[1] |
Moberg A, Sonechkin D M, Holmgren K, et al.Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data[J]. Nature, 2005, 433: 613-617.
|
[2] |
Bradley R S.Paleoclimatology: Reconstructing Climates of the Quaternary (Third Edition)[M]. San Diego: Academic Press, 2014.
|
[3] |
Battarbee R W.Palaeolimnological approaches to climate change, with special regard to the biological record[J]. Quaternary Science Reviews, 2000, 19(1/5): 107-124.
|
[4] |
Walker I R, Smol J P, Engstrom D R, et al.An assessment of Chironomidae as quantitative indicators of past climatic change[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48(6): 975-987.
|
[5] |
Walker I R.Chironomidae (Diptera) in paleoecology[J]. Quaternary Science Reviews, 1987, 6(87): 29-40.
|
[6] |
Ferrington L C.Global diversity of non-biting midges (Chironomidae: Insecta-Diptera) in freshwater[J]. Hydrobiologia, 2008, 595(1): 447-455.
|
[7] |
Walker I R.Midges: Chironomidae and related Diptera[M]∥Smol J P, Birks H J B, Last W M, eds. Tracking Environmental Change Using Lake Sediments.Volume 4: Zoological Indicators. Dordrecht: Kluwer Academic Publishers, 2001:43-66.
|
[8] |
Heinrichs M L, Walker I R, Mathewes R W, et al.Holocene chironomid-inferred salinity and Paleovegetation reconstruction from Kilpoola Lake, British Columbia[J]. Geographie Physique et Quaternaire, 1999, 53(2): 211-221.
|
[9] |
Velle G, Telford R J, Heiri O, et al.Testing intra-site transfer functions: An example using chironomids and water depth[J]. Journal of Paleolimnology, 2012, 48(3): 545-558.
|
[10] |
Brooks S J, Bennion H, Birks H J B. Tracing lake trophic history with a chironomid-total phosphorus inference model[J].Freshwater Biology ,2001,46(4): 513-533.
|
[11] |
Langdon P G, Holmes N, Caseldine C J.Environmental controls on modern chironomid faunas from NW Iceland and implications for reconstructing climate change[J]. Journal of Paleolimnology, 2008, 40(1): 273-293.
|
[12] |
Walker I R, Wilson S E, Smol J P.Chironomidae (Diptera): Quantitative palaeosalinity indicators for lakes of western Canada[J].Canadian Journal of Fisheries & Aquatic Sciences, 1995, 52(5): 950-960.
|
[13] |
Eggermont H, Heiri O, Verschuren D. Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes[J].Quaternary Science Reviews, 2006, 25(15/16): 1 966-1 994.
|
[14] |
Korhola A, Olander H, Blom T.Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes[J].Journal of Paleolimnology, 2000, 24(1): 43-54.
|
[15] |
Luoto T P.A Finnish chironomid-and chaoborid-based inference model for reconstructing past lake levels[J].Quaternary Science Reviews, 2009, 28(15/16): 1 481-1 489.
|
[16] |
Brodersen K P, Anderson N J.Distribution of chironomids (Diptera) in low arctic West Greenland lakes: Trophic conditions, temperature and environmental reconstruction[J].Freshwater Biology, 2002, 47(6): 1 137-1 157.
|
[17] |
Zhang E, Bedford A, Jones R, et al.A subfossil chironomid-total phosphorus inference model for lakes in the middle and lower reaches of the Yangtze River[J].Chinese Science Bulletin, 2006, 51(17): 2 125-2 132.
|
[18] |
Little J L, Smol J P.A chironomid-based model for inferring late-summer hypolimnetic oxygen in southeastern Ontario lakes[J].Journal of Paleolimnology, 2001, 26(3): 259-270.
|
[19] |
Quinlan R, Smol J P.Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes[J].Freshwater Biology, 2001, 46(11): 1 529-1 551.
|
[20] |
Chen Jianhui, Chen Fahu, Zhao Yan, et al.A powerful indicator for quantitative reconstruction of paleotemperature—Advances in the study of subfossil chironomid in lake sediment[J].Advances in Earth Science,2004, 19(5): 782-788.
|
|
[陈建徽, 陈发虎, 赵艳,等. 古温度定量重建的良好代用指标——湖泊沉积摇蚊化石记录研究进展[J]. 地球科学进展, 2004, 19(5): 782-788.]
