localities in sweden[J]. Applied and Environmental Microbiology, 1978, 35(5): 847-852.
URL     pmid: 655701
[73] Raisi L, Lazaridis M, Katsivela E.Relationship between airborne microbial and particulate matter concentrations in the ambient air at a Mediterranean site[J]. Global NEST Journal, 2010, 12(1): 84-91.
[74] Li Ming.Content, Species and Particle Size Distribution of Atmospheric Microbes in the Polar and Oceanic Boundary Layer and Its Influence Factors[D]. Beijing: University of Science and Technology of China, 2011.
[李明. 极地与海洋边界层大气微生物的含量、种类和粒径分布及其影响因素[D]. 北京:中国科学技术大学, 2011.]
[75] Lighthart B, Shaffer B T, Marthi B, et al. Trajectory of aerosol droplets from a sprayed bacterial suspension[J]. Applied and Environmental Microbiology, 1991, 57(4): 1 006-1 012.
doi: 10.1002/bit.260370814     URL     pmid: 1905515
[76] Lightart B, Spendlove J C, Akers T G.Factors in the production, release and viability of biological particles[M]∥Edmonds R L, ed. Aerobiology: The Ecological Systems Approach. Stroudsburg, PA: Dowden, Hutchinson and Ross, Inc.,1979:11-22.
[77] Yeo H G, Kim J H.SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period[J]. Atmospheric Environment, 2002, 36(35): 5 437-5 442.
doi: 10.1016/S1352-2310(02)00672-6     URL    
[78] Choi D S, Park Y K, Oh S K, et al. Distribution of Airborne Microorganisms in Yellow Sands of Korea[J]. Journal of Microbiology, 1997, 35(1): 1-9.
URL    
[79] Polymenakou P N, Mandalakis M, Stephanou E G, et al. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean[J]. Environmental Health Perspectives, 2008, 116(3): 292-296.
doi: 10.1289/ehp.116-a292     URL     pmid: 18629331
[80] Lee S, Choi B, Yi S M, et al. Characterization of microbial community during Asian dust events in Korea[J]. Science of the Total Environment, 2009, 407(20): 5 308-5 314.
doi: 10.1016/j.scitotenv.2009.06.052     URL     pmid: 19631361
[81] Lim N, Munday C I, Allison G E, et al. Microbiological and meteorological analysis of two Australian dust storms in April 2009[J]. Science of the Total Environment, 2011, 412: 223-231.
doi: 10.1016/j.scitotenv.2011.10.030     URL     pmid: 22079408
[82] Maki T, Kurosaki Y, Onishi K, et al. Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events[J]. Air Quality Atmosphere & Health, 2017, 10(3): 249-260.
[83] Hara K.UV-tolerant culturable bacteria in an Asian dust plume transported over the East China Sea[J]. Aerosol & Air Quality Research, 2015, 15(2): 591-599.
doi: 10.4209/aaqr.2014.03.0067     URL    
[84] Singer C E, Ames B N.Sunlight ultraviolet and bacterial DNA base ratios[J]. Science, 1970, 170(3 960): 822-826.
doi: 10.1126/science.170.3960.822     URL    
[85] Fumihisa K, Teruya M, Makiko K, et al. Bioprocess of Kosa bioaerosols: Effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust)[J]. Journal of Bioscience & Bioengineering, 2015, 119(5): 570-579.
[86] Chao H J, Chan C C, Rao C Y, et al. The effects of transported Asian dust on the composition and concentration of ambient fungi in Taiwan[J]. International Journal of Biometeorology, 2012, 56(2): 211-219.
doi: 10.1007/s00484-011-0413-x     URL    
[87] Han Chen, Qi Jianhua, Xie Miance, et al. Cultivable Fungi in Spring sandy dust air in Qingdao Coastal Region and their potential health risk[J]. Urban Environment & Urban Ecology, 2015, 28(4): 18-23.
[韩晨, 祁建华, 谢绵测, 等. 青岛近海春季沙尘天空气可培养真菌及其潜在健康风险[J]. 城市环境与城市生态, 2015, 28(4): 18-23.]
[88] Maki T, Susuki S, Kobayashi F, et al. Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City[J]. Air Quality Atmosphere & Health, 2008, 1(2): 81-89.
[89] Maki T, Susuki S, Kobayashi F, et al. Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City[J]. Science of the Total Environment, 2010, 408(20): 4 556-4 562.
doi: 10.1016/j.scitotenv.2010.04.002     URL    
[90] Hua N P, Kobayashi F, Iwasaka Y, et al. Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan[J]. Aerobiologia, 2007, 23(4): 291-298.
doi: 10.1007/s10453-007-9076-9     URL    
[91] Griffin D W.Atmospheric movement of microorganisms in clouds of desert dust and implications for human health[J]. Clinical Microbiology Reviews, 2007, 20(3): 459-477.
doi: 10.1128/CMR.00039-06     URL    
[92] Raina S, Odell M, Keshavarz T.Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum[J]. Journal of Biotechnology, 2010, 148(2): 91-98.
doi: 10.1016/j.jbiotec.2010.04.009     URL     pmid: 20438771
[93] Green V S, Stott D E, Diack M.Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples[J]. Soil Biology & Biochemistry, 2006, 38(4): 693-701.
doi: 10.1016/j.soilbio.2005.06.020     URL    
[94] Zhang Jiayao, Song Biyu, Chen Lanzhou, et al.Environmental Microbiology[M]. Wuhan: Wuhan University Press, 2008.
[张甲耀, 宋碧玉, 陈兰洲, 等. 环境微生物学[M]. 武汉: 武汉大学出版社, 2008.]
[95] Qi J, Zhong X, Shao Q, et al. Microbial activity levels in atmospheric bioaerosols in Qingdao[J]. Aerobiologia, 2015, 31(3): 353-365.
doi: 10.1007/s10453-015-9369-3     URL    
[1] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[2] 张正偲, 潘凯佳, 梁爱民, 董治宝, 李兴财. 戈壁沙尘释放过程与机理研究进展[J]. 地球科学进展, 2019, 34(9): 891-900.
[3] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[4] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[5] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[6] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[7] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[8] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[9] 王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4): 347-356.
[10] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[11] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[12] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[13] 宋敏, 杨群慧, 王华, 季福武, 王虎, 潘安阳, 周怀阳. 完整极性脂质化合物对海洋微生物活动的指示及应用局限性[J]. 地球科学进展, 2015, 30(10): 1162-1171.
[14] 郭荣涛. 硅质碎屑岩中的微生物席相关构造——联接现代与过去的纽带[J]. 地球科学进展, 2013, 28(4): 467-476.
[15] 李宁,顾孝天,刘雪琴. 沙尘暴灾害致灾因子三维联合分布与重现期探索[J]. 地球科学进展, 2013, 28(4): 490-496.
阅读次数
全文


摘要