地球科学进展 ›› 2016, Vol. 31 ›› Issue (8): 858 -869. doi: 10.11867/j.issn.1001-8166.2016.08.0858.

上一篇    下一篇

泸沽湖水体垂直断面季节性分层
文新宇( ), 张虎才 *( ), 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶   
  1. 云南师范大学旅游与地理科学学院,高原湖泊生态与全球变化实验室, 云南省地理过程与环境变化重点实验室,云南 昆明 650500
  • 收稿日期:2016-06-24 修回日期:2016-07-30 出版日期:2016-08-20
  • 通讯作者: 张虎才 E-mail:xywen0801@163.com;515075638@qq.com
  • 基金资助:
    云南省领军人才项目“云贵高原湖泊演化与水安全”(编号:2015HA024);云南省高端人才引进项目“云南(云贵高原)湖泊记录与生态环境及可持续发展研究”(编号:2010CI111)资助

Seasonal Stratification Characteristics of Vertical Profiles of Water Body in Lake Lugu

Xinyu Wen( ), Hucai Zhang *( ), Fengqin Chang, Huayong Li, Lizeng Duan, Han Wu, Rongxin Bi, Zhiming Lu, Yang Zhang, Chuntao Ouyang   

  1. Key Laboratory of Plateau Lake Ecology & Global Change, Yunnan Provincial Key Laboratory of Geographical Process and Environmental Change on the Plateau, College of Tourism and Geography Science, Yunnan Normal University, Kunming 650500, China
  • Received:2016-06-24 Revised:2016-07-30 Online:2016-08-20 Published:2016-08-20
  • Contact: Hucai Zhang E-mail:xywen0801@163.com;515075638@qq.com
  • Supported by:
    Project supported by the Yunnan Provincial Government Leading Scientist Program “Lake evolution and water security in Yunnan Plateau” (No.2015HA02);The Yunnan Provincial Government Senior Talent Program “The lake records and ecological environments in Yunnan and water security” (No.2010CI111)

通过2015年1月、4月、7月、10月水温、电导率、溶解氧、pH及叶绿素a监测数据对水体温度的季节动态及其垂直分层结构进行分析,探讨了泸沽湖水体水化学性质的季节性分层特征。结果表明:泸沽湖水体在春、夏、秋季出现明显的热力分层现象,冬季水温在垂向上接近同温状态,夏季温跃层位于10~25 m水深处,而秋季温跃层下移至20~30 m处。均温层水温维持在9.5~10 ℃与泸沽湖年均温一致,说明均温层水体稳定且处于相对恒温状态,是湖区年均温的反映。热力分层结构对电导率、溶解氧、pH及叶绿素a变化有一定影响,致使水体电导率、溶解氧、pH出现明显的分层现象,尤其在夏季,气温升高,热力分层现象显著,溶解氧和pH在温跃层内出现峰值,自峰值处向上、向下均呈递减趋势,均温层处于缺氧状态且pH值较小。虽然叶绿素a在温跃层以下维持较低水平,整体不高,但在表层有突然增高的现象,应予以高度警示,防止泸沽湖出现大面积藻类繁殖甚至局部性爆发。电导率垂向上呈递减变化,在温跃层内降低幅度较大。泸沽湖水体盐度基本保持恒定(约0.10‰),在不考虑盐度效应的情况下,无论是在垂直断面上还是在变温层、温跃层及均温层中,电导率与水温之间存在一简单线性函数关系,证明泸沽湖仍受自然气候影响,保持自然水体状态。

For the purpose of exploring seasonal stratification characteristics of water hydrochemistry, the seasonal dynamics and vertical thermal stratification of water temperature in Lake Lugu, the vertical profiles of water temperature (Temp), Electrical Conductivity (EC), Dissolved Oxygen (DO), pH and Chlorophyll-a (Chl-a) of Lake Lugu were monitored in January, April, July and October 2015, respectively. The results indicated that water body of Lake Lugu appeared thermal stratification in spring, summer and autumn, however, in winter, the water temperature in vertical direction was homogeneous. The thermocline was located between 10 and 25 m, nevertheless, it moved down to range from 20 to 30 m in autumn. In addition, water temperature in hypolimnion was maintained almost as a constant and consistent with annual temperature, indicating water body was stable all along. The results showed that the thermal stratification had some influences on vertical distributions of DO, EC, pH and Chl-a. The significant stratification of DO, EC and pH was found, especially in summer, DO and pH values in thermocline peaked due to greatly stable thermal stratification and temperature increase. In hypolimnion, DO concentration and pH value were very small. Moreover, Chl-a concentration was higher in the surface and lower in the bottom water, implying that human should be highly alter to prevent the emergence of a large area of algae in Lake Lugu. EC took on decreasing variation, besides, lower in the thermocline. While,Lugu Lake water salinity was lower and substantially constant (~ 0.10‰), without considering the effects of salinity, both in vertical sections and in epilimnion, thermocline and hypolimnion, there all existed a simple linear function of the relationship between EC andwater temperature, showing that Lugu Lake was affected by natural climate and keeps natural state.