|
[21] |
Birks H J B, Heikki S. Late-Quaternary palaeoclimatic research in Fennoscandia—A historical review[J].Boreas, 2010, 39(4): 655-673.
|
[22] |
Kurek J, Cwynar L C.The potential of site-specific and local chironomid-based inference models for reconstructing past lake levels[J].Journal of Paleolimnology, 2009, 42(1): 37-50.
|
[23] |
Barley E M, Walker I R, Kurek J, et al.A northwest North American training set: Distribution of freshwater midges in relation to air temperature and lake depth[J]. Journal of Paleolimnology,2006, 36(3): 295-314.
|
[24] |
Palmer S, Walker I, Heinrichs M, et al.Postglacial midge community change and Holocene palaeotemperature reconstructions near treeline, southern British Columbia (Canada)[J]. Journal of Paleolimnology, 2002, 28(4): 469-490.
|
[25] |
Porinchu D F, Macdonald G M, Bloom A M, et al.The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: Potential for paleoclimatic reconstructions[J].Journal of Paleolimnology, 2002, 28(3): 355-375.
|
[26] |
Porinchu D F, Moser K A, Munroe J S.Development of a midge-based summer surface water temperature inference model for the Great Basin of the Western United States[J].Arctic, Antarctic and Alpine Research, 2007, 39(4): 566-577.
|
[27] |
Porinchu D, Rolland N, Moser K.Development of a chironomid-based air temperature inference model for the central Canadian Arctic[J].Journal of Paleolimnology, 2009, 41(2): 349-368.
|
[28] |
Quinlan R, Paterson M J, Smol J P.Climate-mediated changes in small lakes inferred from midge assemblages: The influence of thermal regime and lake depth[J].Journal of Paleolimnology, 2012, 48(2): 297-310.
|
[29] |
Dickson T R, Bos D G, Pellatt M G, et al.A midge-salinity transfer function for inferring sea level change and landscape evolution in the Hudson Bay Lowlands, Manitoba, Canada[J].Journal of Paleolimnology, 2014, 51(3): 325-341.
|
[30] |
Medeiros A S, Friel C E, Finkelstein S A, et al.A high resolution multi-proxy record of pronounced recent environmental change at Baker Lake, Nunavut[J].Journal of Paleolimnology, 2012, 47(4): 661-676.
|
[31] |
Larocque I, Pienitz R, Rolland N.Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada[J].Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63(6): 1 286-1 297.
|
[32] |
Walker I R, Levesque A J, Cwynar L C, et al.An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada[J].Journal of Paleolimnology, 1997, 18(2): 165-178.
|
[33] |
Engels S, Cwynar L C, Rees A B H, et al. Chironomid-based water depth reconstructions: An independent evaluation of site-specific and local inference models[J]. Journal of Paleolimnology, 2012, 48(4): 693-709.
|
[34] |
Massaferro J, Larocque-Tobler I.Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina[J].Ecological Indicators, 2013, 24(1): 201-210.
|
[35] |
Brooks S J, Bennion H, Birks H J B. Tracing lake trophic history with a chironomid-total phosphorus inference model[J]. Freshwater Biology, 2001, 46(4): 513-533.
|
[36] |
Holmes N, Langdon P G, Caseldine C, et al.Merging chironomid training sets: Implications for palaeoclimate reconstructions[J].Quaternary Science Reviews,2011,30(19/20):2 793-2 804.
|
[37] |
Brooks S J, Birks H J B. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway[J]. Journal of Paleolimnology, 2000, 23(1): 77-89.
|
[38] |
Heiri O, Lotter A F, Hausmann S, et al.A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps[J].The Holocene, 2003, 13(4): 477-484.
|
[39] |
Lotter A F, Birks H J B, Hofmann W, et al. Modern diatom, Cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate[J]. Journal of Paleolimnology, 1997, 18(4): 395-420.
|
[40] |
Lotter A F, Birks H J B, Hofmann W, et al. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients[J].Journal of Paleolimnology, 1998, 19(4): 443-463.
|
[41] |
Brodersen K P, Lindegaard C.Classification, assessment and trophic reconstruction of Danish lakes using chironomids[J]. Freshwater Biology, 1999, 42(1): 143-157.
|
[42] |
Luoto T P.Spatial uniformity in depth optima of midges: Evidence from sedimentary archives of shallow Alpine and boreal lakes[J]. Journal of Limnology, 2012, 71(1): 228-232.
