地球科学进展 ›› 2020, Vol. 35 ›› Issue (4): 363 -377. doi: 10.11867/j.issn.1001-8166.2020.035

综述与评述 上一篇    下一篇

多瑙河黄土与古环境研究进展
武雪超 1, 2( ),郝青振 1, 2, 3( ),Marković Slobodan B 4,付玉 1, 2,娜米尔 1, 2,宋扬 5,郭正堂 1, 2, 3   
  1. 1. 中国科学院地质与地球物理研究所,中国科学院新生代地质与环境重点实验室,北京 100029
    2. 中国科学院大学地球与行星科学学院,北京 100049
    3. 中国科学院生物演化与环境卓越创新中心,北京 100044
    4. Chair of Physical Geography, University of Novi Sad, Trg Dositeja Obradovi?a 3, 21000 Novi Sad, Serbia
    5. 北京城市系统工程研究中心,北京 100035
  • 收稿日期:2020-01-20 修回日期:2020-03-02 出版日期:2020-04-10
  • 通讯作者: 郝青振 E-mail:haoqz@mail.iggcas.ac.cn
  • 基金资助:
    国家自然科学基金基础科学中心项目“大陆演化与季风系统演变”(41888101);国家重点研发计划项目“东亚季风区和西风影响区的多时间尺度古气候变化对比研究”(2017YFE0112800)

Progress in Danube Loess and Paleoenvironment Study

Xuechao Wu 1, 2( ),Qingzhen Hao 1, 2, 3( ),B Marković Slobodan 4,Yu Fu 1, 2, Namira 1, 2,Yang Song 5,Zhengtang Guo 1, 2, 3   

  1. 1. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    3. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
    4. Chair of Physical Geography, University of Novi Sad, Trg Dositeja Obradovi?a 3, 21000 Novi Sad, Serbia
    5. Beijing Research Center for Urban System Engineering, Beijing 100035, China
  • Received:2020-01-20 Revised:2020-03-02 Online:2020-04-10 Published:2020-05-08
  • Contact: Qingzhen Hao E-mail:haoqz@mail.iggcas.ac.cn
  • About author:Wu Xuechao (1993-), male, Shahe County, Hebei Province, Master student. Research areas include European loess and paleoenvironment. E-mail: xchwu@mail.iggcas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Continental evolution and Earth's monsoon system”(41888101);The National Key Research and Development Program of China “Comparative study of past climate changes at multi-timescale in East Asian monsoon region and Westerly zone”(2017YFE0112800)

多瑙河黄土位于欧亚黄土带的西端,是欧洲沉积和保存最完整的黄土地层,底界可达1 Ma以上。由于其独特的地理位置,多瑙河黄土对于理解欧亚大陆不同区域气候系统演化的联系、北半球中高纬地区的气候变化有着重要的价值。在系统梳理多瑙河黄土在物质组成、物源、年代学、地层学和古环境重建等方面的研究进展和不足的基础上,提出了未来研究在物源、年代学、地层和古环境重建等4个方面的主攻方向。在物源研究方面需要系统获得潜在物源区沉积物组成信息,并开展物源示踪指标的方法学和多指标相互印证研究;在年代学和地层学方面需要加强长石释光年代学、火山灰年代学等研究,建立有多个绝对年龄控制的、高精度的年代标尺及其年代约束下统一的地层命名和对比方案;在古环境重建方面需要将高分辨率、多指标古气候重建工作从末次间冰期以来的地层拓展至最近1 Ma以来的整个序列。上述研究的开展是未来欧亚黄土区古气候对比和气候动力学机制研究获得突破的关键。

Danube loess, located at the westernmost part of the widespread Eurasian loess belt, is one of the most well-preserved aeolian dust deposits in Europe with the basal age dating back over 1 Ma. Owing to its unique location and formation processes, Danube loess plays an important role in understanding the linkage of climate changes in different climate regimes over Eurasian continent and paleoclimatic changes in middle-high northern latitudes. Major research advances of the Danube loess, including compositions, provenance, chronology, stratigraphy and paleoenvironment changes were systematically reviewed and the focuses of future research were suggested. To better understand loess provenance, the compositions of sediments in all the potential source areas should be investigated, and methodological study of provenance indicators and application of multi-proxies approaches need to be carried out. Chronologically and stratigraphically, feldspar luminescence dating and tephrochronology methods should be widely used, and the establishment of a uniform stratigraphic framework and correlation scheme should be constrained by precise chronology. In terms of the paleoenvironment, it is necessary to conduct high-resolution multi-proxies reconstruction of paleoenviroment for the entire loess-paleosol sequence, extending from the last interglacial period (130 ka to present) to interval of last 1 Ma. The future progress in Danube loess is crucial to improving the study of continental paleoclimate comparison and paleoclimate dynamics over the Eurasian loess region.

