地球科学进展 ›› 2013, Vol. 28 ›› Issue (4): 467 -476. doi: 10.11867/j.issn.1001-8166.2013.04.0467

综述与评述 上一篇    下一篇

硅质碎屑岩中的微生物席相关构造——联接现代与过去的纽带
郭荣涛   
  1. 中国地质大学(北京)地球科学与资源学院,北京100083
  • 收稿日期:2012-06-28 修回日期:2012-12-06 出版日期:2013-04-10
  • 通讯作者: 郭荣涛(1983-),男,河北邢台人,博士研究生,主要从事沉积学与地层学研究. E-mail:guorongtao0702@yahoo.cn
  • 基金资助:

    国家自然科学基金项目“燕山地区蓟县系旋回与事件及其相关沉积学问题研究”(编号:40472065) 资助.

The Mat Related Structures Preserved within Siliciclastic Rock Record: The Connection of Now and Past

Guo Rongtao   

  1. School of Earth Sciences and Resource, China University of Geosciences, Beijing100083, China
  • Received:2012-06-28 Revised:2012-12-06 Online:2013-04-10 Published:2013-04-10

微生物通过自身生命活动可以在硅质碎屑物上形成微生物席。微生物席具有黏结性、柔韧性、抗剥蚀性等特征,与物理营力相互作用可以形成一系列独特的原生沉积构造,即微生物诱发的沉积构造(MISS)。形成和保存MISS的基本条件包括经历较低的变质程度、发育于海退—海侵的转折点、出现在有利的“微生物席沉积相”中。微生物席本身很难保存在岩石序列中,所以识别石化MISS具有一定难度。与现代环境中发育的MISS具有相似的几何形态和包含古代微生物席组构是识别石化MISS的有效途径。微生物生长、稳化、障积、捕获和黏结作用可以形成形态各异的MISS,根据这些作用和特征可以将其划分为5大类17小类。对保存在硅质碎屑岩中的微生物诱发的原生沉积构造和现代潮坪中发育的MISS进行综合对比研究,有利于微生物席沉积学的发展,也为进一步理解古代硅质碎屑岩沉积环境提供重要线索。

Microbial community can form microbial mat on siliciclastic sediments. For the soft, adhesive and erosion-resistant features of mat, under the impact of physical sediment dynamics, the siliciclastic sediments covered by mat can form a series of special primary sedimentary structures, which are called as “Microbially Induced Sedimentary Structures (MISS)” by Noffke. The basic conditions of forming and preserving MISS, include experiencing lower metamorphic grade, correlating with turning point of regression-transgression, and occurring in favorable “microbial mat depositional facies”. As microbial mat can hardly preserve down in rock sequences,  the recognition of fossil MISS is difficult. Similar geometry to the modern counterparts and including microtextures related to ancient mat, are effective ways to recognize fossil MISS. Microbial growth, biostabilization, baffling, trapping and binding can form many different types of MISS. According to these processions and their characteristics, MISS can be divided into five classes and 17 subclasses. The comparative study of fossil MISS preserved within siliciclastic rock record and their modern counterparts, can not only promote the development of microbial mat sedimentology, but also provide important clues for further understanding of the ancient siliciclastic sedimentary environment.

中图分类号: 

[1]Olszewski T. Geobiology: A golden opportunity and a call to action[J]. Palaios, 2001, 16(6): 1-2.

[2]Noffke N, Gerdes G, Klenke T, et al. A microscopic sedimentary succession of graded sand and microbial mats in modern siliciclastic tidal flats[J]. Sedimentary Geology, 1997, 110: 1-6.

[3]Noffke N, Hazen R, Nhleko N. Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa)[J]. Geology, 2003, 31: 673-676.

[4]Schieber J. Microbial mats in the siliciclastic rock record: A summary of the diagnostic features[C]∥Eriksson P G, Altermann W, Nelson D R, et al, eds. The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 2004: 663-673.

[5]Schieber J, Bose P K, Eriksson P G, et al. Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock[M]. Amsterdam: Elsevier, 2007.

[6]Hagadorn J W, Bottjer D J. Restriction of a Late Neoproterozoic biotope: Suspectmicrobial structures and trace fossils at the Vendian-Cambrian transition[J]. Palaios, 1999, 14: 73-85.