|
[43] |
Brooks S J, Birks H J B. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: Progress and problems[J].Quaternary Science Reviews, 2001, 20(16/17): 1 723-1 741.
|
[44] |
Larocque I, Hall R I, Grahn E.Chironomids as indicators of climate change: A 100-lake training set from a subarctic region of northern Sweden (Lapland)[J]. Journal of Paleolimnology, 2001, 26(3): 307-322.
|
[45] |
Heiri O, Brooks S J, Birks H J B, et al. A 274-lake calibraton data-set and inference model for chironomid-based summer air temperature reconstruction in Europe[J]. Quaternary Science Reviews, 2011, 30(23): 3 445-3 456.
|
[46] |
Korhola A, Vasko K, Toivonen H T T, et al. Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling[J].Quaternary Science Reviews, 2002, 21(16/17): 1 841-1 860.
|
[47] |
Verschuren D, Cumming B F, Laird K R.Quantitative reconstruction of past salinity variations in African lakes: Assessment of chironomid-based inference models (Insecta: Diptera) in space and time[J]. Canadian Journal of Fisheries & Aquatic Sciences, 2004, 61(6): 986-998.
|
[48] |
Luoto T P, Kaukolehto M, Weckström J, et al.New evidence of warm early-Holocene summers in subarctic Finland based on an enhanced regional chironomid-based temperature calibration model[J]. Quaternary Research, 2014, 81(1): 50-62.
|
[49] |
Luoto T P.Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set[J]. Ecological Monographs, 2010, 80(2): 303-329.
|
[50] |
Akyildiz G K, Duran M.Preliminary results on development of a chironomid-based mean July air temperature inference model for the Turkish Lakes[J]. Acta Zoologica Bulgarica, 2012, 4: 53-57.
|
[51] |
Eggermont H, Heiri O, Russell J, et al.Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera)[J].Journal of Paleolimnology, 2010, 43(3): 413-435.
|
[52] |
Self A E, Brooks S J, Birks H J B, et al. The distribution of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: Development and application of new chironomid-based climate-inference models in northern Russia[J].Quaternary Science Reviews, 2011, 30(9/10): 1 122-1 141.
|
[53] |
Zhang E, Jones R, Bedford A, et al.A chironomid-based salinity inference model from lakes on the Tibetan Plateau[J].Journal of Paleolimnology, 2007, 38(4): 477-491.
|
[54] |
Zhang E, Cao Y, Langdon P, et al.Alternate trajectories in historic trophic change from two lakes in the same catchment, Huayang Basin, middle reach of Yangtze River, China[J]. Journal of Paleolimnology, 2012, 48(2): 367-381.
|
[55] |
Nazarova L, Herzschuh U, Wetterich S, et al.Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia[J].Journal of Paleolimnology, 2011, 45(1): 57-71.
|
[56] |
Rees A B H, Cwynar L C, Cranston P S. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: A training set from Tasmania, Australia[J].Journal of Paleolimnology, 2008, 40(4): 1 159-1 178.
|
[57] |
Chang J C, Shulmeister J, Woodward C.A chironomid based transfer function forreconstructing summer temperatures in southeastern Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 423(5): 109-121.
|
[58] |
Dieffenbacher-Krall A C, Vandergoes M J, Denton G H. An inference model for mean summer air temperatures in the Southern Alps, New Zealand, using subfossil chironomids[J].Quaternary Science Reviews, 2007, 26(19/21): 2 487-2 504.
|
[59] |
Woodward C A, Shulmeister J.New Zealand chironomids as proxies for human-induced and natural environmental change: Transfer functions for temperature and lake production (Chlorophyll a)[J].Journal of Paleolimnology, 2006, 36(4): 407-429.
|
[60] |
Brooks S J, Langdon P G, Heiri O.The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology[M]. London: Quaternary Research Association. Technical Guide 10, 2007, 276.
|
[61] |
Chen J, Zhang E, Brooks S J, et al.Relationships between chironomids and water depth in Bosten Lake, Xinjiang, northwest China[J].Journal of Paleolimnology, 2014, 51(2): 313-323.
|
[62] |
Brooks S J.Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region[J]. Quaternary Science Reviews, 2006, 25(15/16): 1 894-1 910.
