地球科学进展 ›› 2016, Vol. 31 ›› Issue (8): 870 -884. doi: 10.11867/j.issn.1001-8166.2016.08.0870.

上一篇    

基于摇蚊的古环境和古气候国内外研究进展与展望
胡玉( ), 陈建徽 *( ), 王海鹏, 吕飞亚, 魏国英   
  1. 兰州大学资源环境学院西部环境教育部重点实验室,甘肃 兰州 730000
  • 收稿日期:2016-03-17 修回日期:2016-06-20 出版日期:2016-08-20
  • 通讯作者: 陈建徽 E-mail:huy13@lzu.edu.cn;jhchen@lzu.edu.cn
  • 基金资助:
    科技部全球变化国家重大科学计划项目课题“西北干旱区湖泊水文—生态系统演变过程与机制”(编号:2012CB956102);国家自然科学基金面上项目“中纬度西风区和季风区基于摇蚊的过去两千年高山湖泊记录及其对比研究”(编号:41471162)资助

Recent Progress and Perspectives in Paleoenvironmental and Paleoclimatic Research Based on Chironomidae (Diptera)

Yu Hu( ), Jianhui Chen *( ), Haipeng Wang, Feiya Lü, Guoying Wei   

  1. Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000,China
  • Received:2016-03-17 Revised:2016-06-20 Online:2016-08-20 Published:2016-08-20
  • Contact: Jianhui Chen E-mail:huy13@lzu.edu.cn;jhchen@lzu.edu.cn
  • Supported by:
    Project supported by the National Basic Research Program of China “Processes and mechanisms of hydrological-ecosystemic evolution in lakes over arid northwestern China”(No.2012CB956102) and the National Natural Science Foundation of China “Chironomid-based proxy records and their comparison from alpine lakes in mid-latitude China during the past 2000 years”(No.41471162)

双翅目摇蚊科(Diptera:Chironomidae)昆虫生命周期相对较短,能够敏感响应环境因子变化,成为国际古湖沼学领域近20年来快速发展的代用指标,其主要近期进展可归结为以下4个方面:①样本训练集和转换函数的大量建立,以及区域数据库的对比和整合;②对湖泊水文、理化等内部因素在影响摇蚊群落方面所起的作用日益重视;③对现代间冰期以来、更为精细的时间尺度的关注;④实验技术和数值处理方法的改进,以及新指标的不断开发。国内的相关研究起步较晚,但迄今为止已经在长江中下游、青藏高原、云贵高原区、蒙新等地区开展了相应工作,并建立了摇蚊—环境数据库,同时关注湖泊内部因素对摇蚊种群的作用;古环境重建工作主要集中在西北干旱区和云贵高原区,东部地区的研究则主要反映了近期人类活动对湖泊状态的影响。就目前而言,基于摇蚊的古环境和古气候研究迫切需要:①开展更多的个体生态学工作,以广域范围内的现生调查为基础,构建属/种—环境因子之间的关系;②利用新技术手段进一步提高实验效率,提升鉴定分辨率;③注重先进的数量生态学方法以及同位素标记等新兴手段在研究中的应用;④充分重视摇蚊指标在湖泊自然状态界定和生态修复方面的作用。

Chironomidae (Diptera) becomes a rapid developing proxy in the international paleolimnology in the recent 20 years due to its short life cycle, strong ability to move and sensitive response to environmental change. The main progress of paleolimnological research based on chironomid can be summarized as the following four aspects: ①The establishment of a large number of sample training sets and transfer functions, as well as the comparison and integration of regional databases; ②More attention on the role of internal lacustrine factors in controlling of the chironomid population; ③Attention on finer time scales since the modern interglacial period; ④Improvement of the experimental technology and numerical methods, and constant development of new indicators. The domestic related research started late, but databases in the middle and lower reaches of the Yangtze river, the Tibetan Plateau, the Yunnan Plateau and the region of inner Mongolia and Xinjiang has been established so far, and also some researches on the internal lacustrine factors on chironomid population has been carried out; paleoenvironmental reconstruction is mainly concentrated in the northwest arid areas and the Yunnan Plateau, and the research in eastern region is primarily focused on reflecting the effects of recent state of human activities on the lakes. Paleoenvironment and paleoclimate researches based on chironomid urgently need to ①Carry out more individual ecology work to accurately understand the relationship between the species and environmental factors, combined with the investigation of a broader area; ②Further improve the efficiency of experiments by new technology to enhance the resolution of identification; ③Pay attention to the application of the advanced quantitative ecology methods and the novel tools such as isotopic analysis; ④Attach great importance to the role of chironomid in the definition of lake natural state and the ecological restoration.

