地球科学进展 ›› 2019, Vol. 34 ›› Issue (3): 255 -264. doi: 10.11867/j.issn.1001-8166.2019.03.0255

上一篇    下一篇

大气成分的遥感监测方法与应用
陈泽青 1( ),刘诚 1, 2, 3, 4( ),胡启后 2,洪茜茜 2,刘浩然 1,邢成志 1,苏文静 1   
  1. 1. 中国科学技术大学地球和空间科学学院,安徽 合肥 230026
    2. 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031
    3. 中国科学院城市环境研究所 中国科学院城市大气环境研究卓越创新中心,福建 厦门 361021
    4. 中国科学技术大学极地环境与全球变化安徽省重点实验室,安徽 合肥 230026
  • 收稿日期:2018-12-02 修回日期:2019-02-01 出版日期:2019-03-10
  • 通讯作者: 刘诚 E-mail:grateful@mail.ustc.edu.cn;chliu81@ustc.edu.cn
  • 基金资助:
    科技部国家重点研发计划项目“近海大气污染物立体遥感定量表征技术”(2018YFC0213104);国家自然科学基金优秀青年科学基金项目“大气污染/温室气体立体遥感监测”(41722501)

Remote Sensing Monitoring Methods and Applications of Atmospheric Constituents

Zeqing Chen 1( ),Cheng Liu 1, 2, 3, 4( ),Qihou Hu 2,Qianqian Hong 2,Haoran Liu 1,Chengzhi Xing 1,Wenjing Su 1   

  1. 1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
    2. Key Laboratory of Environmental Optics and Technology,Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
    3. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    4. Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei 230026, China
  • Received:2018-12-02 Revised:2019-02-01 Online:2019-03-10 Published:2019-04-29
  • Contact: Cheng Liu E-mail:grateful@mail.ustc.edu.cn;chliu81@ustc.edu.cn
  • About author:Chen Zeqing(1994-), female, Shijiazhuang City, Hebei Province, Master student. Research areas include satellite-based atmospheric trace gas retrieval. E-mail: grateful@mail.ustc.edu.cn |Liu Cheng(1981-), male, Bengbu City, Anhui Provinve, Professor. Research areas include stereo remote sensing monitoring of atmospheric pollution. E-mail: chliu81@ustc.edu.cn
  • Supported by:
    Project supported by the National Key Project of the Ministry of Science and Technology “Three-dimensional remote sensing quantitative characterization technique for atmospheric pollutants in the offshore”(2018YFC0213104);The National Natural Science Foundation of China “Atmosphere pollution/greenhouse gas stereo remote sensing”(41722501)

对大气成分准确、及时地监测是掌握大气成分分布特征、研究大气污染成因机制、有效防治大气污染的前提。遥感监测技术在大气成分的观测过程中具有远距离实时观测、快速分析成分多样的大气混合物、无需采样便可获得目标成分的立体时空分布结果等优势。大气成分的遥感监测方法多样,各种仪器优势各异,覆盖了多样的气体和气溶胶的监测范围。根据各仪器距地面高度的差异,遥感平台可划分为地面平台、航空平台和航天平台。遥感技术在大气成分监测领域中应用广泛,已满足了多种观测目的的观测要求。介绍了大气成分的遥感监测方法和平台,并总结了针对不同目的的遥感应用实例,展望了遥感方法在大气成分观测方面的发展方向。

Accurate and timely monitoring of atmospheric constituents is the prerequisite for mastering the distribution characteristics of atmospheric constituents, studying the genetic mechanism of the forming of atmospheric pollution, and effectively preventing and controlling air pollution. Among various observation methods of atmospheric constituents, remote sensing monitoring technology can provide the long-distance and real-time observation, have the ability of rapid analysis of diverse atmospheric mixtures, and obtain stereoscopic spatiotemporal distribution of target constituents without sampling. There are various methods and instruments for remote sensing monitoring of atmospheric constituents, and each of them has its unique advantage, covering a multiple gases and aerosol. According to the difference of the height of the remote sensing platform, it can be divided into ground platform, aviation platform and space platform. Remote sensing technology is widely applied in the field of atmospheric constituents monitoring, and meets the observational requirements for a variety of purposes. This paper introduced the remote sensing monitoring methods and platforms of atmospheric constituents and summarized their application examples for different purposes. It also outlined the future development direction of remote sensing methods in atmospheric constituents’ observation.