|
[63] |
Walker I R, Cwynar L C.Midges and palaeotemperature reconstruction—The North American experience[J]. Quaternary Science Reviews, 2006, 25(15/16): 1 911-1 925.
|
[64] |
Velle G, Brooks S J, Birks H, et al.Chironomids as a tool for inferring Holocene climate: An assessment based on six sites in southern Scandinavia[J]. Quaternary Science Reviews, 2005, 24(24): 1 429-1 462.
|
[65] |
Henrichs M L, Walker I R, Mathewes R W.Chironomid-based paleosalinity records in southern British Columbia, Canada: A comparison of transfer functions[J].Journal of Paleolimnology, 2001, 26(26): 147-159.
|
[66] |
Lotter A F, Walker I R, Brooks S J, et al.An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America[J].Quaternary Science Reviews, 1999, 18(6): 717-735.
|
[67] |
Heiri O, Brooks S J, Renssen H, et al.Validation of climate model-inferred regional temperature change for late-glacial Europe[J].Nature Communications, 2014,doi:10.1038/ncomms5914.
|
[68] |
Engels S, Cwynar L C.Changes in fossil chironomid remains along a depth gradient: Evidence for common faunal thresholds within lakes[J].Hydrobiologia, 2011, 665(1): 15-38.
|
[69] |
Zhang E, Zheng B, Cao Y, et al.The effects of environmental changes on chironomid fauna during the last century in Bosten Lake, Xinjiang, NW China[J].Fundamental & Applied Limnology, 2012, 180(4): 299-307.
|
[70] |
Phillips G L, Eminson D, Moss B.A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters[J]. Aquatic Botany, 1978, 4: 103-126.
|
[71] |
Luoto T P, Raunio J.A comparison of chironomid-based training sets developed from pupal exuviae and larval head capsules to infer lake trophic history[J]. Fundamental & Applied Limnology, 2011, 179(2): 93-102.
|
[72] |
Aagaard K.The chironomid fauna of North Norwegian lakes, with a discussion on methods of community classification[J]. Ecography, 1986, 9(1): 1-12.
|
[73] |
Kajak Z. Chironomus plumosus-what regulates its abundance in a shallow reservoir?[J]. Hydrobiologia, 1997, 342/343(1): 133-142.
|
[74] |
Hamburger K, Dall P C, Lindegaard C.Energy metabolism of Chironomus anthracinus (Diptera: Chironomidae) from the profundal zone of Lake Esrom, Denmark, as a function of body size, temperature and oxygen concentration[J]. Hydrobiologia, 1994, 294(1): 43-50.
|
[75] |
Weber R E.Functions of invertebrate hemoglobins with special reference to adaptations to environmental hypoxia[J]. American Zoologist, 1980, 20(1): 79-101.
|
[76] |
Panis L I, Goddeeris B, Verheyen R.On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera)[J]. Hydrobiologia, 1996, 318(1): 61-67.
|
[77] |
Quinlan R, Smol J P.Use of subfossil Chaoborus mandibles in models for inferring past hypolimnetic oxygen[J]. Journal of Paleolimnology, 2010, 44(1): 43-50.
|
[78] |
Luoto T P, Nevalainen L.Inferring reference conditions of hypolimnetic oxygen for Deteriorated Lake Mallusjarvi in the cultural landscape of Mallusjoki, Southern Finland using fossil midge assemblages[J].Water, 2011, 217(1/4): 663-675.
|
[79] |
Frossard V, Millet L, Verneaux V, et al.Depth-specific responses of a chironomid assemblage to contrasting anthropogenic pressures: A palaeolimnological perspective from the last 150 years[J]. Freshwater Biology, 2014, 59(1): 26-40.
|
[80] |
Brodersen K P, Pedersen O, Lindegaard, et al. Chironomids (Diptera) and oxy-regulatory capacity: An experimental approach to paleolimnological interpretation[J]. Limnology & Oceanography, 2004, 49(5): 1 549-1 559.
|
[81] |
Cao Y, Zhang E, Chen X, et al.The Diversity and Distribution of Chironomidae from Shallow, Trophic Lake Chaohu, Southeast of China[J]. Journal of Animal & Veterinary Advances, 2012, 11(3): 304-313.
|
[82] |
Walker I R, Mott R J, Smol J P.Allerod-younger dryas lake temperatures from midge fossils in atlantic Canada[J]. Science, 1991, 253(5 023): 1 010-1 012.
