地球科学进展 ›› 1996, Vol. 11 ›› Issue (4): 388 -395. doi: 10.11867/j.issn.1001-8166.1996.04.0388

全球变化研究 上一篇    下一篇

洞穴碳酸钙沉积的古气候记录研究
谭明,刘东生   
  1. 中国科学院地质研究所 北京 100029
  • 收稿日期:1995-09-06 修回日期:1996-01-22 出版日期:1996-07-01
  • 通讯作者: 谭明,男,1954年11月生,理学博士,地貌学与第四纪地质学专业。
  • 基金资助:

    中国科学院资助项目“北极-亚澳大陆-南极环境地质大断面与全球变化项目预研究”、中科院博士后科学基金项目“中国北方20万年以来环境变化的高分辨洞穴沉积记录研究”。

STUDY ON THE PALEOCLIMATIC RECORDS FROM SPELEOTHEMS

Tan Ming, Liu Dongsheng   

  1. Institute of Geology, Chinese Academy of Sciences, Beijing 100029
  • Received:1995-09-06 Revised:1996-01-22 Online:1996-07-01 Published:1996-07-01

洞穴碳酸钙是陆地环境中一种极好的古气候信息库。本文比较论述了中外科学家在该领域的研究历史与最新进展,指出该项研究需要通过高精度地质年代学、同位素地球化学和洞穴沉积学密切配合;并结合作者自己的工作,提出洞穴碳酸钙的稳定同位素和年轮记录是我国东部季风区古季风强弱、干湿变化、干旱事件及强降水事件的极好的高分辨档案。

Speleothems are important repositories of palaeoclimatic data. Both 14 C and uranium series methods can be used to date the deposit and their precision have been improved with AMS supplied for 14 C and TIMS supplied for U series methods. The stable isotopic sequences of speleothems can give much imformation about palaeoenvironmemt the excellent one of which was from the vein calcite of Devils Hole. The relation between the mean δ 18 O of precipitation and near land surface temperature is complex. The stable isotopic sequences of speleothems from East China could show mainly the condition of wet and dry according to the characteristics of the isotopic change of the precipitation in the monsoon regions of China and the fractional principle of carbonate deposits in caves. The high resolution stable isotopic records from speleothems in East China can supply change of 10 0~10 1a scale of the monsoon, and annual rings of speleothems can supply annual records of precipitation.

