地球科学进展 ›› 2009, Vol. 24 ›› Issue (9): 1042 -1050. doi: 10.11867/j.issn.1001-8166.2009.09.1042

生态学研究 上一篇    下一篇

中国生态系统研究网络水体pH和矿化度监测数据初步分析
张心昱,孙晓敏 *,袁国富,朱治林,温学发,康新斋,徐丽君   
  1. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室;CERN水分分中心,北京  100101
  • 收稿日期:2009-04-02 修回日期:2009-06-26 出版日期:2009-09-10
  • 通讯作者: 孙晓敏(1957-),男,研究员,博士生导师,主要从事水、热、碳通量区域监测与尺度转换方面研究. E-mail:sunxm@igsnrr.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“长期生态监测数据质[JP2]量控制与数据开发的方法和关键技术研究—水分监测质量控制方法研究与数据产品开发”(编号:KZCX2-YW-433-01);国家自然科学基金面上项目“土壤和气候因素对森林生态系统土壤有机碳的影响”(编号:30600091)和“氮沉降对长白山典型温带森林土壤碳动态影响实验研究”(编号:40701186)资助.

Primary Analysis of Water pH and Salinity Monitoring Data on Chinese Ecosystem Research Network (CERN)

Zhang Xinyu,Sun Xiaomin,Yuan Guofu,Zhu Zhilin,Wen Xuefa,Kang Xinzhai,Xu Lijun   

  1. The Sub-center for Water Monitoring and Research, Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observablon and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101,China
  • Received:2009-04-02 Revised:2009-06-26 Online:2009-09-10 Published:2009-09-10

      介绍了中国生态系统研究网络(CERN)陆地生态系统水环境监测指标与频率。初步分析了CERN 31个典型陆地生态系统监测地表水和地下水、6个湖泊和海湾生态系统、1个城市生态系统地下水体pH、矿化度(电导率)状况。结果表明,我国森林生态系统pH和矿化度分布规律基本一致,为从西向东、从北向南逐渐降低的趋势,pH在鼎湖山自然保护区出现强酸性(4.15),其他台站为弱碱性、中性或弱酸性(6.01~8.26),森林生态系统矿化度均较低(33~322 mg/L)。我国农田、荒漠、湿地生态系统水体pH和矿化度分布规律为:华北与黄土农业区、西北绿洲农业与牧业区相对较高,东北农业区和青藏高原农牧区其次,南方农业区最低;除南方农业生态系统与北方三江湿地生态系统水体pH为弱酸性(6.27~6.82)外,其他监测水体均为中性和弱碱性,500 mg/L以上矿化度水体主要出现在西北部荒漠生态系统,黄河冲积平原农业生态系统。湖泊、海湾生态系统水体和北京城市生态系统地下水pH均为弱碱性,海湾水体pH季节波动不明显,湖泊水体和北京城市地下水pH和电导率呈明显季节波动,湖泊水体pH表现为夏秋季节较高,电导率表现为6~9月较低;北京城市地下水pH为5~10月较低,矿化度(电导率)为5~7月较高。建议未来水体pH和矿化度(电导率)采取传感器原位高频率监测、在坚持长期定位监测同时增加区域调查、结合科学问题开展监测和研究,提高监测数据回答水质长期变化趋势、区域尺度人类活动影响的能力。