|
[83] |
Levesque A J, Cwynar L C, Walker I R.Exceptionally steep north south gradients in lake temperatures during the last deglaciation[J]. Nature, 1997, 385(6 615): 423-426.
|
[84] |
Dimitriadis S, Cranston P S.An Australian Holocene climate reconstruction using Chironomidae from a tropical volcanic maar lake[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1/4): 109-131.
|
[85] |
Larocque-Tobler I, Heiri O, Wehrli M.Late Glacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids[J]. Journal of Paleolimnology, 2010, 43(4): 649-666.
|
[86] |
Samartin S, Heiri O, Vescovi E, et al.Lateglacial and early Holocene summer temperatures in the southern Swiss Alps reconstructed using fossil chironomids[J]. Journal of Quaternary Science, 2012, 27(3): 279-289.
|
[87] |
Langdon P G, Barber K E.Reconstructing climate and environmental change in northern England through chironomid and pollen analyses: Evidence from Talkin Tarn, Cumbria[J].Journal of Paleolimnology, 2004, 32(2): 197-213.
|
[88] |
Brooks S J, Matthews I P, Birks H H, et al.High resolution Lateglacial and early-Holocene summer air temperature records from Scotland inferred from chironomid assemblages[J]. Quaternary Science Reviews, 2012, 41(2): 67-82.
|
[89] |
Berntsson A, Rosqvist G C, Velle G.Late-Holocene temperature and precipitation changes in Vindelfjällen, midwestern Swedish Lapland, inferred from chironomid and geochemical data[J].The Holocene,2014, 24(1): 78-92.
|
[90] |
Axford Y, Briner J P, Miller G H, et al.Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada[J]. Quaternary Research, 2009, 71(2): 142-149.
|
[91] |
Gathorne-Hardy F J, Erlendsson E, Langdon P G, et al. Lake sediment evidence for late Holocene climate change and landscape erosion in western Iceland[J]. Journal of Paleolimnology, 2009, 42(3): 413-426.
|
[92] |
Ilyashuk E A, Koinig K A, Heiri O, et al.Holocene temperature variations at a high-altitude site in the Eastern Alps: A chironomid record from Schwarzsee ob Sölden, Austria[J]. Quaternary Science Reviews, 2011, 30(1/2): 176-191.
|
[93] |
Millet L, Arnaud F, Heiri O, et al.Late-Holocene summer temperature reconstruction from chironomid assemblages of Lake Anterne, northern French Alps[J]. The Holocene, 2009, 19(2): 317-328.
|
[94] |
Plóciennik M, Self A, abieniec bog and its palaeo-lake (central Poland) through the Late Weichselian and Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1/4): 150-167.
|
[95] |
Hausmann S, Larocque-Tobler I, Richard P J H, et al. Diatom-inferred wind activity at Lac du Sommet, southern Qubec, Canada: A multiproxy paleoclimate reconstruction based on diatoms, chironomids and pollen for the past 9500 years[J]. The Holocene, 2011, 21(6): 925-938.
|
[96] |
Velle G, Bjune A E, Larsen J, et al.Holocene climate and environmental history of Brurskardstjørni, a lake in the catchment of Øvre Heimdalsvatn, south-central Norway[J]. Hydrobiologia, 2010, 642(1): 13-34.
|
[97] |
Brooks S J, Axford Y, Heiri O, et al.Chironomids can be reliable proxies for Holocene temperatures: A comment on Velle et al.[J].The Holocene, 2012, 22(12): 1 495-1 500.
|
[99] |
Heiri O, Cremer H, Engels S, et al.Lateglacial summer temperatures in the Northwest European lowlands: A chironomid record from Hijkermeer, the Netherlands[J]. Quaternary Science Reviews, 2007, 26(19/21): 2 420-2 437.
|
[100] |
Clegg B F, Clarke G H, Chipman M L, et al.Six millennia of summer temperature variation based on midge analysis of lake sediments from Alaska[J]. Quaternary Science Reviews, 2010, 29(23): 3 308-3 316.
|
[101] |
Fortin M C, Gajewski K.Holocene climate change and its effect on lake ecosystem production on Northern Victoria Island, Canadian Arctic[J]. Journal of Paleolimnology, 2010, 43(2): 219-234.