中图分类号: 

图1 多瑙河黄土的分布(据参考文献[ 10 , 11 , 12 ]改绘)
Fig.1 The distribution of Danube loessmodified after references[10~12])
1. Paks [ 13 , 14 ]; 2. Tamási [ 15 ]; 3. Dunaszekcs? [ 16 ]; 4. Mende [ 17 ]; 5. Beremend [ 18 ]; 6. Zmajevac [ 19 ]; 7. Constinesti [ 20 ]; 8. Orlovat [ 21 ]; 9. Brno [ 22 ]; 10. Batajnica [ 23 , 24 ]; 11. Koriten [ 25 ]; 12. Viatovo [ 26 ]; 13. Mircea Voda [ 27 ]; 14. Zimnicea [ 27 ]; 15. Titel [ 6 ]; 16. Stari Slankamen [ 4 , 6 ]; 17. Crvenka [ 28 ]
图2 多瑙河流域与黄土高原典型黄土层样品粒度组成的对比(数据来自参考文献[ 15 , 16 , 35 ])
Fig.2 Comparison of grain size composition of typical loess samples from Danube region and the Chinese Loess Plateaudata from references[15, 16, 35])
图3 多瑙河黄土与黄土高原黄土黏土矿物组成的对比(数据来自参考文献[ 14 , 18 , 49 , 50 , 51 , 52 , 53 ])
Fig. 3 Comparison of clay mineral composition of the Danube loess and the loess of Chinese Loess Plateaudata from references[14, 18, 49~53])
图4 多瑙河与黄土高原L1 黄土主量元素UCC标准化模式(数据来自参考文献[ 14 , 18 , 20 , 21 , 22 , 54 , 55 ])
Fig. 4 UCC-normalized for major elements of L1 loess in Danube region and the Chinese Loess Plateaudata from references[14, 18, 20~22, 54, 55])
表1 多瑙河和黄土高原 L1 黄土主量元素平均组成的质量百分含量 单位:%) 数据来自参考文献[ 14 , 18 , 20 , 21 , 22 , 54 , 55 ])
Table 1 The average mass percentage of major elements of L1 loess in Danube region and the Chinese Loess Plateau(unit: %(data from references[14, 18, 20~22, 54, 55])
图5 多瑙河黄土—古土壤序列及其与黄土高原的对比(据参考文献[ 6 , 9 , 23 ]修改)
Fig.5 Loess-paleosol sequences in Danube region and its correlation with the Chinese Loess Plateaumodified after references[6,9,23])
表2 多瑙河黄土地层对比框架 据参考文献[ 3 , 5 , 9 , 31 ]修改
Table 2 Correlations of Danube loess stratigraphy (modified after references[ 3 , 5 , 9 , 31 ]
1 Smalley I J , Leach J A . The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe—A review[J]. Sedimentary Geology, 1978, 21(1): 1-26.
2 Fink J , Kukla G J . Pleistocene climates in Central Europe: At least 17 interglacials after the Olduvai event[J]. Quaternary Research, 1977, 7(3): 363-371.
3 Koloszar L . The thickest and the most complete loess sequence in the Carpathian Basin: The borehole Udvari-2A[J]. Central European Journal of Geosciences, 2010, 2(2): 165-174.
4 Markovi? S B , Hambach U , Stevens T , et al . The last million years recorded at the Stari Slankamen (northern Serbia) loess-palaeosol sequence: Revised chronostratigraphy and long-term environmental trends[J]. Quaternary Science Reviews, 2011, 30(9/10): 1 142-1 154.
5 Sümegi P , Gulyás S , Molnár D , et al . New chronology of the best developed loess/paleosol sequence of Hunagry capturing the past 1.1 Ma: Implications for correlation and proposed pan-Eurasian stratigraphic schemes[J]. Quaternary Science Reviews, 2018, 191: 144-166.
6 Song Y , Guo Z T , Markovi? S B , et al . Magnetic stratigraphy of the Danube loess: A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia[J]. Journal of Asian Earth Sciences, 2018, 155: 68-80.