[1]Moore C W.Speleothem—A new cave term.  Nat Speleol Soc News, 1952, 10(6):2.
[2]Brecker W S.  Radiocarbon measurement and annual rings in cave formations. Nature, 1960, 185: 93-94.
[3]Rosholt J N, Antal P S.  Evaluation of the 231Pa/U-230Th/U method for dating Pleistocene carbonate rocl}s, US Geological Survey Professional Paper, 1962, 450: E108-E111.
[4]Cherdgntsev V V,Kazachevskii I V,Kuzmina E A.Dating of Pleistocene carbonate formation by the thorium and uranium isotopes.  Geochemistry International, 1965, 2: 794- 801.
[5]hompson P.  Procedures for extraction and isotopic analysis of uranium and thorium from speleothem.  Technica Memorandu,  Departmemt of Geology,  Mcmaste University,  Hamilton,  Ontario. 1973.73-9.
[6]Schwarcz H P,  Harmon R S,  Thompson P, et al.  Stable isotope studies of fluid inclusions in speleothems and their paleolcimatic significance.  Ceochimica et Cosmochimica Acta, 1976, 40: 657-665.
[7]Latham A C,  Schwarcz H P, Ford D C. Palaeomagnetism of stalagmite deposits. Nature, 1979, 280: 383-385.
[8]Schwarcz H P.  Uranium series dating of contaminated travertines: a two component model. Technical Memorandum,  M cM rite U niversity, Hamilyton, Ontario, 1979.
[9]Talma A S,Vogel J C, Partridge T C.  Isotopic contents of some Transvaalo speleothems and their paleoclimatic significance. South Africa ,Journal of Science, 1974, 70: 135-140.
[10] Thompson C, Lumsden D N, Walker R L, et al.  Uranium}eries dating of stalagmites from Blanchard Springs Cavern. USA Ceochimica et Cosmochimi Acta, 1975, 39: 1211-1218.
[11]Henning C J,  Bangert U, HerrW, et al.  Uranium series dating of calcite formations in caves: Recent results and a comparative study of age determinations via 230Th/234U, 14C, TL and ESR. Revue d'Archaeometric, 1980, 4: 91-100.
[12]Ivannovich M  and Harmon R S.Uranium Series Disequilibrium:  Applications to Environmental Problems.  Oxford: Clarendon Press,  1982. 571.
[13]Edwards R L,  Chen J H, Wasserburg C J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500, 000 years. Earth and Planetary Science Letters, 1986, 81:175-192.
[14]Li W-X, Lundberg J, Dickin A P, et al.  High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature, 1989, 339: 534- 536.
[15]Epstein S, Buchsbaum R, Lowenstam H, et al.  Carbonate-water isotopic temperature scale.  Bulletin of the Ceological Society of America, 1951, 62: 417-427.
[16]O'Neil J R, Clayton R N, Mayeda T.Oxygen isotope fractionation in divalent metal carbonates. .Journal of Chenmical Physics, 1969, 51:547-558.
[17]Hendy C H.  The isotopic geochemistry of speleothems and its application to the study of past climates. Ph D Thesis, Victoria University,Wellington, New Zealand, 1969.
[18]Hendy C H. The isotopic geochemistry of speleothems- I.The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimate indicators. Ceochimica et Cosmochimica Acta, 1971, 35: 801-824.
[19]Thompson P,  Schwarcz H P,ord D C.  Stable isotope geochemistry,  geothermometry and geochronology of speleothems from West Virginia. Bulletin of the Geological Society of America, 1976, 87: 1730- 1738.
[20]Craig H. Isotopic variations in meteoric water. Science, 1961, 133: 1702- 1703.
[21]Fritz P, Drimmie R J,  Frape S, et al.  The isotopic composition of precipitation and groundwater in Canada,  International Symposium on the Use of Isotope Techniques inWater Resources Development. 1987, IAEA-SM-299: 539-550.
[22]Harmom R S,  Land L S,  Mitterer R M,et al. Bermuda sea level during the last interglacial. Nature, 1981, 289: 481-483.
[23]Gilson J R, Macarthney E.  Luminescence of speleothems from devon, UK:the presence of organic activators. Ashford Speleological Society ,Journal, 1954, 6: 8-11.
[24]Gascoyne M .Trace  elemeilt  geochemistry  in  Speleothems. Proceedings, International  Speleological  Congress, 7th, Sheffield, England, 1977. 205-208.
[25]Shopov Y Y.Laser luminescent microzonal analysis-A new method for investigation of the alterations of climate and solar activity during the Quaternary. In:  Kiknadze T ed.Problems of Karst Study in Mountainous Countries:Tbilisi, Georgia, Metsniereba, 1987. 228-232.
[26]Shopov Y Y,  Dermendjiev V, kuliliev C.A new method for dating natural materials with periodical macrostructure by auto calibration. International Geological Correlation Project No 299 Newsletter, 1991, 3: 52- 58.
[27]Baker A, Smart P L,  Edwards R L, et al.  Annual growth banding in a cave stalagmite.  Nature, 1993, 364: 518-520
[28]Hendy C H,Wikon A T .Palaeoclimatic data from speleothems. Nature, 1968, 219: 48-51.
[29]Katz A.The interaction of magnesium with cache during  crstal growth  at 25-95℃ and one atmosphere.Geochimica et Cosmochimica Acta, 1973, 37: 1563-1568.
[30]Bastin B.  L'analyse pollinique des stalagmite:  Une nouvelle possibilite d'approche des fluctuations climatiques du Quaternaire.  Annales de la Societe Ceologique de Belgique, 1978,T-101: 13-19.
[31]Riggs A C,  Carr W J,  Kolesar P T, et al.  Tectonic speleogenesis of Devils Hole, Nevada, and implications for hydrgeology and development of long, continuous paleoenvironmental records.  Quaternary Research, 1994, 42: 241-254.
[32]Winograd I J,  Szabo B J,  Coplen T B, et al. A 250, 000-year climatic record from Creat Basin vein calcite: Implicadons for Milankovitch theory.  Science, 1988, 242: 1275-1280.
[33]Winograd I J,  Coplen T B,  Landwehr J M,et al.  Continuous 500, 000 year climate record from vein calcite in Devils Hole, Nevada. Science, 1992, 258: 255-260.
[34]汪训一.桂林洞穴沉积物的氧、碳同位素特征.中国岩溶,1985, 4(1, 2) : 149- 153.
[35]陈跃,黄培华,朱洪山.北京周口店地区洞穴内第四纪石笋的同位素古温度研究.科学通报,1986, ( 20) : 1576-1577.
[36]刘育燕,何锦发.桂林罗胡子洞材生化学沉积物(石笋)的古温度研究.地球科学,1990, (6) : 689- 696.
[37]黄俊华.湖北崇阳狮泉洞第四纪石笋的碳氧同位素特征及古气候研究.中国岩溶,1992,(3) : 245- 249.
[38]朱洪山,张巽. 44万年以来北京地区石笋古温度记录.科学通报,1992, ( 20) : 1880- 1883.
[39]黄仁海.贵州多缤洞沉积物的沉积环境特征.喀斯特与洞穴风景旅游资源研究.北京:地震出版社,1994. 99- 103.
[40]李彬.洞穴化学沉积物中  δ13C, δ18O对环境变迁的示踪意义.中国岩溶,1994, 13(1) : 17- 24.
[41]Yuan Daoxian.  Sensitivity of karst process to environmental change and its records.  along PEP-II transect, Paper for a PACES/ICBP PEP-II Working Croup Meeting, Beijing, China. 1994.
[42]Tan Ming, Liu Dongsheng.  Stable isotope records of a stalagmite from ,Jiguan Cave in Henan Province, China. Scientia Ceologica Sinica, 1995, Suppl( 1):281-284.
[43]洪阿实,彭子成,李平.洞穴石笋古温度的同位素地球化学方法.地球科学进展,1995, 10( 4) : 348- 352.
[44]郑淑惠,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究,科学通报,1983, ( 13) : 801- 806.
[45]章新平,姚檀栋.全球降水中氧同位素比率的分布特点.冰川冻土,1994, 16( 3) : 202- 210.
[46]Cerling T E.  The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 1984, 71:229-240.

[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[5] 程昊,徐乃潇. 基于石榴石的变质岩年代学[J]. 地球科学进展, 2020, 35(10): 991-1005.
[6] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[7] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[8] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[9] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[10] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[11] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[12] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[13] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[14] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[15] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
阅读次数
全文


摘要