|
[102] |
Sobrino C M, Heiri O, Hazekamp M, et al.New data on the Lateglacial period of SW Europe: A high resolution multiproxy record from Laguna de la Roya (NW Iberia)[J]. Quaternary Science Reviews, 2013, 80(457): 58-77.
|
[103] |
Brooks S J.Chironomid analysis to interpret and quantify Holocene climate change[M]∥Mackay A W, Battarbee R W, Birks H J B,et al,eds. Global Change in the Holocene. Arnold, Lond, 2003: 328-341.
|
[104] |
Caseldine C, Langdon P, Holmes N.Early Holocene climate variability and the timing and extent of the Holocene thermal maximum (HTM) in northern Iceland[J]. Quaternary Science Reviews, 2006, 25(17/18): 2 314-2 331.
|
[105] |
Lang B, Bedford A, Brooks S J, et al.Early-Holocene temperature variability inferred from chironomid assemblages at Hawes water, northwest England[J].The Holocene, 2010, 20(6): 943-954.
|
[106] |
Luoto T P.How cold was the Little Ice Age? A proxy-based reconstruction from Finland applying modern analogues of fossil midge assemblages[J].Environmental Earth Sciences, 2013, 68(68): 1 321-1 329.
|
[107] |
Larocque I, Hall R I.Chironomids as quantitative indicators of mean July air temperature: Validation by comparison with century-long meteorological records from northern Sweden[J]. Journal of Paleolimnology, 2003, 29(29): 475-493.
|
[108] |
Larocque I, Grosjean M, Heiri O, et al.Comparison between chironomid-inferred July temperatures and meteorological data AD 1850-2001 from varved Lake Silvaplana, Switzerland[J]. Journal of Paleolimnology, 2009, 41(2): 329-342.
|
[109] |
Trachsel M, Grosjean M, Larocque I.Quantitative summer temperature reconstruction derived from a combined biogenic Si and chironomid record from varved sediments of Lake Silvaplana (south-eastern Swiss Alps) back to AD 1177[J]. Quaternary Science Reviews, 2010, 29(19/20): 2 719-2 730.
|
[110] |
Langdon P G, Caseldine C J, Croudace I W, et al.A chironomid-based reconstruction of summer temperatures in NW Iceland since AD 1650[J].Quaternary Research, 2011, 75(3): 451-460.
|
[111] |
Porinchu D F, Reinemann S, Mark B G, et al.Application of a midge-based inference model for air temperature reveals evidence of late-20th century warming in sub-alpine lakes in the central Great Basin, United States[J].Quaternary International, 2010, 215: 15-26,doi:10.1016/j.quaint.2009.07.021.
|
[112] |
Bunbury J, Gajewski K.Temperatures of the past 2000 years inferred from lake sediments, southwest Yukon Territory, Canada[J].Quaternary Research, 2012, 77(3): 355-367.
|
[113] |
Holmes N, Langdon P G, Caseldine C J, et al.Climatic variability during the last millennium in Western Iceland from lake sediment records[J].The Holocene, 2016, doi: 10.1177/0959683615618260.
|
[114] |
Velle G, Kongshavn K, Birks H J B. Minimizing the edge-effect in environmental reconstructions by trimming the calibration set: Chironomid-inferred temperatures from Spitsbergen[J]. The Holocene, 2011, doi: 10.1177/0959683610385723.
|
[115] |
Larocque-Tobler I, Quinlan R, Stewart M M, et al.Chironomid-inferred temperature changes of the last century in anoxic Seebergsee, Switzerland: Assessment of two calibration methods[J]. Quaternary Science Reviews, 2011, 30(13): 1 770-1 779.
|
[116] |
Nevalainen L, Luoto T P.Faunal (Chironomidae, Cladocera) responses to post-Little Ice Age climate warming in the high Austrian Alps[J]. Journal of Paleolimnology, 2012, 48: 711-724.
|
[117] |
Larocque-Tobler I, Stewart M M, Quinlan R, et al.A last millennium temperature reconstruction using chironomids preserved in sediments of anoxic Seebergsee (Switzerland): Consensus at local, regional and Central European scales[J]. Quaternary Science Reviews, 2012, 41(2): 49-56.
|
[118] |
Zhang E, Liu E, Jones R, et al.A 150-year record of recent changes in human activity and eutrophication of Lake Wushan from the middle reach of the Yangze River, China[J]. Journal of Limnology, 2010, 69: 235-241,doi:10.4081/jlimnol.2010.235.