[7]Flügel E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application[M]. Berlin: Springer-Verlag, 2004.

[8]Mei Mingxiang, Meng Qingfen, Gao Jinhan. Microbial sand chips in transgressive sandstones of the Precambrian: An example from the Dahongyu Formation at the Huyu Section of the Nankou Town in Beijing[J]. Earth Science Frontiers, 2007, 14(2): 197-204.[梅冥相,孟庆芬,高金汉.前寒武纪海侵砂岩中的微生物砂质碎片:以北京南口虎峪剖面大红峪组为例[J].地学前缘,2007,14(2):197-204.]

[9]Shi Xiaoying, Wang Xinqiang, Jiang Ganqing, et al. Pervassive miacrobial mat colonization on Mesoproterozoic peritidal siliciclastic substrates: An example from the Huangqikou Formation (ca 1.6Ga) in Helan Mountains, NW China[J]. Geological Review, 2008, 54(5): 577-586.[史晓颖,王新强,蒋干清,等.贺兰山地区中原古代微生物席成因构造:远古时期微生物群活动的沉积标志[J].地质论评,2008,54(5):577-586.]

[10]Zheng Yuan,Lü Hongbo, Zhang Yuxu, et al. Miscellaneous traces on the bedding planes of Mezoproterozoic sandstones in Licheng, Shanxi: Characteristics and origin analysis[J]. Geological Review, 2009, 55(1):1-6.[郑元,吕洪波,章雨旭,等.山西黎城中原古代砂岩层面多种痕迹特征及成因初析[J].地质论评,2009,55(1):1-6.]

[11]Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214.

[12]Noffke N. Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today[M]. Berlin: Springer-Verlag, 2010.

[13]Seckbach J, Oren A. Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems[M]. Berlin: Springer-Verlag, 2010.

[14]Jiang Yuan, Zhao Shengcai, Sun Chengquan. Earth-Life coupling system: The controls of biosphere dynamics and global environment[J]. Advances in Earth Science, 2001, 16(6): 877-884.[江源,赵生才,孙成权.地球—生命耦合系统:生物圈动力学和全球环境控制[J].地球科学进展,2001,16(6):877-884.]

[15]Noffke N, Gerdes G, Klenke T, et al. Microbially induced sedimentary structures—Examples from modern sediments of siliciclastic tidal flats[J]. Zentralblatt  für  Geologie und Palontologic, Teil I, 1996,1/2: 307-316.

[16]Noffke N, Gerdes G, Klenke T, et al. Microbially induced sedimentary structures: A new category within the classification of primary sedimentary structure[J]. Journal of Sedimentary Research, 2001, 71: 649-656.

[17]Mei Mingxiang,Gao Jinhan, Meng Qingfen. From matground structures to the primary sedimentary structures of a fifth category: Significant concepts on sedimentology[J]. Geoscience, 2006, 20(3): 413-422.[梅冥相,高金汉,孟庆芬.从席底构造到第五类原生沉积构造:沉积学中较为重要的概念[J].现代地质,2006,20(3):413-422.]

[18]Pettijohn F J, Potter P E. Atlas and Glossary of Primary Sedimentary Structure[M]. Berlin: Springer-Verlag, 1964.

[19]Reid R P, Visscher P T, Decho A W, et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J]. Nature, 2000, 406: 989-992.

[20]Gerdes G, Klenke T, Noffke N. Microbial signatures in peritidal siliciclastic sediments: A catalogue[J].Sedimentology, 2000, 47: 279-308.

[21]Pflüger F. Matground structures and redox facies[J]. Palaios, 1999, 14: 25-39.

[22]Seilacher A.Biomat-related lifestyles in the Precambrian[J]. Palaios, 1999, 14(1): 86-93.

[23]Mei Mingxiang. Microbial mat sedimentology: A young branch fron sedimentology[J]. Advances in Earth Science, 2011, 26(6): 586-597.[梅冥相.微生物席沉积学:一个年轻的沉积学分支[J].地球科学进展,2011,26(6):586-597.]

[24]Sarkar S, Banerjee S, Eriksson P G. Microbial mat features in sandstones illustrated[C]∥Eriksson P G, Altermann W, Nelson D R, et al, eds. The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 2004: 673-675.

