1 |
Tian Biao , Ding Minghu , Sun Weijun , et al . Research progress of atmospheric carbon monoxide[J]. Advances in Earth Science, 2017,32(1):34-43.
|
|
田彪, 丁明虎, 孙维君, 等 . 大气 CO 研究进展[J]. 地球科学进展, 2017,32(1):34-43.
|
2 |
Harbeck S , Emirik ? F , Gürol I , et al . Understanding the VOC sorption processes on fluoro alkyl substituted phthalocyanines using ATR FT-IR spectroscopy and QCM measurements[J]. Sensors and Actuators B: Chemical, 2013,176:838-849.
|
3 |
Griffiths P R , De Haseth James A . Fourier Transform Infrared Spectrometry[M]. New Jersey:John Wiley & Sons, 2007.
|
4 |
Wu Jinguang . The Technology and Application of Fourier Transform Infrared Spectroscopy[M]. Beijing: Scientific and Technical Documents Publishing House, 1994.
|
|
吴瑾光 . 近代傅里叶变换红外光谱技术及应用[M]. 北京: 科学技术文献出版社, 1994.
|
5 |
Griffith D W , Toon G C , Connor B , et al . Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra[J]. Atmospheric Measurement Techniques, 2011, 4:1 061-1 076.
|
6 |
Reuter M , Bovensmann H , Buchwitz M , et al . Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results[J]. Journal of Geophysical Research: Atmospheres, 2011,116(D4).DOI: 10.1029/2010JD015047.
doi: 10.1029/2010JD015047
|
7 |
Schneising O , Bergamaschi P , Bovensmann H , et al . Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results[J]. Atmospheric Chemistry and Physics, 2012,12(3):1527-1540.
|
8 |
Guerlet S , Butz A , Schepers D , et al . Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements[J]. Journal of Geophysical Research: Atmospheres, 2013,118(10):4887-4905.
|
9 |
Dils B , Buchwitz M , Markus Reuter , et al . The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON[J]. Atmospheric Measurement Techniques, 2014, 7 (6): 1 723-1 744.
|
10 |
Lindqvist H , O'Dell C W , Basu S , et al . Does GOSAT capture the true seasonal cycle of carbon dioxide?[J]. Atmospheric Chemistry and Physics, 2015, 15 (22): 13 023-13 040.
|
11 |
Ohyama H , Kawakami S , Tanaka T , et al . Observations of XCO2 and XCH4 with ground-based high-resolution FTS at Saga, Japan, and comparisons with GOSAT products[J]. Atmospheric Measurement Techniques, 2015,8(12):5 263-5 276.
|
12 |
Kulawik S S , Debra Wunch , Christopher O'Dell , et al . Consistent evaluation of GOSAT, SCIAMACHY, carbon tracker, and MACC through comparisons to TCCON[J]. Atmospheric Measurement Techniques Discussions, 2016,9:683-709.
|
13 |
Wang Wei , Tian Yuan , Liu Cheng , et al . Investigating the performance of a greenhouse gas observatory in Hefei, China[J]. Atmospheric Measurement Techniques, 2017,10(7):2 627.
|
14 |
Dong Yunsheng , Liu Wenqing , Liu Jianguo , et al . Application study of lidar in urban traffic pollution[J]. Acta Optica Sinica, 2010,30(2):315-320.
|
|
董云升,刘文清,刘建国,等 . 激光雷达在城市交通污染中应用研究[J]. 光学学报, 2010,30(2):315-320.
|
15 |
Lihui Lü , Liu Wenqing , Zhang Tianshu , et al . A new micro-pulse lidar for atmospheric horizontal visibility measurement[J]. Chinese Journal of Lasers, 2014,41(9):218-222.
|
|
吕立慧, 刘文清, 张天舒, 等 . 新型微脉冲激光雷达测量大气水平能见度[J]. 中国激光, 2014,41(9):218-222.
|
16 |
Burton S P , Ferrare R A , Hostetler C A , et al . Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples[J]. Atmospheric Measurement Techniques, 2012,5(1):73.
|
17 |
Liu Wenqing , Chen Zhenyi , Liu Jianguo , et al . Research progress on optical observations for atmospheric environment in China[J]. Journal of Remote Sensing, 2016,20(5):724-732.
|
|
刘文清, 陈臻懿, 刘建国, 等 . 中国大气环境光学探测研究[J]. 遥感学报, 2016,20(5):724-732.
|
18 |
Liu Xichuan , Gao Taichang , He Binsheng , et al . Advances and trends in atmospheric measurement by smartphones[J]. Advances in Earth Science, 2018, 33(12): 1 223-1 236.
|
|
刘西川, 高太长, 贺彬晟, 等 . 智能手机参与大气探测的研究进展与展望[J]. 地球科学进展, 2018, 33(12): 1 223-1 236.