中图分类号: 

表1 图1 中46个样本训练集的基本参数
Table 1 Basic parameter of the 46 chironomid training sets in figure 1
代码 中心位
置经度
中心位
置纬度
包含湖
泊数量
目标环
境因子
最终所用模型 决定系数
(r2)
预测误差
(RMSEP)
参考文献
1 -162.1 63.4 1 水深 PLS(2) 0.9 1.76 [22]
2 -126.9 54.9 136 温度和水深 WA-PLS(2) 0.818,0.382 1.46,0.58 [23]
3 -124.5 50.9 51 温度 WA-PLS(2) 0.7 1.98 [24]
4 -121.0 51.3 86 盐度 WA 0.72 0.52 [12]
5 -119.1 37.6 56 温度 WA-classical 0.73 1.2 [25]
6 -110.3 40.7 90 温度 WA-PLS(3) 0.66 1.4 [26]
7 -110.0 67.5 82 温度 WA-PLS(2) 0.77 1.03 [27]
8 -95.0 50.0 35 水深 PLS 0.78 0.533 [28]
9 -93.8 57.6 63 盐度 WA-PLS(2) 0.68 0.482 [29]
10 -81.3 66.1 65 温度 WA-PLS(2) 0.79 1.41 [30]
11 -78.5 44.5 54 底层滞水含氧量 WA-inverse 0.544 2.147 [19]
12 -77.5 54.7 52 温度 PLS 0.67 1.17 [31]
13 -77.4 44.6 40 底层滞水含氧量 PLS 0.58 0.032 [18]
14 -70.7 60.4 39 温度 WA-PLS(2) 0.88 2.26 [32]
15 -70.6 41.9 1 水深 PLS(3) 0.9 0.5 [33]
16 -69.5 -49.5 63 温度 WA-PLS 0.64 0.83 [34]
17 -61.0 54.0 24 温度 WA 0.79 1.32 [4]
18 -51.7 66.8 41 营养状况 WA-inverse 0.56 0.07 [16]
19 -22.3 65.3 53 温度 WA-PLS(2) 0.66 1.095 [11]
20 -3.0 52.5 44 营养状况 WA 0.6 0.34 [35]
21 -2.4 67.1 207 温度 WA-PLS 0.87 1.13 [36]
22 5.0 62.0 44 温度 WA-PLS 0.69 1.13 [37]
23 8.1 46.7 81 温度 WA-PLS(2) 0.81 1.51 [38]
24 8.1 52.7 50 温度和营养状况 WA-PLS(2) 0.849 1.37 [39,40]
25 10.5 56.4 54 营养状况 WA 0.67 0.65 [41]
26 14.0 47.0 1 水深 WA-classical 0.91 0.62 [42]
27 17.5 69.0 111 温度 WA-PLS(3) 0.94 0.9 [43]
28 18.8 68.1 100 温度 WA-PLS 0.65 1.13 [44]
29 23.0 62.0 255 温度 WA-PLS 0.87 1.4 [45]
30 23.0 68.1 62 温度和水深 Bummer model和WA-PLS(2) 0.74,0.61 0.8,0.95 [46]
31 23.3 -1.6 32 盐度 WA 0.81 0.39 [47]
32 25.7 65.1 139 温度 WA-PLS(2) 0.88 0.084 [48]
33 26.1 65.1 77 温度和水深 WA-PLS 0.78,0.68 0.721,0.78 [15]
34 30.1 64.3 1 水深 WA-PLS(2) 0.76 0.94 [49]
35 31.6 39.5 27 温度 WA-PLS 0.6 3.03 [50]
36 34.0 4.5 67 盐度 WA-PLS(2) 0.86 0.27 [13]
37 35.5 -1.5 64 温度 WMAT(3) 0.81 1.1 [51]
38 67.0 65.0 149 大陆度 WA-PLS(2) 0.73 9.88 [52]
39 91.0 66.5 81 温度 WA-PLS(2) 0.92 0.89 [52]
40 92.7 33.5 38 盐度 WA-PLS(2) 0.8 0.29 [53]
41 116.5 31.0 51 营养状况 WA-inverse 0.68 0.16 [54]
42 134.2 66.1 148 温度和水深 WA-PLS(2),WA-PLS 0.87,0.62 1.93,0.35 [55]
43 146.5 -42.3 47 温度 WA-PLS(2) 0.72 0.94 [56]
44 146.7 -34.1 33 温度 PLS 0.69 2.33 [57]
45 170.6 -43.2 60 温度 WA-PLS 0.8 1.27 [58]
46 171.8 -41.6 37 温度和营养状况 WA-PLS(2),PLS 0.77,0.49 1.31,0.46 [59]
图1 世界范围内基于摇蚊的样本训练集分布、包涵湖泊数量和目标环境因子示意图(各样点具体情况见 表1 )
Fig.1 Location of the published datasets documenting the distribution of chironomid training sets, the number of lake and the aiming environmental factor(detailed information of each dataset is in Table 1 )
图2 晚冰期和早全新世摇蚊重建夏季温度与气候模式(ECHAM-4)输出结果对比(据参考文献[67]修改)
(a)晚冰期早期/博令—阿勒罗德间冰段过渡时期;(b)新仙女木期/早全新世过渡时期;(c)所有涉及的冷期和暖期
Fig.2 Comparison of Chironomid-inferred July temperatures with the ECHAM-4 climate model runs(modified after reference[67])
(a) Early late-glacial/Bølling-Allerød Interstadial transition; (b) Younger Dryas/early Holocene transition; (c) All the investigated cold and warm periods
图3 近千年来摇蚊重建瑞士温度记录及其与邻近区域树轮和生物硅综合重建温度记录的对比(据参考文献[117]修改)
(a)瑞士东部(黑线)和西部(灰线)湖泊基于摇蚊的过去千年7月温度重建;(b)瑞士东部树轮和生物硅综合夏季温度重建
Fig.3 Comparison between the chironomid-inferred temperature records and the tree-ring and biogenic silica-based temperature record during the last millennium in Switzerland (modified after reference[117])
(a)Chironomid-inferred mean July temperature anomalies from western (gray line) and eastern Switzerland (black line); (b) A composite of June-July-August temperature reconstruction based on six tree-ring records and a biogenic silica record from eastern Switzerland
[1] Moberg A, Sonechkin D M, Holmgren K, et al.Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data[J]. Nature, 2005, 433: 613-617.