|
[119] |
Luoto T P, Ojala A E K. Paleolimnological assessment of ecological integrity and eutrophication history for Lake Tiiläänjärvi (Askola, Finland)[J].Journal of Paleolimnology, 2014, 51(51): 455-468.
|
[120] |
Stewart E M, Michelutti N, Blais J M, et al.Contrasting the effects of climatic, nutrient, and oxygen dynamics on subfossil chironomid assemblages: A paleolimnological experiment from eutrophic High Arctic pond[J]. Journal of Paleolimnology, 2014, 49(2): 205-219.
|
[121] |
Chen J H, Chen F H, Zhang E L, et al.A 1000-year chironomid-based salinity reconstruction from varved sediments of Sugan Lake, Qaidam Basin, arid Northwest China, and its palaeoclimatic significance[J].Chinese Science Bulletin, 2009, 54: 3 749-3 759,doi:10.1007/S11434-009-0201-8.
|
[122] |
Ryves D B, Mills K, Bennike O, et al.Environmental change over the last millennium recorded in two contrasting crater lakes in western Uganda, eastern Africa (Lakes Kasenda and Wandakara)[J]. Quaternary Science Reviews, 2011, 30(5/6): 555-569.
|
[123] |
Frossard V, Millet L, Verneaux V, et al.Chironomid assemblages in cores from multiple water depths reflect oxygen-driven changes in a deep French lake over the last 150 years[J]. Journal of Paleolimnology, 2013, 50(3): 257-273.
|
[124] |
Kurek J, Lawlor L, Cumming B F, et al.Long-term oxygen conditions assessed using chironomid assemblages in brook trout lakes from Nova Scotia, Canada[J].Lake and Reservoir Management, 2012, 28(3): 177-188.
|
[125] |
Lang B, Bedford A P, Richardson N, et al.The use of ultra-sound in the preparation of carbonate and clay sediments for chironomid analysis[J]. Journal of Paleolimnology, 2003, 30(4): 451-460.
|
[126] |
Rolland N, Larocque I.The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples[J].Journal of Paleolimnology, 2007, 37(4): 565-572.
|
[127] |
Tremblay V, Larocque-Tobler I, Sirois P.Historical variability of subfossil chironomids (Diptera: Chironomidae) in three lakes impacted by natural and anthropogenic disturbances[J].Journal of Paleolimnology, 2010, 44(2): 483-495.
|
[128] |
Petera-Zganiacz J, Dzieduszyńska D A, Twardy J, et al.Younger Dryas flood events: A case study from the middle Warta River valley (Central Poland)[J].Quaternary International, 2015, 386(43): 55-69.
|
[129] |
Larocque-Tobler I,Oberli F.The use of cotton blue stain to improve the efficiency of picking and identifying chironomid head capsules[J].Journal of Paleolimnology,2011,45(1):121-125.
|
[130] |
Velle G, Larocque I.Assessing chironomid head capsule concentrations in sediment using exotic markers[J].Journal of Paleolimnology, 2008, 40(1): 165-177.
|
[131] |
Verschuren D, Eggermont H.Sieve mesh size and quantitative chironomid paleoclimatology[J]. Journal of Paleolimnology, 2007, 38(3): 329-345.
|
[132] |
Larocque I, Velle G, Rolland N.Effect of removing small (<150 μm) chironomids on inferring temperature in cold lakes[J]. Journal of Paleolimnology, 2010, 44(2): 709-719.
|
[133] |
Telford R J, Birks H J B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages[J]. Quaternary Science Reviews, 2011, 30(9): 1 272-1 278.
|
[134] |
Engels S, Self A E, Luoto T P, et al.A comparison of three Eurasian chironomid-climate calibration datasets on a W-E continentality gradient and the implications for quantitative temperature reconstructions[J]. Journal of paleolimnology, 2014, 51(4): 529-547.
|
[135] |
Upiter L M, Vermaire J C, Patterson R T, et al.Middle to late Holocene chironomid-inferred July temperatures for the central Northwest Territories, Canada[J]. Journal of Paleolimnology, 2014, 52(1/2): 11-26.
|
[136] |
Racca J M J, Racca R, Pienitz R, et al. PaleoNet: New software for building, evaluating and applying neural network based transfer functions in paleoecology[J]. Journal of Paleolimnology, 2007, 38(3): 467-472.