|
19 |
Peters E , Wittrock F , Gro?mann K , et al . Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations[J]. Atmospheric Chemistry and Physics, 2012,12(22):11 179-11 197.
|
20 |
Gao Minguang , Liu Wenqing , Zhang Tianshu , et al . Remote sensing of atmospheric trace gas by airborne passive FTIR[J]. Spectroscopy and Spectral Amlysis, 2006,26(12):2 203-2 206.
|
|
高闽光, 刘文清, 张天舒, 等 . 机载 FTIR 被动遥测大气痕量气体[J]. 光谱学与光谱分析, 2006,26(12):2 203-2 206.
|
21 |
Marenco F , Santacesaria V , Bais A F , et al . Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (photochemical activity and solar ultraviolet radiation campaign)[J]. Applied Optics, 1997,36(27): 6 875-6 886.
|
22 |
Mohan K V , Palm S P , Reagen J A , et al . Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data[J]. Bulletin of the American Meteorological Society, 1999,80(6):1 045-1 075.
|
23 |
Amir Khan , David Schaefer , Tao Lei , et al . Low power greenhouse gas sensors for unmanned aerial vehicles[J]. Remote Sensing, 2012,4(5):1 355-1 368.
|
24 |
Fraser R S . Satellite measurement of mass of Sahara dust in the atmosphere[J]. Applied Optics, 1976,15(10):2 471-2 479.
|
25 |
Hans Edner , P?r Ragnarson , Stefan Sp?nnare , et al . Differential Optical Absorption Spectroscopy (DOAS) system for urban atmospheric pollution monitoring[J]. Applied Optics, 1993,32(3):327-333.
|
26 |
Molina L T , Kolb C E , B de Foy , et al . Air quality in North America's most populous city-overview of the MCMA-2003 campaign[J]. Atmospheric Chemistry and Physics, 2007,7(10): 2 447-2 473.
|
27 |
Zhang Y H , Hu Min , Zhong L J , et al . Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview[J]. Atmospheric Environment, 2008,42(25):6 157-6 173.
|
28 |
Galle Bo, Oppenheimer C , Geyer A , et al . A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance[J]. Journal of Volcanology and Geothermal Research, 2003,119(1/4):241-254.
|
29 |
Francis P , Burton M R , Oppenheimer C . Remote measurements of volcanic gas compositions by solar occultation spectroscopy[J]. Nature, 1998,396(6 711):567.
|
30 |
Wang P , Richter A , Bruns M , et al . Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy[J]. Atmospheric Chemistry and Physics, 2006,6(2):329-338.
|
31 |
Wojcik M , Crowther B , Lemon R , et al . Demonstration of a differential absorption lidar for emissions measurement of a coal-fired power plant[C]// CLEO: Science andInnovations. Optical Society of America, 2015.
|
32 |
Bovensmann H , Buchwitz M , Burrows J P , et al . A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications[J]. Atmospheric Measurement Techniques, 2010,3(4):781.
|
33 |
Jimenez-Palacios, Luis Jose . Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing[D]. Cambridge,MA:Massachusetts Institute of Technology, 1998.
|
34 |
Singer B C , Harley R A . A fuel-based inventory of motor vehicle exhaust emissions in the Los Angeles area during summer 1997[J]. Atmospheric Environment, 2000,34(11):1 783-1 795.
|
35 |
Pokharel S S , Bishop G A , Stedman D H . An on-road motor vehicle emissions inventory for Denver: An efficient alternative to modeling[J]. Atmospheric Environment, 2002,36(33):5 177-5 184.
|
36 |
Schifter I , Diaz L , Mugica V , et al . Fuel-based motor vehicle emission inventory for the metropolitan area of Mexico City[J]. Atmospheric Environment, 2005,39(5):931-940.
|
37 |
Guo Hui , Zhang Qingyu , Shi Yao , et al . On-road remote sensing measurements and fuel-based motor vehicle emission inventory in Hangzhou, China[J]. Atmospheric Environment, 2007,41(14):3 095-3 107.
|
38 |
Wu Fengcheng , Li Ang , Xie Pinhua , et al . Studies on remote measurement of the distribution of city gaseous pollutant by mobile passive differential optical absorptions spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011,31(3):583-588.
|
|
吴丰成, 李昂, 谢品华, 等 . 城市污染气体分布的车载被动差分光学吸收光谱遥测技术研究[J]. 光谱学与光谱分析, 2011,31(3):583-588.
|
39 |
Mattias Johansson , Galle Bo, Yu Tong , et al . Quantification of total emission of air pollutants from Beijing using mobile mini-DOAS[J]. Atmospheric Environment, 2008,42(29):6 926-6 933.
|
40 |
Johansson M , Claudia Rivera , B de Foy , et al . Mobile mini-DOAS measurement of the outflow of NO2 and HCHO from Mexico City[J]. Atmospheric Chemistry and Physics, 2009,9(15):5 647-5 653.