[2] Bradley R S.Paleoclimatology: Reconstructing Climates of the Quaternary (Third Edition)[M]. San Diego: Academic Press, 2014.
[3] Battarbee R W.Palaeolimnological approaches to climate change, with special regard to the biological record[J]. Quaternary Science Reviews, 2000, 19(1/5): 107-124.
[4] Walker I R, Smol J P, Engstrom D R, et al.An assessment of Chironomidae as quantitative indicators of past climatic change[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48(6): 975-987.
[5] Walker I R.Chironomidae (Diptera) in paleoecology[J]. Quaternary Science Reviews, 1987, 6(87): 29-40.
[6] Ferrington L C.Global diversity of non-biting midges (Chironomidae: Insecta-Diptera) in freshwater[J]. Hydrobiologia, 2008, 595(1): 447-455.
[7] Walker I R.Midges: Chironomidae and related Diptera[M]∥Smol J P, Birks H J B, Last W M, eds. Tracking Environmental Change Using Lake Sediments.Volume 4: Zoological Indicators. Dordrecht: Kluwer Academic Publishers, 2001:43-66.
[8] Heinrichs M L, Walker I R, Mathewes R W, et al.Holocene chironomid-inferred salinity and Paleovegetation reconstruction from Kilpoola Lake, British Columbia[J]. Geographie Physique et Quaternaire, 1999, 53(2): 211-221.
[9] Velle G, Telford R J, Heiri O, et al.Testing intra-site transfer functions: An example using chironomids and water depth[J]. Journal of Paleolimnology, 2012, 48(3): 545-558.
[10] Brooks S J, Bennion H, Birks H J B. Tracing lake trophic history with a chironomid-total phosphorus inference model[J].Freshwater Biology ,2001,46(4): 513-533.
[11] Langdon P G, Holmes N, Caseldine C J.Environmental controls on modern chironomid faunas from NW Iceland and implications for reconstructing climate change[J]. Journal of Paleolimnology, 2008, 40(1): 273-293.
[12] Walker I R, Wilson S E, Smol J P.Chironomidae (Diptera): Quantitative palaeosalinity indicators for lakes of western Canada[J].Canadian Journal of Fisheries & Aquatic Sciences, 1995, 52(5): 950-960.
[13] Eggermont H, Heiri O, Verschuren D. Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes[J].Quaternary Science Reviews, 2006, 25(15/16): 1 966-1 994.
[14] Korhola A, Olander H, Blom T.Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes[J].Journal of Paleolimnology, 2000, 24(1): 43-54.
[15] Luoto T P.A Finnish chironomid-and chaoborid-based inference model for reconstructing past lake levels[J].Quaternary Science Reviews, 2009, 28(15/16): 1 481-1 489.
[16] Brodersen K P, Anderson N J.Distribution of chironomids (Diptera) in low arctic West Greenland lakes: Trophic conditions, temperature and environmental reconstruction[J].Freshwater Biology, 2002, 47(6): 1 137-1 157.
[17] Zhang E, Bedford A, Jones R, et al.A subfossil chironomid-total phosphorus inference model for lakes in the middle and lower reaches of the Yangtze River[J].Chinese Science Bulletin, 2006, 51(17): 2 125-2 132.
[18] Little J L, Smol J P.A chironomid-based model for inferring late-summer hypolimnetic oxygen in southeastern Ontario lakes[J].Journal of Paleolimnology, 2001, 26(3): 259-270.
[19] Quinlan R, Smol J P.Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes[J].Freshwater Biology, 2001, 46(11): 1 529-1 551.
[20] Chen Jianhui, Chen Fahu, Zhao Yan, et al.A powerful indicator for quantitative reconstruction of paleotemperature—Advances in the study of subfossil chironomid in lake sediment[J].Advances in Earth Science,2004, 19(5): 782-788.
[陈建徽, 陈发虎, 赵艳,等. 古温度定量重建的良好代用指标——湖泊沉积摇蚊化石记录研究进展[J]. 地球科学进展, 2004, 19(5): 782-788.]
[21] Birks H J B, Heikki S. Late-Quaternary palaeoclimatic research in Fennoscandia—A historical review[J].Boreas, 2010, 39(4): 655-673.
[22] Kurek J, Cwynar L C.The potential of site-specific and local chironomid-based inference models for reconstructing past lake levels[J].Journal of Paleolimnology, 2009, 42(1): 37-50.
[23] Barley E M, Walker I R, Kurek J, et al.A northwest North American training set: Distribution of freshwater midges in relation to air temperature and lake depth[J]. Journal of Paleolimnology,2006, 36(3): 295-314.
[24] Palmer S, Walker I, Heinrichs M, et al.Postglacial midge community change and Holocene palaeotemperature reconstructions near treeline, southern British Columbia (Canada)[J]. Journal of Paleolimnology, 2002, 28(4): 469-490.
[25] Porinchu D F, Macdonald G M, Bloom A M, et al.The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: Potential for paleoclimatic reconstructions[J].Journal of Paleolimnology, 2002, 28(3): 355-375.
[26] Porinchu D F, Moser K A, Munroe J S.Development of a midge-based summer surface water temperature inference model for the Great Basin of the Western United States[J].Arctic, Antarctic and Alpine Research, 2007, 39(4): 566-577.
[27] Porinchu D, Rolland N, Moser K.Development of a chironomid-based air temperature inference model for the central Canadian Arctic[J].Journal of Paleolimnology, 2009, 41(2): 349-368.