[25]Mountney N P,Howell J A. Aeolian architecture, bedform climbing and preservation space in the C retaceous Etjo Formation, NW Namibia[J]. Sedimentology, 2002, 49: 825-849.

[26]Kneller B C,Buckee C. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implication[J]. Sedimentology, 2000, 47(Suppl.1): 62-94.

[27]Amos C L, Choung K S. Storm generated, hummocky stratification on the outer Scotian shelf[J]. Geo-Marine Letters, 1997, 16: 85- 94.

[28]Seilacher A, Pflüger F. From biomats to benthic agriculture: A biohistoric revolution[C]∥Krumbein W E, Paterson D M, Stal L J, eds. Biostabilization of Sediments. Oldenburg: Bibliotheks und Informationssystem der Carl von Ossietzky Universitt Oldenberg (BIS),1994:97-105.

[29]Noffke N, Gerdes G, Klenke T, et al. Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within recent and pleistocene coastal facies zones (southern Tunisia)[J]. Facies, 2001, 44: 23-30.

[30]Walter M R, Heys G R. Links between the rise of the Metazoa and the decline of stromatolites[J]. Precambrian Research, 1985, 29: 149-174.

[31]Neu T R. Biofilms and microbial mats[C]∥Krumbein W E, Paterson D M,  Stal L J, et al, eds. Biostabilization of Sediments. Oldenburg: Bibliotheks und Informationssystem der Universitt Oldenburg, 1994: 9-15.

[32]Noffke N. The criteria for the biogenicity of Microbially Induced Sedimentary Structures (MISS) in Archean and younger, sandy deposits[J]. Earth-Science Review, 2009, 96: 173-180.

[33]Noffke N, Beukes N, Gutzmer J, et al. Spatial and temporal distribution of microbially induced sedimentary structures: A case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa[J]. Precambrian Research, 2006, 146: 35-44.

[34]Mata S,Bottjer D J. The paleoenvironmental distribution of Phanerozoic wrinkle structures[J]. Earth-Science Reviews, 2009, 96(3): 181-195.

[35]van Wagoner J C, Posamentier H W, Mitchum R M, et al. An overview of sequence stratigraphy and key definitions[C]∥Wilgus C K, Hastings B S, Kendall C G St, et al, eds. Sea-Level Changes: An Integrated Approach. SEPM Special Publication, 1988, 42: 39-45.

[36]Noffke N, Gerdes G, Klenke T. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic)[J]. Earth-Science Reviews, 2003, 62: 163-176.

[37]Gerdes G, Krumbein W E, Reineck H E. Biolaminations—Ecological versus depositional dynamics[C]∥Einsele G, Ricken W, Seilacher A, eds. Cycles and Events in Stratigraphy. Berlin: Springer-Verlag, 1991: 592-607.

[38]Noffke N, Knoll A, Grotzinger J. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the Upper Neoproterozoic Nama Group, Namibia[J]. Palaios, 2002, 17: 533-544.

[39]Noffke N. Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea)[J]. Geology, 1998, 26: 879-882.

[40]Noffke N, Krumbein W E. A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics[J]. Sedimentolology, 1999, 46: 417-426.

[41]Gerdes G, Krumbein W E. Biolaminated deposits[C]∥Bhattacharya S, Friedman G M, Neugebauer H J, et al, eds. Lecture Notes in Earth Sciences 9. Berlin: Springer, 1987.

[42]Gerdes G, Krumbein W E, Noffke N. Evaporite microbial sediments[C]∥Riding R, Awramik S, eds. Microbial Sediments. Berlin:Springer-Verlag, 2000: 196-208.

[43]Noffke N, Gerdes G, Klenke T, et al. Biofilm impact on sedimentary structures in siliciclastic tidal flats[J]. Cour Forsch Senckenberg,1997, 201: 297-305.

[44]Paterson D. Microbial mediation of sediment structure and behaviour[C]∥Stal L, Caumette P, eds. Microbial Mats. Berlin: Springer-Verlag,1994.

[45]Neumann A C, Gebelein C D, Scoffin T P. The composition, structure, and erodibility of subtidal mats, Abaco, Bahamas[J]. Journal of Sedimentary Petrology, 1970, 40: 274-297.

[46]Pflüger F, Gresse P G. Microbial sand chips: A nonactualistic sedimentary structure[J]. Sedimentary Geology, 1996, 102: 263-274.