|
41 |
Rivera C , Sosa G , Wohrnschimmel H , et al . Tula industrial complex (Mexico) emissions of SO2 and NO2 during the MCMA 2006 field campaign using a mobile mini-DOAS system[J]. Atmospheric Chemistry & Physics Discussions, 2009, 9(1):6 351-6 361.
|
42 |
Wang Shanshan , Zhou Bin , Wang Zhuoru , et al . Remote sensing of NO2 emission from the central urban area of Shanghai (China) using the mobile DOAS technique[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D13).DOI:10.1029/2011JD016983.
doi: 10.1029/2011JD016983
|
43 |
Tan Wei , Zhao Shaohua , Liu Cheng , et al . Estimation of winter time NO x emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations[J]. Atmospheric Environment, 2019,200:228-242.
|
44 |
Witte J C , Duncan B N , Douglass A R , et al . The unique OMI HCHO/NO2 feature during the 2008 Beijing Olympics: Implications for ozone production sensitivity[J]. Atmospheric Environment, 2011,45(18):3 103-3 111.
|
45 |
Liu Haoran , Liu Cheng , Xie Zhouqing , et al . A paradox for air pollution controlling in China revealed by “APEC Blue” and “Parade Blue”[J]. Scientific Reports, 2016,6:34 408.
|
46 |
Su Wenjing , Liu Cheng , Hu Qihou , et al . Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou[J]. Scientific Reports, 2017,7(1):17 368.
|
47 |
Tao Minghui , Chen Liangfu , Su Lin , et al . Satellite observation of regional haze pollution over the North China Plain[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D12).DOI: 10.1029/2012JD017915.
doi: 10.1029/2012JD017915
|
48 |
Li Z , Gu X , Wang L , et al . Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter[J]. Atmospheric Chemistry and Physics, 2013,13(20):10 171-10 183.
|
49 |
Wang Di , Feng Haiyan , Jing Huimin . Elements’ geochemical characteristics of PM10 and PM2.5 in Beijing during winter and spring[J]. Advances in Earth Science, 2017, 32(8): 850-858.
|
|
王的,冯海艳,景慧敏 . 北京市冬季、春季PM10和PM2.5中元素地球化学特征[J]. 地球科学进展, 2017, 32(8): 850-858.
|
50 |
Ma Zongwei , Hu Xuefei , Huang Lei , et al . Estimating ground-level PM2. 5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014,48(13):7 436-7 444.
|
51 |
Sanford Sillman . The use of NO y , H2O2, and HNO3 as indicators for ozone‐NO x ‐hydrocarbon sensitivity in urban locations[J]. Journal of Geophysical Research: Atmospheres, 1995,100(D7):14 175-14 188.
|
52 |
Zhang Renyi , Lei Wenfang , Xuexi Tie , et al . Industrial emissions cause extreme urban ozone diurnal variability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(17):6 346-6 350.
|
53 |
Martin Randall V , Fiore Arlene M , Van Donkelaar Aaron . Space‐based diagnosis of surface ozone sensitivity to anthropogenic emissions[J]. Geophysical Research Letters, 2004,31(6).DOI : 10.1029/2004GL019416.
doi: 10.1029/2004GL019416
|
54 |
Xing Chengzhi , Liu Cheng , Wang Shanshan , et al . Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China[J]. Atmospheric Chemistry and Physics, 2017,17(23):14 275.
|
55 |
Geng Fuhai , Xuexi Tie , Xu Jianmin , et al . Characterizations of ozone, NO x , and VOCs measured in Shanghai, China[J]. Atmospheric Environment, 2008,42(29):6 873-6 883.
|
56 |
Duncan Bryan N , Yasuko Yoshida , Olson Jennifer R , et al . Application of OMI observations to a space-based indicator of NO x and VOC controls on surface ozone formation[J]. Atmospheric Environment, 2010,44(18): 2 213-2 223.
|
57 |
Hong Qianqian , Liu Cheng , Chan Ka Lok, et al . Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River[J]. Atmospheric Chemistry and Physics, 2018,18(8):5 931-5 951.
|
58 |
Frish M B , Laderer M C , Wainner R T , et al . The next generation of TDLAS analyzers[C]// Next-Generation Spectroscopic Technologies. International Society for Optics and Photonics.2001. DOI: 10.1117/12.417375.
doi: 10.1117/12.417375
|
59 |
Frish M B , White M A , Allen M G . Handheld laser-based sensor for remote detection of toxic and hazardous gases[C]// Proceedings SPIE 4199,Water, Ground, and Air Pollution Monitoring and Remediation. International Society for Optics and Photonics,2001.
|
60 |
Li Yan , Wang Junde , Huang Zhonghua , et al . Monitoring leaking gases by OP-FTIR remote sensing[J]. Journal of Environmental Science and Health(Part A), 2002,37(8):1 453-1 462.
|