[28] Quinlan R, Paterson M J, Smol J P.Climate-mediated changes in small lakes inferred from midge assemblages: The influence of thermal regime and lake depth[J].Journal of Paleolimnology, 2012, 48(2): 297-310.
[29] Dickson T R, Bos D G, Pellatt M G, et al.A midge-salinity transfer function for inferring sea level change and landscape evolution in the Hudson Bay Lowlands, Manitoba, Canada[J].Journal of Paleolimnology, 2014, 51(3): 325-341.
[30] Medeiros A S, Friel C E, Finkelstein S A, et al.A high resolution multi-proxy record of pronounced recent environmental change at Baker Lake, Nunavut[J].Journal of Paleolimnology, 2012, 47(4): 661-676.
[31] Larocque I, Pienitz R, Rolland N.Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada[J].Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63(6): 1 286-1 297.
[32] Walker I R, Levesque A J, Cwynar L C, et al.An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada[J].Journal of Paleolimnology, 1997, 18(2): 165-178.
[33] Engels S, Cwynar L C, Rees A B H, et al. Chironomid-based water depth reconstructions: An independent evaluation of site-specific and local inference models[J]. Journal of Paleolimnology, 2012, 48(4): 693-709.
[34] Massaferro J, Larocque-Tobler I.Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina[J].Ecological Indicators, 2013, 24(1): 201-210.
[35] Brooks S J, Bennion H, Birks H J B. Tracing lake trophic history with a chironomid-total phosphorus inference model[J]. Freshwater Biology, 2001, 46(4): 513-533.
[36] Holmes N, Langdon P G, Caseldine C, et al.Merging chironomid training sets: Implications for palaeoclimate reconstructions[J].Quaternary Science Reviews,2011,30(19/20):2 793-2 804.
[37] Brooks S J, Birks H J B. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway[J]. Journal of Paleolimnology, 2000, 23(1): 77-89.
[38] Heiri O, Lotter A F, Hausmann S, et al.A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps[J].The Holocene, 2003, 13(4): 477-484.
[39] Lotter A F, Birks H J B, Hofmann W, et al. Modern diatom, Cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate[J]. Journal of Paleolimnology, 1997, 18(4): 395-420.
[40] Lotter A F, Birks H J B, Hofmann W, et al. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients[J].Journal of Paleolimnology, 1998, 19(4): 443-463.
[41] Brodersen K P, Lindegaard C.Classification, assessment and trophic reconstruction of Danish lakes using chironomids[J]. Freshwater Biology, 1999, 42(1): 143-157.
[42] Luoto T P.Spatial uniformity in depth optima of midges: Evidence from sedimentary archives of shallow Alpine and boreal lakes[J]. Journal of Limnology, 2012, 71(1): 228-232.
[43] Brooks S J, Birks H J B. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: Progress and problems[J].Quaternary Science Reviews, 2001, 20(16/17): 1 723-1 741.
[44] Larocque I, Hall R I, Grahn E.Chironomids as indicators of climate change: A 100-lake training set from a subarctic region of northern Sweden (Lapland)[J]. Journal of Paleolimnology, 2001, 26(3): 307-322.
[45] Heiri O, Brooks S J, Birks H J B, et al. A 274-lake calibraton data-set and inference model for chironomid-based summer air temperature reconstruction in Europe[J]. Quaternary Science Reviews, 2011, 30(23): 3 445-3 456.
[46] Korhola A, Vasko K, Toivonen H T T, et al. Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling[J].Quaternary Science Reviews, 2002, 21(16/17): 1 841-1 860.
[47] Verschuren D, Cumming B F, Laird K R.Quantitative reconstruction of past salinity variations in African lakes: Assessment of chironomid-based inference models (Insecta: Diptera) in space and time[J]. Canadian Journal of Fisheries & Aquatic Sciences, 2004, 61(6): 986-998.
[48] Luoto T P, Kaukolehto M, Weckström J, et al.New evidence of warm early-Holocene summers in subarctic Finland based on an enhanced regional chironomid-based temperature calibration model[J]. Quaternary Research, 2014, 81(1): 50-62.
[49] Luoto T P.Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set[J]. Ecological Monographs, 2010, 80(2): 303-329.
[50] Akyildiz G K, Duran M.Preliminary results on development of a chironomid-based mean July air temperature inference model for the Turkish Lakes[J]. Acta Zoologica Bulgarica, 2012, 4: 53-57.
[51] Eggermont H, Heiri O, Russell J, et al.Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera)[J].Journal of Paleolimnology, 2010, 43(3): 413-435.
[52] Self A E, Brooks S J, Birks H J B, et al. The distribution of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: Development and application of new chironomid-based climate-inference models in northern Russia[J].Quaternary Science Reviews, 2011, 30(9/10): 1 122-1 141.
[53] Zhang E, Jones R, Bedford A, et al.A chironomid-based salinity inference model from lakes on the Tibetan Plateau[J].Journal of Paleolimnology, 2007, 38(4): 477-491.
[54] Zhang E, Cao Y, Langdon P, et al.Alternate trajectories in historic trophic change from two lakes in the same catchment, Huayang Basin, middle reach of Yangtze River, China[J]. Journal of Paleolimnology, 2012, 48(2): 367-381.
[55] Nazarova L, Herzschuh U, Wetterich S, et al.Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia[J].Journal of Paleolimnology, 2011, 45(1): 57-71.
[56] Rees A B H, Cwynar L C, Cranston P S. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: A training set from Tasmania, Australia[J].Journal of Paleolimnology, 2008, 40(4): 1 159-1 178.