7 Peel M C , Finlayson B L , McMahon T A . Updated world map of the K?ppen-Geiger climate classification[J]. Hydrology and Earth System Sciences, 2007, 11: 1 633-1 644.
8 Fitzsimmons K E , Markovi? S B , Hambach U . Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin[J]. Quaternary Science Reviews, 2012, 41: 104-118.
9 Markovi? S B , Stevens T , Kukla G J , et al . Danube loess stratigraphy—Towards a pan-European loess stratigraphic model[J]. Earth-Science Reviews, 2015, 148: 228-258.
10 Haase D , Fink J , Haase G , et al . Loess in Europe—Its spatial distribution based on a European loess map, scale 1∶2 500 000[J]. Quaternary Science Reviews, 2007, 26(9/10): 1 301-1 312.
11 Lehmkuhl F , B?sken J , Ho?ek J , et al . Loess distribution and related Quaternary sediments in the Carpathian Basin[J]. Journal of Maps, 2018, 14(2): 661-670.
12 Jipa D C . The conceptual sedimentary model of the lower Danube Loess Basin: Sedimentogenetic implications[J]. Quaternary International, 2014, 351: 14-24.
13 Pesci M . Loess is not just the accumulation of dust[J]. Quaternary International, 1990, 7/8: 1-21.
14 újvári G , Varga A , Raucsik B , et al . The Paks loess-paleosol sequence: A record of chemical weathering and provenance for the last 800ka in the mid-Carpathian basin[J]. Quaternary International, 2014, 319: 22-37.
15 Varga G , Cserháti C , Kovács J , et al . Saharan dust deposition in the Carpathian basin and its possible effects on interglacial soil formation[J]. Aeolian Research, 2016, 22: 1-12.
16 Varga G , újvári G , Kovács J . Interpretation of sedimentary (sub)populations extracted from grain size distributions of Central European loess-paleosol series[J]. Quaternary International, 2019, 502: 60-70.
17 Pécsi M , Schweitzer F . Long-term terrestrial records of the middle Danubian Basin[J]. Quaternary International, 1993, 17: 5-14.
18 Varga A , újvári G , Raucsik B . Tectonic versus climatic control on the evolution of a loess-paleosol sequence at Beremend, Hunagry: An integrated approach based on paleoecological, clay mineralogical, and geochemical data[J]. Quaternary International, 2011, 240(1/2): 71-86.
19 Banak A , Mandi? O , Kova?i? M , et al . Late Pleistocene climate history of the Baranja Loess Plateau—Evidence from the Zmajevac loess-paleosol section (northeastern Croatia)[J]. Geologia Croatica, 2012, 65(3): 411-422.
20 Tugulan L C , Duliu O G , A-V Bojar , et al . On the geochemistry of the Late Quaternary loess deposits of Dobrogea (Romania)[J]. Quaternary International, 2016, 399: 100-110.
21 Obreht I , Zeeden C , Schulte P , et al . Aeolian dynamics at the Orlovat loess-paleosol sequence, northern Serbia, based on detailed textural and geochemical evidence[J]. Aeolian Research, 2015, 18: 69-81.
22 Adamová M , Havli?ek P , ?ibrava V . Mineralogy and geochemistry of loesses in southern moravia[J]. Bulletin of the Czech Geological Survey, 2002, 77(1): 29-41.
23 Markovi? S B , Hambach U , Catto N , et al . Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia[J]. Quaternary International, 2009, 198(1/2): 255-266.
24 Buggle B , Hambach U , Glaser B , et al . Stratigraphy, and spatial and temporal paleoclimatic trends in southeastern/eastern European loess-paleosol sequences[J]. Quaternary International, 2009, 196(1): 86-106.
25 Jordanova D , Petersen N . Palaeoclimatic record from a loess-soil profile in northeastern Bulgaria—II. Correlation with global climatic events during the Pleistocene[J]. Geophysical Journal International, 1999, 138(2): 533-540.
26 Jordanova D , Hus J , Evlogiev J , et al . Palaeomagnetism of the loess/palaeosol sequence in Viatovo (NE Bulgaria) in the Danube basin[J]. Physics of the Earth and Planetary Interiors, 2008, 167(1/2): 71-83.
27 R?dan S C . Towards a synopsis of dating the loess from the Romanian plain and Dobrogea: Authors and methods through time[J]. Geoecomarina, 2010, 18: 153-172.