中图分类号: 

图1 泸沽湖监测(采样)点分布
Fig.1 Distribution of monitoring and sampling sites in Lake Lugu
图2 泸沽湖水温垂直断面季节变化
Fig.2 Seasonal variations of vertical water temperature section in Lake Lugu
图3 泸沽湖电导率垂直分布季节变化
Fig.3 Seasonal variations of vertical electrical conductivity in Lake Lugu
图4 泸沽湖溶解氧垂直断面变化
Fig.4 Seasonal variations of vertical DO section in Lake Lugu
图5 泸沽湖pH垂直断面变化
Fig.5 Seasonal variations of vertical pH section in Lake Lugu
图6 泸沽湖叶Chl-a垂直断面变化
Fig.6 Seasonal variations of vertical Chl-a section in Lake Lugu
表1 电导率与水温之间的关系
Table 1 The relationship between electrical conductivity and water temperature
表2 变温层、温跃层和均温层的电导率与温度之间的函数关系
Table 2 The functional relationship of epilimnion,thermocline and hypolimnion between electrical conductivity and water temperature
[1] Zhao Linlin, Zhu Guangwei,Chen Yuanfang,et al.Thermal stratification and its influence factors in a large-sized and shallow Lake Taihu[J]. Advances Water Science, 2011, 22(6): 844-850.
[赵林林, 朱广伟, 陈元芳, 等.太湖水体水温垂向分布特征及其影响因素[J]. 水科学进展, 2011, 22(6): 844-850.]
[2] Jacob Kalff.Limnology-Inland Water Ecosystems[M].Gu Binhe, Liu Zhengwen, Li Kuanyi, et al. translated.Beijing: Higher Education Press, 2011:154-160.
[Jacob Kalff著. 湖藻学:内陆水生态系统[M]. 古滨河, 刘正文, 李宽意, 等译. 北京: 高等教育出版社, 2011: 154-160.]
[3] Lan Chen, Chen Jing’an, Zeng Yan, et al.Advances in oxygenation theory and technology in deep lakes[J]. Advances in Earth Science,2015,30(10):1 172-1 181.
[兰晨, 陈敬安, 曾艳, 等. 深水湖泊增氧理论与技术研究进展[J]. 地球科学进展, 2015, 30(10):1 172-1 181.]
[4] Ryabov A B, Rudolf L, Blasius B.Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer[J]. Journal of Theoretical Biology, 2010, 263(1): 120-133.
[5] Wang S, Qian X, Han B, et al.Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China[J]. Water Research, 2012, 46(8): 2 591-2 604.
[6] Cheng Xiaoyi, Li Huibin, Dai Shujun.Modeling of seasonal vertical variation of dissolved oxygen and its impacts on water environment in Shahe Reservoir within Tianmuhu Reservoir[J]. Journal of Lake Sciences, 2013, 25(6): 818-826.
[成晓奕, 李慧赟, 戴淑君. 天目湖沙河水库溶解氧分层的季节变化及其对水环境影响的模拟[J]. 湖泊科学, 2013, 25(6):818-826.]
[7] Wang Bin, Ma Jian, Wang Yinya, et al.Seasonal characteristics of thermal stratification in Lake Tianchi of Tianshan Mountains[J]. Journal of Lake Sciences, 2015, 27(6): 1 197-1 204.
[王斌, 马健, 王银亚, 等. 天山天池水体季节性分层特征[J]. 湖泊科学, 2015, 27(6): 1 197-1 204.]
[8] Kasprzak P, Padisak J, Koschel R, et al.Chlorophyll-a concentration across a tropic gradient of lakes: An estimator of phytoplankton biomass?[J]. Limnologica-Ecology and Management of Inland waters, 2008, 38(3): 327-338.
[9] Wang Yinzhu, Pu Peimin.Preliminary study on the thermocline in FuxianLake[J]. Transactions of Oceanology and Limnology, 1982, (4): 1-8.
[王银珠, 濮培民. 抚仙湖水温跃层的初步研究[J]. 海洋湖藻通报, 1982, (4):1-8.]
[10] Qiu Huabei, Shang Lihai, Li Qiuhua, et al.Impacts of seasonal thermal stratification on the water environment of Wanfeng Lake[J]. Chinese Journal of Ecology, 2011,30(5): 1 039-1 044.
[邱华北, 商立海, 李秋华, 等. 水体热分层对万峰湖水环境的影响[J]. 生态学杂志, 2011, 30(5): 1 039-1 044.]