[57] Chang J C, Shulmeister J, Woodward C.A chironomid based transfer function forreconstructing summer temperatures in southeastern Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 423(5): 109-121.
[58] Dieffenbacher-Krall A C, Vandergoes M J, Denton G H. An inference model for mean summer air temperatures in the Southern Alps, New Zealand, using subfossil chironomids[J].Quaternary Science Reviews, 2007, 26(19/21): 2 487-2 504.
[59] Woodward C A, Shulmeister J.New Zealand chironomids as proxies for human-induced and natural environmental change: Transfer functions for temperature and lake production (Chlorophyll a)[J].Journal of Paleolimnology, 2006, 36(4): 407-429.
[60] Brooks S J, Langdon P G, Heiri O.The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology[M]. London: Quaternary Research Association. Technical Guide 10, 2007, 276.
[61] Chen J, Zhang E, Brooks S J, et al.Relationships between chironomids and water depth in Bosten Lake, Xinjiang, northwest China[J].Journal of Paleolimnology, 2014, 51(2): 313-323.
[62] Brooks S J.Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region[J]. Quaternary Science Reviews, 2006, 25(15/16): 1 894-1 910.
[63] Walker I R, Cwynar L C.Midges and palaeotemperature reconstruction—The North American experience[J]. Quaternary Science Reviews, 2006, 25(15/16): 1 911-1 925.
[64] Velle G, Brooks S J, Birks H, et al.Chironomids as a tool for inferring Holocene climate: An assessment based on six sites in southern Scandinavia[J]. Quaternary Science Reviews, 2005, 24(24): 1 429-1 462.
[65] Henrichs M L, Walker I R, Mathewes R W.Chironomid-based paleosalinity records in southern British Columbia, Canada: A comparison of transfer functions[J].Journal of Paleolimnology, 2001, 26(26): 147-159.
[66] Lotter A F, Walker I R, Brooks S J, et al.An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America[J].Quaternary Science Reviews, 1999, 18(6): 717-735.
[67] Heiri O, Brooks S J, Renssen H, et al.Validation of climate model-inferred regional temperature change for late-glacial Europe[J].Nature Communications, 2014,doi:10.1038/ncomms5914.
[68] Engels S, Cwynar L C.Changes in fossil chironomid remains along a depth gradient: Evidence for common faunal thresholds within lakes[J].Hydrobiologia, 2011, 665(1): 15-38.
[69] Zhang E, Zheng B, Cao Y, et al.The effects of environmental changes on chironomid fauna during the last century in Bosten Lake, Xinjiang, NW China[J].Fundamental & Applied Limnology, 2012, 180(4): 299-307.
[70] Phillips G L, Eminson D, Moss B.A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters[J]. Aquatic Botany, 1978, 4: 103-126.
[71] Luoto T P, Raunio J.A comparison of chironomid-based training sets developed from pupal exuviae and larval head capsules to infer lake trophic history[J]. Fundamental & Applied Limnology, 2011, 179(2): 93-102.
[72] Aagaard K.The chironomid fauna of North Norwegian lakes, with a discussion on methods of community classification[J]. Ecography, 1986, 9(1): 1-12.
[73] Kajak Z. Chironomus plumosus-what regulates its abundance in a shallow reservoir?[J]. Hydrobiologia, 1997, 342/343(1): 133-142.
[74] Hamburger K, Dall P C, Lindegaard C.Energy metabolism of Chironomus anthracinus (Diptera: Chironomidae) from the profundal zone of Lake Esrom, Denmark, as a function of body size, temperature and oxygen concentration[J]. Hydrobiologia, 1994, 294(1): 43-50.
[75] Weber R E.Functions of invertebrate hemoglobins with special reference to adaptations to environmental hypoxia[J]. American Zoologist, 1980, 20(1): 79-101.
[76] Panis L I, Goddeeris B, Verheyen R.On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera)[J]. Hydrobiologia, 1996, 318(1): 61-67.
[77] Quinlan R, Smol J P.Use of subfossil Chaoborus mandibles in models for inferring past hypolimnetic oxygen[J]. Journal of Paleolimnology, 2010, 44(1): 43-50.
[78] Luoto T P, Nevalainen L.Inferring reference conditions of hypolimnetic oxygen for Deteriorated Lake Mallusjarvi in the cultural landscape of Mallusjoki, Southern Finland using fossil midge assemblages[J].Water, 2011, 217(1/4): 663-675.
[79] Frossard V, Millet L, Verneaux V, et al.Depth-specific responses of a chironomid assemblage to contrasting anthropogenic pressures: A palaeolimnological perspective from the last 150 years[J]. Freshwater Biology, 2014, 59(1): 26-40.
[80] Brodersen K P, Pedersen O, Lindegaard, et al. Chironomids (Diptera) and oxy-regulatory capacity: An experimental approach to paleolimnological interpretation[J]. Limnology & Oceanography, 2004, 49(5): 1 549-1 559.
[81] Cao Y, Zhang E, Chen X, et al.The Diversity and Distribution of Chironomidae from Shallow, Trophic Lake Chaohu, Southeast of China[J]. Journal of Animal & Veterinary Advances, 2012, 11(3): 304-313.
[82] Walker I R, Mott R J, Smol J P.Allerod-younger dryas lake temperatures from midge fossils in atlantic Canada[J]. Science, 1991, 253(5 023): 1 010-1 012.
[83] Levesque A J, Cwynar L C, Walker I R.Exceptionally steep north south gradients in lake temperatures during the last deglaciation[J]. Nature, 1997, 385(6 615): 423-426.