28 Markovi? S B , Hambach U , Stevens T , et al . Loess in the Vojvodina region (northern Serbia): An essential link between European and Asian Pleistocene environments[J]. Netherlands Journal of Geosciences, 2014, 91(1/2): 173-188.
29 Terhorst B , Sedov S , Sprafke T , et al . Austrian MIS 3/2 loess-palaeosol records—Key sites along a west-east transect[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 43-56.
30 Lehmkuhl F , Zens J , Krau? L , et al . Loess-paleosol sequences at the northern European loess belt in Germany: Distribution, geomorphology and stratigraphy[J]. Quaternary Science Reviews, 2016, 153: 11-30.
31 Scholger R , Birgit T . Magnetic excursions recorded in the Middle to Upper Pleistocene loess/palaeosol sequence Wels-Aschet (Austria)[J]. E&G Quaternary Science Journal, 2013, 62(1): 14-21.
32 Sprafke T , Thiel C , Terhorst B . From micromorphology to palaeoenvironment: The MIS 10 to MIS 5 record in Paudorf (Lower Austria)[J]. Catena, 2014, 117: 60-72.
33 Paveli? D , Kova?i? M , Banak A , et al . Early Miocene European loess: A new record of aridity in southern Europe[J]. Geological Society of America Bulletin, 2016, 128(1/2): 110-121.
34 Sartori M , Heller F , Forster T , et al . Magnetic properties of loess grain size fractions from the section at Paks (Hunagry)[J]. Physics of the Earth and Planetary Interiors, 1999, 116(1/4): 53-64.
35 Hao Q Z , Wang L , Oldfield F , et al . Delayed build-up of arctic ice sheets during 400 000-year minima in insolation variability[J]. Nature, 2012, 490(7 420): 393-396.
36 Wang Zhaoduo , Huang Chunchang , Zhou Yali , et al . Characteristics of Holocene loess-palaeosol particle size composition and paleoclimatic significance in east Guanzhong, Shaanxi Province[J]. Advances in Earth Science, 2018, 33(3): 293-304.
王兆夺,黄春长,周亚利,等 . 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
37 újvári G , Kovács J , Varga G , et al . Dust flux estimates for the last glacial period in East Central Europe based on terrestrial records of loess deposits: A review[J]. Quaternary Science Reviews, 2010, 29(23/24): 3 157-3 166.
38 Varga G . Similarities among the Plio-Pleistocene terrestrial aeolian dust deposits in the world and in Hunagry[J]. Quaternary International, 2011, 234(1/2): 98-108.
39 Sümegi P , Gulyás S , Molnár D , et al . Periodicities of paleoclimate variations in the first high-resolution non-orbitally tuned grain size record of the past 1?Ma from SW Hunagry and regional, global correlations[J]. Aeolian Research, 2019, 40: 74-90.
40 Liu Tungsheng . Loess and Environment[M]. Beijing: Science Press, 1985.
刘东生 . 黄土与环境[M]. 北京: 科学出版杜, 1985.
41 Vandenberghe J , Markovi? S B , Jovanovi? M , et al . Site-specific variability of loess and palaeosols (Ruma, Vojvodina, northern Serbia)[J]. Quaternary International, 2014, 334/335: 86-93.
42 Obreht I , Hambach U , Veres D , et al . Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal[J]. Scientific Reports, 2017, 7(1): 1-10.
43 Ding Z L , Derbyshire E , Yang S L , et al . Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ 18O record[J]. Paleoceanography, 2002, 17(3). DOI: 10.1029/2001PA000725 .
doi: 10.1029/2001PA000725    
44 Obreht I , Zeeden C , Hambach U , et al . Tracing the influence of Mediterranean climate on southeastern Europe during the past 350,000 years[J]. Scientific Reports, 2016, 6. DOI: 10.1038/srep36334 .
doi: 10.1038/srep36334    
45 Rousseau D D , Derbyshire E , Antoine P , et al . Loess records|Europe[M]// Encyclopedia of Quaternary Science. London: Elsevier, 2007: 1 440-1 456.
46 Thamó-Bozsó E , ó Kovács L , á Magyari , et al . Tracing the origin of loess in Hunagry with the help of heavy mineral composition data[J]. Quaternary International, 2014, 319: 11-21.
47 Lisá L , Buriánek D , Uher P . New approach to garnet redistribution during aeolian transport[J]. Geological Quarterly, 2009, 53(3): 333-340.