[11] Dong Chunying, Yu Zuoming, Wu Zhixu, et al.Study on seasonal characteristics of thermal strafication in lacustrine zone of Lake Qiandao[J]. Environmental Science, 2013, 34(7): 2 574-2 581.
[董春颖, 虞左明, 吴志旭, 等. 千岛湖湖泊区水体季节性分层特征研究[J]. 环境科学, 2013, 34(7): 2 574-2 581.]
[12] Zhang Y, Wu Z, Liu M, et al.Thermal structure and response to long-term climatic changes in Lake Qiandao, a deep subtropical reservoir in China[J]. Limnology and Oceanography, 2014, 59(4): 1 193-1 202.
[13] Xia Pinhua, Lin Tao, Li Cunxiong, et al.Features of the water column stratification and the response of Hongfeng reservoir in Guizhou, China[J]. China Environmental Science, 2011, 31(9): 1 477-1 485.
[夏品华, 林陶, 李存雄, 等. 贵州高原红枫湖水库积极性分层的水环境质量响应[J]. 中国环境科学, 2011, 31(9): 1 477-1 485.]
[14] Zhao Xuefeng.Seasonal Variations of Thermal Stratification and Its Environmental Effects in Lake Lugu[D].Guangzhou: Jin’an University, 2014.
[赵雪枫. 泸沽湖温度分层季节变化及其环境效应[D].广州:暨南大学, 2014.]
[15] Wang Qian, Yang Xiangdong, Anderson John N.Diatom seasonality and sedimentation in a subtropical alpine lake (Lugu Hu, Yunnan-Sichuan, Southwest China)[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(3): 461-472.
[16] Hu Yichang, Dong Wenjie, He Yong.Progress of the study of extreme weather and climate events at the beginning of the twenty first century[J]. Advances in Earth Science, 2007, 22(10):1 066-1 075.
[胡宜昌, 董文杰, 何勇. 21 世纪初极端天气气候事件研究进展[J]. 地球科学进展,2007, 22(10):1 066-1 075.]
[17] Xia Jun, Liu Chunzhen, Ren Guoyu.Opportunity and challenge of the climate change impact on the water resource of China[J]. Advances in Earth Science, 2011, 26(1):1-12.
[夏军, 刘春蓁, 任国玉. 气候变化对我国水资源影响研究面临的机遇与挑战[J]. 地球科学进展,2011, 26(1):1-12.]
[18] Zheng Qian, Zhang Hucai, Ming Qingzhong, et al.Vegetational and environmental changes since 15 ka B. P. recorded by Lake Lugu in the southwest monsoon domain region[J]. Quaternary Sciences, 2014, 34(6): 1 314-1 326.
[郑茜, 张虎才, 明庆忠, 等. 泸沽湖记录的西南季风区15000a B.P.以来植被与气候变化[J]. 第四纪研究, 2014, 34(6): 1 314-1 326.]
[19] Yu Yang, Zhang Min, Qian Shanqin, et al.Current status and development of water quality of lakes in Yunnan-Guizhou Plateau[J]. Journal of Lake Sciences, 2010, 22(6): 820-828.
[于洋, 张民, 钱善勤, 等. 云贵高原湖泊水质现状及演变[J]. 湖泊科学, 2010, 22(6): 820-828.]
[20] Zeng Xiwen, Wang Baorong, Yang Shuhua.The terrestrial vegetation characteristics in Lugu Lake watershed[J]. Journal of Yunnan University (Natural Science), 2012, 34(4): 476-485.
[曾熙雯, 王宝荣, 杨树华. 泸沽湖流域的陆生植物特征[J]. 云南大学学报:自然科学版, 2012, 34(4): 476-485.]
[21] Ma Qianli, Hu Fang, Guo Qingwei, et al.Eutrophication characteristics and distribution of phytoplankton communities in Liuduzhai reservoir in summer[J]. Acta Scientiae Circumstantiae, 2014, 34(6): 1 497-1 504.
[马千里, 胡芳, 虢清伟, 等. 六都寨水库夏季富营养化状况与浮游植物分布特征研究[J].环境科学学报, 2014, 34(6): 1 497-1 504.]
[22] Ju Tuo, Huang Tinglin, Ma Weixing, et al.Characteristics of seasonal variation and water-lifting aerator improvement of water quality in a steady stratified reservoir[J]. Journal of Lake Sciences, 2015, 27(5): 819-828.
[巨拓,黄廷林, 马卫星, 等. 稳定分层水库水质的季节性变化特征及扬水曝气水质改善[J]. 湖泊科学, 2015, 27(5): 819-828.]
[23] Huang Tinglin, Cong Haibing, Chai Beibei.Drinking Water Sources & Water Pollution Control[M].Beijing: China Building Industry Press, 2009: 128-164.