|
[137] |
Plóclennik M, Kruk A, Michczyńska D J, et al.Kohonen artificial neural networks and the IndVal Index as supplementary tools for the quantitative analysis of palaeoecological data[J].Geochronometria, 2015, 42(5): 189-201.
|
[138] |
Schimmelmann A.Carbon, nitrogen and oxygen stable isotope ratios in chitin[M]∥Gupta N S, ed. Chitin: Formatim and Diagenesis.Netherland: Springer, 2011:81-103.
|
[139] |
Wang Y, Francis D R, O’Brien D M, et al. A protocol for preparing subfossil chironomid head capsules (Diptera: Chironomidae) for stable isotope analysis in paleoclimate reconstruction and considerations of contamination sources[J].Journal of Paleolimnology,2008,40:771-781,doi:10.1007/S10933-008-919-3.
|
[140] |
Wooller M J, Francis D, Fogel M L, et al.Quantitative paleotemperature estimates from δ18O of chironomid head capsules preserved in arctic lake sediments[J]. Journal of Paleolimnology, 2004, 31(3): 267-274.
|
[141] |
Wooller M, Wang Y, Axford Y.A multiple stable isotope record of Late Quaternary limnological changes and chironomid paleoecology from northeastern Iceland[J]. Journal of Paleolimnology, 2008, 40(1): 63-77.
|
[142] |
Verbruggen F, Heiri O, Reichart G J, et al.Chironomid δ18O as a proxy for past lake water δ18O: A Lateglacial record from Rotsee (Switzerland)[J]. Quaternary Science Reviews, 2010, 29(17): 2 271-2 279.
|
[143] |
Leng M J, Henderson A C G. Recent advances in isotopes as palaeolimnological proxies[J]. Journal of Paleolimnology, 2013, 49(3): 481-496.
|
[144] |
Griffiths K, Michelutti N, Blais J M, et al.Comparing nitrogen isotopic signals between bulk sediments and invertebrate remains in High Arctic seabird-influenced ponds[J]. Journal of Paleolimnology, 2010, 44(2): 405-412.
|
[145] |
Van Hardenbroek M, Heiri O, Grey J, et al.Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes?[J]. Journal of Paleolimnology, 2010, 43(2): 235-245.
|
[146] |
Van Hardenbroek M, Lotter A F, Bastviken D, et al.Relationship between δ13C of chironomid remains and methane flux in Swedish lakes[J]. Freshwater Biology, 2012, 57(1): 166-177.
|
[147] |
Van Hardenbroek M, Heiri O, Parmentier F J W, et al. Evidence for past variations in methane availability in a Siberian thermokarst lake based on δ13C of chitinous invertebrate remains[J]. Quaternary Science Reviews, 2013, 66: 74-84,doi:10.1016/j.quascirev.2012.04.009.
|
[148] |
Frossard V, Verneaux V, Millet L, et al.Reconstructing long-term changes (150 years) in the carbon cycle of a clear-water lake based on the stable carbon isotope composition (δ13C) of chironomid and cladoceran subfossil remains[J]. Freshwater Biology, 2014, 59(4): 789-802.
|
[149] |
Heiri O, Schilder J, Hardenbroek M V.Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: State of development and future challenges[J]. Fauna Norvegica, 2012, 31: 7-18,doi:10.532/fn.v31i0.1436.
|
[150] |
Zhang E, Langdon P, Tang H, et al.Ecological influences affecting the distribution of larval chironomid communities in the lakes on Yunnan Plateau, SW China[J].Fundamental & Applied Limnology, 2011, 179(2): 103-113.
|
[151] |
Cao Y, Zhang E, Langdon P G, et al.Chironomid-inferred environmental change over the past 1400 years in the shallow, eutrophic Taibai Lake (south-east China): Separating impacts of climate and human activity[J].The Holocene, 2014, 24(5): 581-590.
|
[152] |
Zhang Enlou, Chen Jianhui, Cao Yanmin, et al.Subfossil chironomid archives and its application in palaeolimnological and global change study in China[J].Quaternary Sciences,2016, 36(3): 646-655.
|
|
[张恩楼, 陈建徽, 曹艳敏, 等. 摇蚊亚化石记录及其在中国湖泊沉积与全球变化研究中的应用. 第四纪研究, 2016, 36(3): 646-655.]
|