     The water quality monitoring index and frequency of typical terrestrial ecosystem on the Chinese Ecosystem Research Network (CERN) were reviewed. Furthermore, the water pH and salinity of the 31 typical terrestrial ecosystems from 2004 to 2006, of the 6 lake and bay ecosystems during 2003-2007, and of one urban ecosystem during 2008 were assessed. The results showed: 1) The pH and salinity of the CERN forest ecosystems decreased from northern to southern ecosystems and from western to eastern ecosystems. The lowest pH value was in the southeast Dinghu forest ecosystem (4.15), while the pH value ranged from 6.01 to 8.26 in the other forest ecosystems. The salinity ranged from 33 to 322 mg/L in the forest ecosystems.2) The pH and salinity of the CERN agriculture-, oasis-, and marsh-ecosystem had obvious spatial trends, with the higher values in the North China Plain, Northwest oasis and desert area, the lower values in the northeast agricultural area and the lowest values in the southern agricultural area. The pH ranged from 6.70-8.45 except those in Sanjiang marsh ecosystem and southern agricultural ecosystems with the lower pH values. The higher salinity values (more than 500 mg/L) were mainly in the western oasis and Yellow River floodplain agricultural ecosystems.3) The pH in the lake, bay and Beijing urban underground water were ranged from 6.8-8.8. There is little seasonal variation of pH in bay site but significant seasonal variation of pH and electrical conductivity in the lake sites and Beijing urban underground water. In the lake sites, the pH values were higher in summer and autumn, but the electrical conductivity values were lower during June to September. While in the underground water of Beijing urban site, the pH values were lower during May to October, while the salinity (electrical conductivity) values were higher during May to July. The study suggests that the advanced in-situ remote sensor technique, with high monitoring frequency, is needed to monitor the water pH and electrical conductivity. Furthermore, in order to differentiate the seasonal variation with long term trend and clarify the natural variation with the human being effects on water quality, it is necessary to continue long-term monitoring and undertake short time investigation in catchment or regional scales, and consider the human effects (acid deposition, agricultural fertilization, irrigation and drainage, point or non-point source pollution,etc.) on water quality.

中图分类号: 

[1] The Origins of Rothamsted Research[EB/OL].http://www.rothamsted.bbsrc.ac.uk/corporate/Origins.html,2009.
[2] Hubbard Brook Dataset Search[EB/OL].http://www.hubbardbrook.org/data/dataset_search.php,2009.
[3] The EcoTrends Project[EB/OL]. http://www.ecotrends.info/EcoTrends/index.jsp,2009.
[4] Environmental Chang Network[EB/OL].http://www.ecn.ac.uk,2009.
[5] Huang Tieqing, Niu dong. Chinese ecosystem research network (CERN)—Basic information, achievements and perspectives[J]. Advances in Earth Science,2005,20 (8): 895-902.[黄铁青,牛栋.中国生态系统研究网络(CERN): 概况、成就和展望[J].地球科学进展, 2005,20 (8): 895-902.]
[6] Synthesis Center for CERN. Spatial Information Map Collection for CERN Station[M]. 2006.[中国科学院中国生态系统研究网络综合研究中心.中国生态系统研究网络台站空间信息图集[M].2006.]
[7] CERN Science Commission. Protocols for Standard Water Environmental Observation and Measurement in Terrestrial Ecosystems[M]. Beijing:China Environmental Science Press,2007.[中国生态系统研究网络科学委员会.陆地生态系统水环境观测规范[M].北京:中国环境科学出版社,2007.]
[8] CERN Science Commission. Protocols for Standard Observation and Measurement in Aquatic Ecosystems[M]. Beijing:China Environmental Science Press,2007.[中国生态系统研究网络科学委员会.水域生态系统观测规范[M].北京:中国环境科学出版社,2007.]
[9] GB 3838-2002. Environmental Quality Standards for Surface water[S].2002.[GB 3838-2002.地表水环境质量标准[S].中华人民共和国国家标准,2002.]
[10] GB/T 14848-9. Quality Standards for Ground Water[S].2003.[GB/T 14848-9. 地下水质量标准.中华人民共和国国家标准,2003.][11] Chen Jingsheng. Environmental acidification and terrestrial water quality evolution—A meaningful new research area[J].Acta Scientiaec Circumstantiae,1997,17(1):1.[陈静生.环境酸化与陆地水水质演化—一个有意义的新研究领域[J]. 环境科学学报,1997 ,17(1) :1.]
[12] Chen Jingsheng, Xia Xinghui, Hong Song.The trends of water quality change in the Yangtze River and the Yellow River in last 40 years[J].Engineering Science,2000, 12(13): 54-58.[陈静生, 夏星辉, 洪松.长江水质酸化与黄河水质浓化趋势及成因探讨[J]. 中国工程科学,2000, 12(13): 54-58.]
[13] Yu Tao, He Dawei, Chen Jingsheng. Impact of quantity and quality of river water by irrigation in a Yellow River basin[J].Journal of Agro-Environmnet Science,2003,22(6):664-668.[于涛,何大伟,陈静生.黄河流域灌溉农业的发展对黄河水量和水质的影响[J]. 农业环境科学学报,2003,22(6):664-668.]
[14] Han Qing. On the deterioration of water quality and its control after large-scale reclamation in the Tarim Basin[J].Acta Geographica Sinica,1980,35(3): 219-231.[韩清. 塔里木河流域农垦后水质的变化及其控制途径[J]. 地理学报, 1980,35(3):219-231.][15] Tao Dajun, Wang Chun. Investigation research of chemical properties of acidic precipitation and its influence to the pH value of Tai Lake water body[J].Jiangsu Environmental Science and Technology,2000,13(2):1-3.[陶大钧,汪春. 酸性降水化学性质和对太湖水体pH值影响的调查研究[J].江苏环境科技,2000,13(2):1-3.]
[16] Li Qun, Mu Yizhou, Zhou Yanli,et al.Study on distribution law and contrast of chemical characteristics of water of the Yellow River basin[J].Yellow River,2006,28(11):26-27.[李群,穆伊舟,周艳丽,等.黄河流域河流水化学特征分布规律及对比研究[J].人民黄河,2006,28(11):26-27.]
[17] Zhu Hongxia, Chen Xiaomin, FangKun. Water pollution impact analysis in the dry season and the rainy season of Taihu Lake region[J].Journal of Agro-Environment Science,2008, 27(6): 2 396-2 400.[朱红霞, 陈效民, 方堃.太湖地区旱季、雨季水体污染影响因素分析[J].农业环境科学学报,2008, 27(6): 2 396-2 400.]
[18] Zhai Shuijing, Yang Longyuan, Hu Weiping. Atmospheric nitrogen and phosphorus deposition during optimal algal growth period in northern Lake Taihu[J].Environmental Pollution and Control,2009,31(4): 5-10.[翟水晶, 杨龙元, 胡维平. 太湖北部藻类生长旺盛期大气氮、磷沉降特征[J].环境污染与防治, 2009,31(4): 5-10.]