[黄廷林, 丛海兵, 柴蓓蓓. 饮用水水源水质污染控制 [M]. 北京: 中国建筑工业出版社, 2009: 128-164.]
[24] Lewis W M Jr. A revised classification of lakes based on mixing[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40: 1 779-1 787.
[25] Wang Yu, Dai Huichao.Effects of water temperature Delamination in large-scale reserviors and protection methods[J]. Journal of China Three Gorges University (Natural Sciences), 2009, 31(6): 11-14.
[王煜, 戴会超. 大型水库水温分层影响及防治措施[J]. 三峡大学学报:自然科学版, 2009, 31(6): 11-14.]
[26] Lee Y G, Kang J H, Ki S J, et al.Factors dominating stratification cycle and seasonal water quality variation in a Korean estuarine reservoir[J]. Journal of Environmental Monitoring, 2010, 12: 1 072-1 081.
[27] Li Wanchun.Presentday Lake Processes in Lake Processes in Tibetan Plateau: A Case Study of ZigeTangco[D].Nanjing:Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2001.
[李万春. 青藏高原湖泊现代过程研究——以兹格塘错为例[D].南京:中国科学院南京地理与湖泊研究所, 2001.]
[28] Wu Fengchang, Wan Guojiang, Cai Yurong.Biogeochemical processes at the sediment-water interface[J]. Advances in Earth Science, 1996, 11(2): 191-197.
[吴丰昌, 万国江, 蔡玉蓉. 沉积物—水界面的生物地球化学作用[J]. 地球科学进展, 1996, 11(2): 191-197.]
[29] Rodhe W.The ionic composition of lake waters[J]. The Proceedings of the International Association of Theoretical and Applied Limnology, 1949, 10: 377-386.
[30] Bertram B, Martin S. Stratification of lakes [J]. Reviews of Geophysics, 2008,46(2): RG2005.
[31] Zhang Yunlin, Qin Boqiang, Chen Weimin, et al.Chlorophyll a content and productivity of phytoplankton in Meiliang Bay of Taihu Lake[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2 127-2 131.
[张运林, 秦伯强, 陈伟民, 等. 太湖梅梁湾浮游植物叶绿素a和初级生产路[J]. 应用生态学报, 2004, 15(11): 2 127-2 131.]
[32] Zhang Yike, Zhang Cuijun, Zhang Xuesong, et al.Biomass, chlorophyll content and production of phytoplankton in the Lake Baiyangdian[J]. Journal of Hebei University (Natural Science), 1999, 19(3): 267-271.
[张义科, 张翠君, 张雪松, 等. 白洋淀浮游植物的生物量、叶绿素含量和生产量[J]. 河北大学学报:自然科学版, 1999, 19(3): 267-271.]
[33] Liu Bo, Cui Lifeng, Liu Zaiwen.Correlation between chlorophyll a and algal density of surface water in urban of Beijing[J]. Environmental Science & Technology, 2008, 31(8): 29-33.
[刘波, 崔丽凤, 刘载文. 北京市城区地表水体叶绿素a与藻密度相关性研究[J]. 环境科学与技术, 2008, 31(8): 29-33.]
[34] Ma Rui, Sun Chengjun, Niu Cuijuan.Eutrophication of freshwater ecosystem and its control[J]. Bulletin of Biology, 2003, 38(1): 5-9.
[马蕊, 孙承军, 牛翠娟. 淡水水域富营养化及其治理[J]. 生物学通报, 2003, 38(11): 5-9.]
[1] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[2] 乔培军,王婷婷,翦知湣. 利用有孔虫壳体B/Ca比值再造古海水pH值及[CO 2- 3]的潜力[J]. 地球科学进展, 2012, 27(6): 686-693.
[3] 张心昱,孙晓敏,袁国富,朱治林,温学发,康新斋,徐丽君. 中国生态系统研究网络水体pH和矿化度监测数据初步分析[J]. 地球科学进展, 2009, 24(9): 1042-1050.
[4] 许昆明,胡融刚. 微电极技术在沉积物化学原位测量中的应用[J]. 地球科学进展, 2006, 21(8): 863-869.
[5] 李向应,李忠勤,陈正华,赵中平,尤晓妮,朱宇漫. 天山乌鲁木齐河源1号冰川雪坑中pH值和电导率的季节变化及淋溶过程[J]. 地球科学进展, 2006, 21(5): 487-495.
[6] 杨晓志,夏群科,于慧敏,郝艳涛. 大陆下地壳高电导率的起源:矿物中的结构水[J]. 地球科学进展, 2006, 21(1): 31-38.
[7] 许清海;李月丛;阳小兰;陈辉;吕新苗. 青藏高原东北部典型花粉类型埋藏特征及其与植被关系的研究[J]. 地球科学进展, 2005, 20(1): 89-098.
[8] 胡修棉,王成善. 古海洋溶解氧研究方法综述[J]. 地球科学进展, 2001, 16(1): 65-71.
阅读次数
全文


摘要