中图分类号: 

1 Tian Biao , Ding Minghu , Sun Weijun , et al . Research progress of atmospheric carbon monoxide[J]. Advances in Earth Science, 2017,32(1):34-43.
田彪, 丁明虎, 孙维君, 等 . 大气 CO 研究进展[J]. 地球科学进展, 2017,32(1):34-43.
2 Harbeck S , Emirik ? F , Gürol I , et al . Understanding the VOC sorption processes on fluoro alkyl substituted phthalocyanines using ATR FT-IR spectroscopy and QCM measurements[J]. Sensors and Actuators B: Chemical, 2013,176:838-849.
3 Griffiths P R , De Haseth James A . Fourier Transform Infrared Spectrometry[M]. New Jersey:John Wiley & Sons, 2007.
4 Wu Jinguang . The Technology and Application of Fourier Transform Infrared Spectroscopy[M]. Beijing: Scientific and Technical Documents Publishing House, 1994.
吴瑾光 . 近代傅里叶变换红外光谱技术及应用[M]. 北京: 科学技术文献出版社, 1994.
5 Griffith D W , Toon G C , Connor B , et al . Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra[J]. Atmospheric Measurement Techniques, 2011, 4:1 061-1 076.
6 Reuter M , Bovensmann H , Buchwitz M , et al . Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results[J]. Journal of Geophysical Research: Atmospheres, 2011,116(D4).DOI: 10.1029/2010JD015047.
doi: 10.1029/2010JD015047    
7 Schneising O , Bergamaschi P , Bovensmann H , et al . Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results[J]. Atmospheric Chemistry and Physics, 2012,12(3):1527-1540.
8 Guerlet S , Butz A , Schepers D , et al . Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements[J]. Journal of Geophysical Research: Atmospheres, 2013,118(10):4887-4905.
9 Dils B , Buchwitz M , Markus Reuter , et al . The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON[J]. Atmospheric Measurement Techniques, 2014, 7 (6): 1 723-1 744.
10 Lindqvist H , O'Dell C W , Basu S , et al . Does GOSAT capture the true seasonal cycle of carbon dioxide?[J]. Atmospheric Chemistry and Physics, 2015, 15 (22): 13 023-13 040.
11 Ohyama H , Kawakami S , Tanaka T , et al . Observations of XCO2 and XCH4 with ground-based high-resolution FTS at Saga, Japan, and comparisons with GOSAT products[J]. Atmospheric Measurement Techniques, 2015,8(12):5 263-5 276.
12 Kulawik S S , Debra Wunch , Christopher O'Dell , et al . Consistent evaluation of GOSAT, SCIAMACHY, carbon tracker, and MACC through comparisons to TCCON[J]. Atmospheric Measurement Techniques Discussions, 2016,9:683-709.
13 Wang Wei , Tian Yuan , Liu Cheng , et al . Investigating the performance of a greenhouse gas observatory in Hefei, China[J]. Atmospheric Measurement Techniques, 2017,10(7):2 627.
14 Dong Yunsheng , Liu Wenqing , Liu Jianguo , et al . Application study of lidar in urban traffic pollution[J]. Acta Optica Sinica, 2010,30(2):315-320.
董云升,刘文清,刘建国,等 . 激光雷达在城市交通污染中应用研究[J]. 光学学报, 2010,30(2):315-320.
15 Lihui Lü , Liu Wenqing , Zhang Tianshu , et al . A new micro-pulse lidar for atmospheric horizontal visibility measurement[J]. Chinese Journal of Lasers, 2014,41(9):218-222.
吕立慧, 刘文清, 张天舒, 等 . 新型微脉冲激光雷达测量大气水平能见度[J]. 中国激光, 2014,41(9):218-222.
16 Burton S P , Ferrare R A , Hostetler C A , et al . Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples[J]. Atmospheric Measurement Techniques, 2012,5(1):73.
17 Liu Wenqing , Chen Zhenyi , Liu Jianguo , et al . Research progress on optical observations for atmospheric environment in China[J]. Journal of Remote Sensing, 2016,20(5):724-732.
刘文清, 陈臻懿, 刘建国, 等 . 中国大气环境光学探测研究[J]. 遥感学报, 2016,20(5):724-732.
18 Liu Xichuan , Gao Taichang , He Binsheng , et al . Advances and trends in atmospheric measurement by smartphones[J]. Advances in Earth Science, 2018, 33(12): 1 223-1 236.
刘西川, 高太长, 贺彬晟, 等 . 智能手机参与大气探测的研究进展与展望[J]. 地球科学进展, 2018, 33(12): 1 223-1 236.
19 Peters E , Wittrock F , Gro?mann K , et al . Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations[J]. Atmospheric Chemistry and Physics, 2012,12(22):11 179-11 197.