48 újvári G , Kl?tzli U , Kiraly F , et al . Towards identifying the origin of metamorphic components in Austrian loess: Insights from detrital rutile chemistry, thermometry and U-Pb geochronology[J]. Quaternary Science Reviews, 2013, 75: 132-142.
49 újvári G , Varga A , Ramos F C , et al . Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U-Pb ages in tracking dust provenance: An example from loess of the Carpathian basin[J]. Chemical Geology, 2012, 304/305: 83-96.
50 Gylesj? S , Arnold E . Clay mineralogy of a red clay-loess sequence from Lingtai, the Chinese Loess Plateau[J]. Global and Planetary Change, 2006, 51(3/4): 181-194.
51 Jeong G Y , Hillier S , Kemp R A . Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section: Implications for loess provenance and weathering[J]. Quaternary Science Reviews, 2008, 27(11/12): 1271-1287.
52 Peng S Z , Hao Q Z , Oldfield F , et al . Release of iron from chlorite weathering and links to magnetic enhancement in Chinese loess deposits[J]. Catena, 2014, 117: 43-49.
53 Ji J F , Chen J , Lu H Y . Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China[J]. Clay Minerals, 1999, 34(4): 525-532.
54 újvári G , Varga A , Balogh-Brunstad Z . Origin, weathering, and geochemical composition of loess in southwestern Hunagry[J]. Quaternary Research, 2008, 69(3): 421-437.
55 Jahn B M , Gallet S , Han J M . Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka[J]. Chemical Geology, 2001, 178(1/4): 71-94.
56 Taylor S R , Mclennan S M , Mcculloch M T . Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta, 1983, 47(11): 1 897-1 905.
57 Smalley I . The properties of glacial loess and the formation of loess deposits[J]. Journal of Sedimentary Research, 1966, 36(3): 669-676.
58 Smalley I , O’Hara-Dhand K , Wint J , et al . Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation[J]. Quaternary International, 2009, 198(1/2): 7-18.
59 Smith B J , Wright J S , Whalley W B . Simulated aeolian abrasion of Pannonian sands and its implications for the origins of Hungarian loess[J]. Earth Surface Processes and Landforms, 1991, 16(8): 745-752.
60 Buggle B , Glaser B , Z?ller L , et al . Geochemical characterization and origin of southeastern and eastern European loesses (Serbia, Romania, Ukraine)[J]. Quaternary Science Reviews, 2008, 27(9/10): 1 058-1 075.
61 A-K Schatz , Qi Y , Siebel W , et al . Tracking potential source areas of Central European loess: Examples from Tokaj (HU), Nussloch (D) and Grub (AT)[J]. Open Geosciences, 2015, 7(1): 678-720.
62 Bradák B . Application of Anisotropy of Magnetic Susceptibility (AMS) for the determination of paleo-wind directions and paleo-environment during the accumulation period of Bag Tephra, Hunagry[J]. Quaternary International, 2009, 198(1/2): 77-84.
63 Bradák B , újvári G , Seto Y , et al . A conceptual magnetic fabric development model for the Paks loess in Hunagry[J]. Aeolian Research, 2018, 30: 20-31.
64 Sebe K , Csillag G , Ruszkiczay-Rüdiger Z , et al . Wind erosion under cold climate: A Pleistocene periglacial mega-yardang system in Central Europe (western Pannonian basin, Hunagry)[J]. Geomorphology, 2011, 134(3/4): 470-482.
65 Gavrilov M B , Markovi? S B , Schaetzl R J , et al . Prevailing surface winds in northern Serbia in the recent and past time periods; modern- and past dust deposition[J]. Aeolian Research, 2018, 31: 117-129.
66 Muhs D R . The geologic records of dust in the Quaternary[J]. Aeolian Research, 2013, 9: 3-48.
67 Yang S L , Ding F , Ding Z L . Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan[J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1 695-1 709.
68 Prospero J M , Ginoux P , Torres O , et al . Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product[J]. Reviews of Geophysics, 2002, 40(1). DOI: 10.1029/2000RG000095 .
doi: 10.1029/2000RG000095    
69 Szoboszlai Z , Kertész Z , Szikszai Z , et al . Ion beam microanalysis of individual aerosol particles originating from Saharan dust episodes observed in Debrecen, Hunagry[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(12/13): 2 241-2 244.
70 Varga G , Kovács J , újvári G . Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979-2011[J]. Global and Planetary Change, 2013, 100: 333-342.
71 Varga G , újvári G , Kovács J . Spatiotemporal patterns of Saharan dust outbreaks in the Mediterranean Basin[J]. Aeolian Research, 2014, 15: 151-160.