[84] Dimitriadis S, Cranston P S.An Australian Holocene climate reconstruction using Chironomidae from a tropical volcanic maar lake[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1/4): 109-131.
[85] Larocque-Tobler I, Heiri O, Wehrli M.Late Glacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids[J]. Journal of Paleolimnology, 2010, 43(4): 649-666.
[86] Samartin S, Heiri O, Vescovi E, et al.Lateglacial and early Holocene summer temperatures in the southern Swiss Alps reconstructed using fossil chironomids[J]. Journal of Quaternary Science, 2012, 27(3): 279-289.
[87] Langdon P G, Barber K E.Reconstructing climate and environmental change in northern England through chironomid and pollen analyses: Evidence from Talkin Tarn, Cumbria[J].Journal of Paleolimnology, 2004, 32(2): 197-213.
[88] Brooks S J, Matthews I P, Birks H H, et al.High resolution Lateglacial and early-Holocene summer air temperature records from Scotland inferred from chironomid assemblages[J]. Quaternary Science Reviews, 2012, 41(2): 67-82.
[89] Berntsson A, Rosqvist G C, Velle G.Late-Holocene temperature and precipitation changes in Vindelfjällen, midwestern Swedish Lapland, inferred from chironomid and geochemical data[J].The Holocene,2014, 24(1): 78-92.
[90] Axford Y, Briner J P, Miller G H, et al.Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada[J]. Quaternary Research, 2009, 71(2): 142-149.
[91] Gathorne-Hardy F J, Erlendsson E, Langdon P G, et al. Lake sediment evidence for late Holocene climate change and landscape erosion in western Iceland[J]. Journal of Paleolimnology, 2009, 42(3): 413-426.
[92] Ilyashuk E A, Koinig K A, Heiri O, et al.Holocene temperature variations at a high-altitude site in the Eastern Alps: A chironomid record from Schwarzsee ob Sölden, Austria[J]. Quaternary Science Reviews, 2011, 30(1/2): 176-191.
[93] Millet L, Arnaud F, Heiri O, et al.Late-Holocene summer temperature reconstruction from chironomid assemblages of Lake Anterne, northern French Alps[J]. The Holocene, 2009, 19(2): 317-328.
[94] Plóciennik M, Self A, abieniec bog and its palaeo-lake (central Poland) through the Late Weichselian and Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1/4): 150-167.
[95] Hausmann S, Larocque-Tobler I, Richard P J H, et al. Diatom-inferred wind activity at Lac du Sommet, southern Qubec, Canada: A multiproxy paleoclimate reconstruction based on diatoms, chironomids and pollen for the past 9500 years[J]. The Holocene, 2011, 21(6): 925-938.
[96] Velle G, Bjune A E, Larsen J, et al.Holocene climate and environmental history of Brurskardstjørni, a lake in the catchment of Øvre Heimdalsvatn, south-central Norway[J]. Hydrobiologia, 2010, 642(1): 13-34.
[97] Brooks S J, Axford Y, Heiri O, et al.Chironomids can be reliable proxies for Holocene temperatures: A comment on Velle et al.[J].The Holocene, 2012, 22(12): 1 495-1 500.
[99] Heiri O, Cremer H, Engels S, et al.Lateglacial summer temperatures in the Northwest European lowlands: A chironomid record from Hijkermeer, the Netherlands[J]. Quaternary Science Reviews, 2007, 26(19/21): 2 420-2 437.
[100] Clegg B F, Clarke G H, Chipman M L, et al.Six millennia of summer temperature variation based on midge analysis of lake sediments from Alaska[J]. Quaternary Science Reviews, 2010, 29(23): 3 308-3 316.
[101] Fortin M C, Gajewski K.Holocene climate change and its effect on lake ecosystem production on Northern Victoria Island, Canadian Arctic[J]. Journal of Paleolimnology, 2010, 43(2): 219-234.
[102] Sobrino C M, Heiri O, Hazekamp M, et al.New data on the Lateglacial period of SW Europe: A high resolution multiproxy record from Laguna de la Roya (NW Iberia)[J]. Quaternary Science Reviews, 2013, 80(457): 58-77.
[103] Brooks S J.Chironomid analysis to interpret and quantify Holocene climate change[M]∥Mackay A W, Battarbee R W, Birks H J B,et al,eds. Global Change in the Holocene. Arnold, Lond, 2003: 328-341.
[104] Caseldine C, Langdon P, Holmes N.Early Holocene climate variability and the timing and extent of the Holocene thermal maximum (HTM) in northern Iceland[J]. Quaternary Science Reviews, 2006, 25(17/18): 2 314-2 331.
[105] Lang B, Bedford A, Brooks S J, et al.Early-Holocene temperature variability inferred from chironomid assemblages at Hawes water, northwest England[J].The Holocene, 2010, 20(6): 943-954.
[106] Luoto T P.How cold was the Little Ice Age? A proxy-based reconstruction from Finland applying modern analogues of fossil midge assemblages[J].Environmental Earth Sciences, 2013, 68(68): 1 321-1 329.
[107] Larocque I, Hall R I.Chironomids as quantitative indicators of mean July air temperature: Validation by comparison with century-long meteorological records from northern Sweden[J]. Journal of Paleolimnology, 2003, 29(29): 475-493.
[108] Larocque I, Grosjean M, Heiri O, et al.Comparison between chironomid-inferred July temperatures and meteorological data AD 1850-2001 from varved Lake Silvaplana, Switzerland[J]. Journal of Paleolimnology, 2009, 41(2): 329-342.