20 Gao Minguang , Liu Wenqing , Zhang Tianshu , et al . Remote sensing of atmospheric trace gas by airborne passive FTIR[J]. Spectroscopy and Spectral Amlysis, 2006,26(12):2 203-2 206.
高闽光, 刘文清, 张天舒, 等 . 机载 FTIR 被动遥测大气痕量气体[J]. 光谱学与光谱分析, 2006,26(12):2 203-2 206.
21 Marenco F , Santacesaria V , Bais A F , et al . Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (photochemical activity and solar ultraviolet radiation campaign)[J]. Applied Optics, 1997,36(27): 6 875-6 886.
22 Mohan K V , Palm S P , Reagen J A , et al . Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data[J]. Bulletin of the American Meteorological Society, 1999,80(6):1 045-1 075.
23 Amir Khan , David Schaefer , Tao Lei , et al . Low power greenhouse gas sensors for unmanned aerial vehicles[J]. Remote Sensing, 2012,4(5):1 355-1 368.
24 Fraser R S . Satellite measurement of mass of Sahara dust in the atmosphere[J]. Applied Optics, 1976,15(10):2 471-2 479.
25 Hans Edner , P?r Ragnarson , Stefan Sp?nnare , et al . Differential Optical Absorption Spectroscopy (DOAS) system for urban atmospheric pollution monitoring[J]. Applied Optics, 1993,32(3):327-333.
26 Molina L T , Kolb C E , B de Foy , et al . Air quality in North America's most populous city-overview of the MCMA-2003 campaign[J]. Atmospheric Chemistry and Physics, 2007,7(10): 2 447-2 473.
27 Zhang Y H , Hu Min , Zhong L J , et al . Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview[J]. Atmospheric Environment, 2008,42(25):6 157-6 173.
28 Galle Bo, Oppenheimer C , Geyer A , et al . A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance[J]. Journal of Volcanology and Geothermal Research, 2003,119(1/4):241-254.
29 Francis P , Burton M R , Oppenheimer C . Remote measurements of volcanic gas compositions by solar occultation spectroscopy[J]. Nature, 1998,396(6 711):567.
30 Wang P , Richter A , Bruns M , et al . Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy[J]. Atmospheric Chemistry and Physics, 2006,6(2):329-338.
31 Wojcik M , Crowther B , Lemon R , et al . Demonstration of a differential absorption lidar for emissions measurement of a coal-fired power plant[C]// CLEO: Science andInnovations. Optical Society of America, 2015.
32 Bovensmann H , Buchwitz M , Burrows J P , et al . A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications[J]. Atmospheric Measurement Techniques, 2010,3(4):781.
33 Jimenez-Palacios, Luis Jose . Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing[D]. Cambridge,MA:Massachusetts Institute of Technology, 1998.
34 Singer B C , Harley R A . A fuel-based inventory of motor vehicle exhaust emissions in the Los Angeles area during summer 1997[J]. Atmospheric Environment, 2000,34(11):1 783-1 795.
35 Pokharel S S , Bishop G A , Stedman D H . An on-road motor vehicle emissions inventory for Denver: An efficient alternative to modeling[J]. Atmospheric Environment, 2002,36(33):5 177-5 184.
36 Schifter I , Diaz L , Mugica V , et al . Fuel-based motor vehicle emission inventory for the metropolitan area of Mexico City[J]. Atmospheric Environment, 2005,39(5):931-940.
37 Guo Hui , Zhang Qingyu , Shi Yao , et al . On-road remote sensing measurements and fuel-based motor vehicle emission inventory in Hangzhou, China[J]. Atmospheric Environment, 2007,41(14):3 095-3 107.
38 Wu Fengcheng , Li Ang , Xie Pinhua , et al . Studies on remote measurement of the distribution of city gaseous pollutant by mobile passive differential optical absorptions spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011,31(3):583-588.
吴丰成, 李昂, 谢品华, 等 . 城市污染气体分布的车载被动差分光学吸收光谱遥测技术研究[J]. 光谱学与光谱分析, 2011,31(3):583-588.