72 Kukla G J . Correlations between loesses and deep-sea sediments[J]. Geologiska F?reningen i Stockholm F?rhandlingar, 1970, 92(2): 148-180.
73 Zeeden C , Hambach U , Steguweit L , et al . Loess stratigraphy using palaeomagnetism: Application to the Poiana Cire?ului archaeological site (Romania)[J]. Quaternary International, 2011, 240(1/2): 100-107.
74 Haesaerts P , Borziac I , Chekha V P , et al . Climatic signature and radiocarbon chronology of Middle and Late Pleniglacial loess from Eurasia: Comparison with the marine and Greenland records[J]. Radiocarbon, 2009, 51(1): 301-318.
75 Haesaerts P , Borziac I , Chekha V P , et al . Charcoal and wood remains for radiocarbon dating Upper Pleistocene loess sequences in Eastern Europe and Central Siberia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(1/2): 106-127.
76 Sumegi P , Molnar M , Svingor E , et al . Results of radiocarbon analysis of Upper Weichselian loess sequences from Hunagry[J]. Radiocarbon, 2007, 49(2): 1 023-1 030.
77 újvári G , Molnár M , Páll-Gergely B . Charcoal and mollusc shell 14C-dating of the Dunaszekcs? loess record, Hunagry[J]. Quaternary Geochronology, 2016, 35: 43-53.
78 Ujvari G , Stevens T , Molnar M , et al . Coupled European and Greenland last glacial dust activity driven by north Atlantic climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): E10632-E10638.
79 újvári G , Molnár M , á Novothny , et al . AMS 14C and OSL/IRSL dating of the Dunaszekcs? loess sequence (Hunagry): Chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka[J]. Quaternary Science Reviews, 2014, 106: 140-154.
80 Pigati J S , Mcgeehin J P , Muhs D R , et al . Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells[J]. Quaternary Science Reviews, 2013, 76: 114-128.
81 Roberts H M . The development and application of luminescence dating to loess deposits: A perspective on the past, present and future[J]. Boreas, 2010, 37(4): 483-507.
82 Wintle A G , Packman S C . Thermoluminescence ages for three sections in Hunagry[J]. Quaternary Science Reviews, 1988, 7(3/4): 315-320.
83 Wang Leibin , Wei Haitao , Jia Jia , et al . Advances and issues in luminescence dating of loess deposits in arid Central Asia[J]. Advances in Earth Science, 2018, 33(1): 93-102.
王蕾彬,魏海涛,贾佳,等 . 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
84 Singhvi A K , Bronger A , Sauer W , et al . Thermoluminescence dating of loess-paleosol sequences in the Carpathian Basin (East-Central Europe): A suggestion for a revised chronology[J]. Chemical Geology: Isotope Geoscience, 1989, 73(4): 307-317.
85 Wintle A G , Murray A S . A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006, 41(4): 369-391.
86 Frechen M , Horváth E , Gábris G . Geochronology of Middle and Upper Pleistocene loess sections in Hunagry[J]. Quaternary Research, 1997, 48(3): 291-312.
87 á Novothny , Frechen M , Horváth E , et al . Luminescence and amino acid racemization chronology of the loess-paleosol sequence at Sütt?, Hunagry[J]. Quaternary International, 2009, 198(1/2): 62-76.
88 Schmidt E D , Machalett B , Markovi? S B , et al . Luminescence chronology of the upper part of the Stari Slankamen loess sequence (Vojvodina, Serbia)[J]. Quaternary Geochronology, 2010, 5(2/3): 137-142.
89 Balescu S , Jordanova D , Brisson L F , et al . Luminescence chronology of the northeastern Bulgarian loess-paleosol sequences (Viatovo and Kaolinovo)[J]. Quaternary International, 2019. DOI: 10.1016/j.quaint.2019.04.020 .
doi: 10.1016/j.quaint.2019.04.020    
90 Stevens T , Markovi? S B , Zech M , et al . Dust deposition and climate in the Carpathian basin over an independently dated last glacial-interglacial cycle[J]. Quaternary Science Reviews, 2011, 30(5/6): 662-681.
91 Thiel C , Horváth E , Frechen M . Revisiting the loess/palaeosol sequence in Paks, Hunagry: A post-IR IRSL based chronology for the ‘Young Loess Series’[J]. Quaternary International, 2014, 319: 88-98.