[109] Trachsel M, Grosjean M, Larocque I.Quantitative summer temperature reconstruction derived from a combined biogenic Si and chironomid record from varved sediments of Lake Silvaplana (south-eastern Swiss Alps) back to AD 1177[J]. Quaternary Science Reviews, 2010, 29(19/20): 2 719-2 730.
[110] Langdon P G, Caseldine C J, Croudace I W, et al.A chironomid-based reconstruction of summer temperatures in NW Iceland since AD 1650[J].Quaternary Research, 2011, 75(3): 451-460.
[111] Porinchu D F, Reinemann S, Mark B G, et al.Application of a midge-based inference model for air temperature reveals evidence of late-20th century warming in sub-alpine lakes in the central Great Basin, United States[J].Quaternary International, 2010, 215: 15-26,doi:10.1016/j.quaint.2009.07.021.
[112] Bunbury J, Gajewski K.Temperatures of the past 2000 years inferred from lake sediments, southwest Yukon Territory, Canada[J].Quaternary Research, 2012, 77(3): 355-367.
[113] Holmes N, Langdon P G, Caseldine C J, et al.Climatic variability during the last millennium in Western Iceland from lake sediment records[J].The Holocene, 2016, doi: 10.1177/0959683615618260.
[114] Velle G, Kongshavn K, Birks H J B. Minimizing the edge-effect in environmental reconstructions by trimming the calibration set: Chironomid-inferred temperatures from Spitsbergen[J]. The Holocene, 2011, doi: 10.1177/0959683610385723.
[115] Larocque-Tobler I, Quinlan R, Stewart M M, et al.Chironomid-inferred temperature changes of the last century in anoxic Seebergsee, Switzerland: Assessment of two calibration methods[J]. Quaternary Science Reviews, 2011, 30(13): 1 770-1 779.
[116] Nevalainen L, Luoto T P.Faunal (Chironomidae, Cladocera) responses to post-Little Ice Age climate warming in the high Austrian Alps[J]. Journal of Paleolimnology, 2012, 48: 711-724.
[117] Larocque-Tobler I, Stewart M M, Quinlan R, et al.A last millennium temperature reconstruction using chironomids preserved in sediments of anoxic Seebergsee (Switzerland): Consensus at local, regional and Central European scales[J]. Quaternary Science Reviews, 2012, 41(2): 49-56.
[118] Zhang E, Liu E, Jones R, et al.A 150-year record of recent changes in human activity and eutrophication of Lake Wushan from the middle reach of the Yangze River, China[J]. Journal of Limnology, 2010, 69: 235-241,doi:10.4081/jlimnol.2010.235.
[119] Luoto T P, Ojala A E K. Paleolimnological assessment of ecological integrity and eutrophication history for Lake Tiiläänjärvi (Askola, Finland)[J].Journal of Paleolimnology, 2014, 51(51): 455-468.
[120] Stewart E M, Michelutti N, Blais J M, et al.Contrasting the effects of climatic, nutrient, and oxygen dynamics on subfossil chironomid assemblages: A paleolimnological experiment from eutrophic High Arctic pond[J]. Journal of Paleolimnology, 2014, 49(2): 205-219.
[121] Chen J H, Chen F H, Zhang E L, et al.A 1000-year chironomid-based salinity reconstruction from varved sediments of Sugan Lake, Qaidam Basin, arid Northwest China, and its palaeoclimatic significance[J].Chinese Science Bulletin, 2009, 54: 3 749-3 759,doi:10.1007/S11434-009-0201-8.
[122] Ryves D B, Mills K, Bennike O, et al.Environmental change over the last millennium recorded in two contrasting crater lakes in western Uganda, eastern Africa (Lakes Kasenda and Wandakara)[J]. Quaternary Science Reviews, 2011, 30(5/6): 555-569.
[123] Frossard V, Millet L, Verneaux V, et al.Chironomid assemblages in cores from multiple water depths reflect oxygen-driven changes in a deep French lake over the last 150 years[J]. Journal of Paleolimnology, 2013, 50(3): 257-273.
[124] Kurek J, Lawlor L, Cumming B F, et al.Long-term oxygen conditions assessed using chironomid assemblages in brook trout lakes from Nova Scotia, Canada[J].Lake and Reservoir Management, 2012, 28(3): 177-188.
[125] Lang B, Bedford A P, Richardson N, et al.The use of ultra-sound in the preparation of carbonate and clay sediments for chironomid analysis[J]. Journal of Paleolimnology, 2003, 30(4): 451-460.
[126] Rolland N, Larocque I.The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples[J].Journal of Paleolimnology, 2007, 37(4): 565-572.
[127] Tremblay V, Larocque-Tobler I, Sirois P.Historical variability of subfossil chironomids (Diptera: Chironomidae) in three lakes impacted by natural and anthropogenic disturbances[J].Journal of Paleolimnology, 2010, 44(2): 483-495.
[128] Petera-Zganiacz J, Dzieduszyńska D A, Twardy J, et al.Younger Dryas flood events: A case study from the middle Warta River valley (Central Poland)[J].Quaternary International, 2015, 386(43): 55-69.
[129] Larocque-Tobler I,Oberli F.The use of cotton blue stain to improve the efficiency of picking and identifying chironomid head capsules[J].Journal of Paleolimnology,2011,45(1):121-125.
[130] Velle G, Larocque I.Assessing chironomid head capsule concentrations in sediment using exotic markers[J].Journal of Paleolimnology, 2008, 40(1): 165-177.