[1] 泮枫敏,袁华茂,宋金明,段丽琴. 海水痕量元素—有机配体的配分特征与影响因素研究进展[J]. 地球科学进展, 2019, 34(5): 499-512.
[2] 时连强,郭俊丽,刘海江,叶清华. Argus系统在我国海滩研究中的应用进展与展望[J]. 地球科学进展, 2019, 34(5): 552-560.
[3] 李文龙,高燕. MEMS传感器在锚杆加固边坡监测中的应用研究[J]. 地球科学进展, 2019, 34(4): 439-448.
[4] 江笑薇, 白建军, 刘宪锋. 基于多源信息的综合干旱监测研究进展与展望[J]. 地球科学进展, 2019, 34(3): 275-287.
[5] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[6] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[7] 胡雨豪, 袁路, 马东涛, 李梅. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613.
[8] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[9] 邵全琴, 樊江文, 刘纪远, 杨帆, 刘华, 杨秀春, 许明祥, 侯鹏, 郭兴健, 黄麟, 李愈哲. 重大生态工程生态效益监测与评估研究[J]. 地球科学进展, 2017, 32(11): 1174-1182.
[10] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[11] 安正韬, Wei Yongping. 澳大利亚湿地水环境管理和技术的有机结合[J]. 地球科学进展, 2016, 31(2): 213-224.
[12] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[13] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[14] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[15] 王江海, 孙贤贤, 徐小明, 吴酬飞, 彭娟, 袁建平. 海洋碳封存技术:现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25.
阅读次数
全文


摘要