92 á Novothny , Horváth E , Frechen M . The loess profile at Albertirsa, Hungary—Improvements in loess stratigraphy by luminescence dating[J]. Quaternary International, 2002, 95: 155-163.
93 Veres D , Lane C S , Timar-Gabor A , et al . The Campanian Ignimbrite/Y5 tephra layer—A regional stratigraphic marker for Isotope Stage 3 deposits in the lower Danube region, Romania[J]. Quaternary International, 2013, 293: 22-33.
94 Ding Z L , Yu Z W , Rutter N W , et al . Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.
95 Hays J D , Imbrie J , Shackleton N J . Variations in the earth’s orbit: Pacemaker of the Ice Ages[J]. Science, 1976, 194(4 270): 1 121-1 132.
96 Markovi? S B , Hambach U , Stevens T , et al. Relating the astronomical timescale to the loess-paleosol sequences in Vojvodina , northern Serbia[M]// Climate Change Vienna: Springer, 2012: 5-78.
doi: 10.1007/978-3-7091-0973-1_5    
DOI: 10.1007/978-3-7091-0973-1_5 .
doi: 10.1007/978-3-7091-0973-1_5    
97 Basarin B , Buggle B , Hambach U , et al . Time-scale and astronomical forcing of Serbian loess-paleosol sequences[J]. Global and Planetary Change, 2014, 122: 89-106.
98 Necula C , Dimofte D , Panaiotu C . Rock magnetism of a loess-palaeosol sequence from the western Black Sea shore (Romania)[J]. Geophysical Journal International, 2015, 202(3): 1 733-1 748.
99 Panaiotu C G , Panaiotu E C , Grama A , et al . Paleoclimatic record from a loess-paleosol profile in southeastern Romania[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11/12): 893-898.
100 Jordanova D , Petersen N . Palaeoclimatic record from a loess-soil profile in northeastern Bulgaria—I. Rock magnetic properties[J]. Geophysical Journal International, 1999, 138(2): 520-532.
101 Bronger A . Correlation of loess-paleosol sequences in East and Central Asia with SE Central Europe: Towards a continental quaternary pedostratigraphy and paleoclimatic history[J]. Quaternary International, 2003, 106/107: 11-31.
102 Kukla G J . Pleistocene land-sea correlations I. Europe[J]. Earth-Science Reviews, 1977, 13(4): 307-374.
103 Markovi? S B , Stevens T , Mason J , et al . Loess correlations—Between myth and reality[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 4-23.
104 Markovi? S B , Yang S L , Mason J . Eurasian loess records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 1-3.
105 Zeeden C , Hambach U , Obreht I , et al . Patterns and timing of loess-paleosol transitions in Eurasia: Constraints for paleoclimate studies[J]. Global and Planetary Change, 2018, 162: 1-7.
106 Liu X M , Liu Z , Lü B , et al . The magnetic properties of Serbian loess and its environmental significance[J]. Chinese Science Bulletin, 2013, 58(3): 353-363.
107 Ding Z L , Ranov V , Yang S L , et al . The loess record in southern Tajikistan and correlation with Chinese loess[J]. Earth and Planetary Science Letters, 2002, 200(3/4): 387-400.
108 Wang Xin , Zhang Jinhui , Jia Jia , et al . Pleistocene loess-paleosol sequences in arid Central Asia: State of art[J]. Advances in Earth Science, 2019, 34(1): 34-47.
王鑫,张金辉,贾佳,等 . 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
109 Zeeden C , Hambach U , Veres D , et al . Millennial scale climate oscillations recorded in the lower Danube loess over the last glacial period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 164-181.
110 á Novothny , Frechen M , Horváth E , et al . Investigating the penultimate and last glacial cycles of the Sütt? loess section (Hunagry) using luminescence dating, high-resolution grain size, and magnetic susceptibility data[J]. Quaternary International, 2011, 234(1/2): 75-85.
111 Zeeden C , Kels H , Hambach U , et al . Three climatic cycles recorded in a loess-palaeosol sequence at Semlac(Romania)—Implications for dust accumulation in south-eastern Europe[J]. Quaternary Science Reviews, 2016, 154: 130-142.
112 Luki? T , Basarin B , Buggle B , et al . A joined rock magnetic and colorimetric perspective on the Late Pleistocene climate of Orlovat loess site (northern Serbia)[J]. Quaternary International, 2014, 334/335: 179-188.