[131] Verschuren D, Eggermont H.Sieve mesh size and quantitative chironomid paleoclimatology[J]. Journal of Paleolimnology, 2007, 38(3): 329-345.
[132] Larocque I, Velle G, Rolland N.Effect of removing small (<150 μm) chironomids on inferring temperature in cold lakes[J]. Journal of Paleolimnology, 2010, 44(2): 709-719.
[133] Telford R J, Birks H J B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages[J]. Quaternary Science Reviews, 2011, 30(9): 1 272-1 278.
[134] Engels S, Self A E, Luoto T P, et al.A comparison of three Eurasian chironomid-climate calibration datasets on a W-E continentality gradient and the implications for quantitative temperature reconstructions[J]. Journal of paleolimnology, 2014, 51(4): 529-547.
[135] Upiter L M, Vermaire J C, Patterson R T, et al.Middle to late Holocene chironomid-inferred July temperatures for the central Northwest Territories, Canada[J]. Journal of Paleolimnology, 2014, 52(1/2): 11-26.
[136] Racca J M J, Racca R, Pienitz R, et al. PaleoNet: New software for building, evaluating and applying neural network based transfer functions in paleoecology[J]. Journal of Paleolimnology, 2007, 38(3): 467-472.
[137] Plóclennik M, Kruk A, Michczyńska D J, et al.Kohonen artificial neural networks and the IndVal Index as supplementary tools for the quantitative analysis of palaeoecological data[J].Geochronometria, 2015, 42(5): 189-201.
[138] Schimmelmann A.Carbon, nitrogen and oxygen stable isotope ratios in chitin[M]∥Gupta N S, ed. Chitin: Formatim and Diagenesis.Netherland: Springer, 2011:81-103.
[139] Wang Y, Francis D R, O’Brien D M, et al. A protocol for preparing subfossil chironomid head capsules (Diptera: Chironomidae) for stable isotope analysis in paleoclimate reconstruction and considerations of contamination sources[J].Journal of Paleolimnology,2008,40:771-781,doi:10.1007/S10933-008-919-3.
[140] Wooller M J, Francis D, Fogel M L, et al.Quantitative paleotemperature estimates from δ18O of chironomid head capsules preserved in arctic lake sediments[J]. Journal of Paleolimnology, 2004, 31(3): 267-274.
[141] Wooller M, Wang Y, Axford Y.A multiple stable isotope record of Late Quaternary limnological changes and chironomid paleoecology from northeastern Iceland[J]. Journal of Paleolimnology, 2008, 40(1): 63-77.
[142] Verbruggen F, Heiri O, Reichart G J, et al.Chironomid δ18O as a proxy for past lake water δ18O: A Lateglacial record from Rotsee (Switzerland)[J]. Quaternary Science Reviews, 2010, 29(17): 2 271-2 279.
[143] Leng M J, Henderson A C G. Recent advances in isotopes as palaeolimnological proxies[J]. Journal of Paleolimnology, 2013, 49(3): 481-496.
[144] Griffiths K, Michelutti N, Blais J M, et al.Comparing nitrogen isotopic signals between bulk sediments and invertebrate remains in High Arctic seabird-influenced ponds[J]. Journal of Paleolimnology, 2010, 44(2): 405-412.
[145] Van Hardenbroek M, Heiri O, Grey J, et al.Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes?[J]. Journal of Paleolimnology, 2010, 43(2): 235-245.
[146] Van Hardenbroek M, Lotter A F, Bastviken D, et al.Relationship between δ13C of chironomid remains and methane flux in Swedish lakes[J]. Freshwater Biology, 2012, 57(1): 166-177.
[147] Van Hardenbroek M, Heiri O, Parmentier F J W, et al. Evidence for past variations in methane availability in a Siberian thermokarst lake based on δ13C of chitinous invertebrate remains[J]. Quaternary Science Reviews, 2013, 66: 74-84,doi:10.1016/j.quascirev.2012.04.009.
[148] Frossard V, Verneaux V, Millet L, et al.Reconstructing long-term changes (150 years) in the carbon cycle of a clear-water lake based on the stable carbon isotope composition (δ13C) of chironomid and cladoceran subfossil remains[J]. Freshwater Biology, 2014, 59(4): 789-802.
[149] Heiri O, Schilder J, Hardenbroek M V.Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: State of development and future challenges[J]. Fauna Norvegica, 2012, 31: 7-18,doi:10.532/fn.v31i0.1436.
[150] Zhang E, Langdon P, Tang H, et al.Ecological influences affecting the distribution of larval chironomid communities in the lakes on Yunnan Plateau, SW China[J].Fundamental & Applied Limnology, 2011, 179(2): 103-113.
[151] Cao Y, Zhang E, Langdon P G, et al.Chironomid-inferred environmental change over the past 1400 years in the shallow, eutrophic Taibai Lake (south-east China): Separating impacts of climate and human activity[J].The Holocene, 2014, 24(5): 581-590.
[152] Zhang Enlou, Chen Jianhui, Cao Yanmin, et al.Subfossil chironomid archives and its application in palaeolimnological and global change study in China[J].Quaternary Sciences,2016, 36(3): 646-655.
[张恩楼, 陈建徽, 曹艳敏, 等. 摇蚊亚化石记录及其在中国湖泊沉积与全球变化研究中的应用. 第四纪研究, 2016, 36(3): 646-655.]
[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[7] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[8] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[9] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[10] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[11] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[12] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[13] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[14] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[15] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
阅读次数
全文


摘要