[47]Noffke N, Beukes N, Bower D, et al. An actualistic perspective into Archean worlds—(cyano-)Bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Pongola Supergroup, South Africa[J]. Geobiology, 2008, 6: 5-20.

[48]Reineck H E, Gerdes G, Claes M, et al. Microbial modification of sedimentary surface structures[C]∥Heling D, Rothe P, Frstner U, et al, eds. Sediments and Environmental Geochemistry. Berlin: Springer,1990: 254-276.

[49]Gehling J G. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks[J]. Palaios, 1999, 14: 40-57.

[50]Gehling J G. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara member within the Rawnsley Quarzite, South Australia[J]. Precambrian Research, 2000, 100: 65-95.

[51]Gerdes G, Claes M, Dunajtschik-Piewak K, et al. Contribution of microbial mats to sedimentary surface structures[J]. Facies, 1993, 29: 61-74.

[52]Reineck H E. Rezente und fossile Algenmatten und Wurzelhorizonte[J]. Natur und Museum, 1979, 109: 290-296.

[53]Noffke N. Erosional remnants and pockets evolving from biotic—Physical interactions in a recent lower supratidal environment[J]. Sedimentary Geology, 1999, 123: 175-181.

[54]Hagadorn J W, Bottjer D J. Wrinkle structures: Microbially mediated sedimentary structures in siliciclastic settings at the Proterozoic-Phanerozoic transition[J]. Geology, 1997, 25: 1 047-1 050.

[55]Porada H,Bouougri E. Wrinkle structures—A critical review[J]. Earth-Science Reviews, 2007, 87: 199-215.

[56]Allen J R L. Wrinkle-marks: An intertidal sedimentary structure due to aseismic soft-sediment loading[J]. Sedimentary Geology, 1985, 41: 75-95.

[57]Guo Rongtao,Guo Li’na, Huo Rong. Review on the wrinkle structures[J]. Geological Science and Technology Information, 2012, 31(3): 16-23.[郭荣涛,郭丽娜,霍荣.皱饰构造研究进展综述[J].地质科技情报,2012,31(3):16-23.]

[1] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[2] 梅冥相. 微生物席沉积学:一个年轻的沉积学分支[J]. 地球科学进展, 2011, 26(6): 586-597.
[3] 林承焰,张宪国. 地震沉积学探讨[J]. 地球科学进展, 2006, 21(11): 1140-1144.
[4] 于兴河;郑秀娟. 沉积学的发展历程与未来展望[J]. 地球科学进展, 2004, 19(2): 173-182.
[5] 刘宝珺,李廷栋. 地质学的若干问题[J]. 地球科学进展, 2001, 16(5): 607-616.
[6] 杜远生,韩 欣. 论震积作用和震积岩[J]. 地球科学进展, 2000, 15(4): 389-394.
[7] 尹寿鹏,王贵文. 测井沉积学研究综述[J]. 地球科学进展, 1999, 14(5): 440-445.
[8] 李任伟. 沉积物污染和环境沉积学[J]. 地球科学进展, 1998, 13(4): 398-402.
[9] 柳永清. 地球轨道旋回沉积节律研究进展——兼论轨道旋回的沉积学特征、年代学意义和研究方法[J]. 地球科学进展, 1998, 13(3): 217-224.
[10] 谭明,刘东生. 洞穴碳酸钙沉积的古气候记录研究[J]. 地球科学进展, 1996, 11(4): 388-395.
[11] 戴永定,陈孟莪,王尧. 微生物岩研究的发展与展望[J]. 地球科学进展, 1996, 11(2): 209-215.
[12] 王东坡,刘立,薛林福, 高福红,王德勤. 大陆构造沉积学[J]. 地球科学进展, 1995, 10(6): 612-614.
[13] 罗又郎,吴时国. 南沙海区海洋沉积学的研究进展[J]. 地球科学进展, 1995, 10(2): 143-147.
[14] 方国庆; 张晓宝. 板块沉积学[J]. 地球科学进展, 1993, 8(4): 80-82.
[15] 解习农; 程守田. 聚煤盆地富煤规律研究综述及展望[J]. 地球科学进展, 1993, 8(3): 45-48.
阅读次数
全文


摘要