113 Buggle B , Hambach U , Kehl M , et al . The progressive evolution of a continental climate in Southeast-Central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences[J]. Geology, 2013, 41(7): 771-774.
114 Kovács J , á Fábián S , Varga G , et al . Plio-Pleistocene red clay deposits in the Pannonian basin: A review[J]. Quaternary International, 2011, 240(1/2): 35-43.
115 Markovi? S B , Oches E A , McCoy W D , et al . Malacological and sedimentological evidence for “warm” glacial climate from the Irig loess sequence, Vojvodina, Serbia[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9). DOI: 10.1029/2006GC001565 .
doi: 10.1029/2006GC001565    
116 Markovi? S B , Sümegi P , Stevens T , et al . The Crvenka loess-paleosol sequence: A record of continuous grassland domination in the southern Carpathian Basin during the Late Pleistocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 33-46.
117 Kovács J , Moravcová M , újvári G , et al . Reconstructing the paleoenvironment of East Central Europe in the Late Pleistocene using the oxygen and carbon isotopic signal of tooth in large mammal remains[J]. Quaternary International, 2012, 276/277: 145-154.
118 Zech R , Zech M , Markovi? S , et al . Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess-paleosol sequence Crvenka, northern Serbia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 387: 165-175.
119 Schreuder L T , Beets C J , Prins M A , et al . Late Pleistocene climate evolution in southeastern Europe recorded by soil bacterial membrane lipids in Serbian loess[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 141-148.
120 újvári G , Kele S , Bernasconi S M , et al . Clumped isotope paleotemperatures from MIS 5 soil carbonates in southern Hunagry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518: 72-81.
121 Markovi? S B , Bokhorst M P , Vandenberghe J , et al . Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia[J]. Journal of Quaternary Science, 2008, 23(1): 73-84.
122 Wohlfarth B , Veres D , Ampel L , et al . Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40-16 ka[J]. Geology, 2008, 36(5): 407-410.
123 Dansgaard W , Johnsen S J , Clausen H B , et al . Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6 434): 218-220.
124 Bond G , Broecker W , Johnsen S , et al . Correlations between climate records from north Atlantic sediments and Greenland ice[J]. Nature, 1993, 365(6 442): 143-147.
125 Sun Y B , Clemens S C , Morrill C , et al . Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49.
126 Antoine P , Rousseau D D , Zoller L , et al . High-resolution record of the last interglacial-glacial cycle in the Nussloch loess-palaeosol sequences, Upper Rhine area, Germany[J]. Quaternary International, 2001, 76/7: 211-229.
127 Rousseau D D , Antoine P , Hatte C , et al . Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation[J]. Quaternary Science Reviews, 2002, 21(14/15): 1 577-1 582.
128 Antoine P , Lagroix F , Jordanova D , et al . A remarkable Late Saalian (MIS 6) loess (dust) accumulation in the lower Danube at Harletz (Bulgaria)[J]. Quaternary Science Reviews, 2019, 207: 80-100.
129 Zong Xiulan , Song Yougui , Li Yue . Earthworm calcite granule—A new proxy for paleoenvironmental reconstruction[J]. Advances in Earth Science, 2018, 33(9): 983-993.
宗秀兰,宋友桂,李越 . 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
130 Velichko A , Morozova T D , Borisova O K , et al . Development of the steppe zone in southern Russia based on the reconstruction from the loess-soil formation in the Don-Azov region[J]. Doklady Earth Sciences, 2012, 445(2): 999-1 002.
131 Velichko A A , Catto N , Tesakov A S , et al . Structural specificity of Pleistocene loess and soil formation of the southern Russian plain according to materials of eastern Priazovie[J]. Doklady Earth Sciences, 2009, 429(1): 1 364-1 368.
132 Panin P G , Timireva S N , Morozova T D , et al . Morphology and micromorphology of the loess-paleosol sequences in the south of the east European plain (MIS1-MIS17)[J]. Catena, 2018, 168: 79-101.
133 Obreht I , Zeeden C , Hambach U , et al . A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian basin[J]. Earth-Science Reviews, 2019, 190: 498-520.
134 Panin P G , Timireva S N , Konstantinov E A , et al . Plio-Pleistocene paleosols: Loess-paleosol sequence studied in the Beregovoye section, the Crimean Peninsula[J]. Catena, 2019, 172: 590-618.
[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[3] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[4] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[5] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[6] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[7] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[8] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[9] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[10] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[11] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[12] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[13] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[14] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[15] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
阅读次数
全文


摘要