39 Mattias Johansson , Galle Bo, Yu Tong , et al . Quantification of total emission of air pollutants from Beijing using mobile mini-DOAS[J]. Atmospheric Environment, 2008,42(29):6 926-6 933.
40 Johansson M , Claudia Rivera , B de Foy , et al . Mobile mini-DOAS measurement of the outflow of NO2 and HCHO from Mexico City[J]. Atmospheric Chemistry and Physics, 2009,9(15):5 647-5 653.
41 Rivera C , Sosa G , Wohrnschimmel H , et al . Tula industrial complex (Mexico) emissions of SO2 and NO2 during the MCMA 2006 field campaign using a mobile mini-DOAS system[J]. Atmospheric Chemistry & Physics Discussions, 2009, 9(1):6 351-6 361.
42 Wang Shanshan , Zhou Bin , Wang Zhuoru , et al . Remote sensing of NO2 emission from the central urban area of Shanghai (China) using the mobile DOAS technique[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D13).DOI:10.1029/2011JD016983.
doi: 10.1029/2011JD016983    
43 Tan Wei , Zhao Shaohua , Liu Cheng , et al . Estimation of winter time NO x emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations[J]. Atmospheric Environment, 2019,200:228-242.
44 Witte J C , Duncan B N , Douglass A R , et al . The unique OMI HCHO/NO2 feature during the 2008 Beijing Olympics: Implications for ozone production sensitivity[J]. Atmospheric Environment, 2011,45(18):3 103-3 111.
45 Liu Haoran , Liu Cheng , Xie Zhouqing , et al . A paradox for air pollution controlling in China revealed by “APEC Blue” and “Parade Blue”[J]. Scientific Reports, 2016,6:34 408.
46 Su Wenjing , Liu Cheng , Hu Qihou , et al . Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou[J]. Scientific Reports, 2017,7(1):17 368.
47 Tao Minghui , Chen Liangfu , Su Lin , et al . Satellite observation of regional haze pollution over the North China Plain[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D12).DOI: 10.1029/2012JD017915.
doi: 10.1029/2012JD017915    
48 Li Z , Gu X , Wang L , et al . Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter[J]. Atmospheric Chemistry and Physics, 2013,13(20):10 171-10 183.
49 Wang Di , Feng Haiyan , Jing Huimin . Elements’ geochemical characteristics of PM10 and PM2.5 in Beijing during winter and spring[J]. Advances in Earth Science, 2017, 32(8): 850-858.
王的,冯海艳,景慧敏 . 北京市冬季、春季PM10和PM2.5中元素地球化学特征[J]. 地球科学进展, 2017, 32(8): 850-858.
50 Ma Zongwei , Hu Xuefei , Huang Lei , et al . Estimating ground-level PM2. 5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014,48(13):7 436-7 444.
51 Sanford Sillman . The use of NO y , H2O2, and HNO3 as indicators for ozone‐NO x ‐hydrocarbon sensitivity in urban locations[J]. Journal of Geophysical Research: Atmospheres, 1995,100(D7):14 175-14 188.
52 Zhang Renyi , Lei Wenfang , Xuexi Tie , et al . Industrial emissions cause extreme urban ozone diurnal variability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(17):6 346-6 350.
53 Martin Randall V , Fiore Arlene M , Van Donkelaar Aaron . Space‐based diagnosis of surface ozone sensitivity to anthropogenic emissions[J]. Geophysical Research Letters, 2004,31(6).DOI : 10.1029/2004GL019416.
doi: 10.1029/2004GL019416    
54 Xing Chengzhi , Liu Cheng , Wang Shanshan , et al . Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China[J]. Atmospheric Chemistry and Physics, 2017,17(23):14 275.
55 Geng Fuhai , Xuexi Tie , Xu Jianmin , et al . Characterizations of ozone, NO x , and VOCs measured in Shanghai, China[J]. Atmospheric Environment, 2008,42(29):6 873-6 883.
56 Duncan Bryan N , Yasuko Yoshida , Olson Jennifer R , et al . Application of OMI observations to a space-based indicator of NO x and VOC controls on surface ozone formation[J]. Atmospheric Environment, 2010,44(18): 2 213-2 223.
57 Hong Qianqian , Liu Cheng , Chan Ka Lok, et al . Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River[J]. Atmospheric Chemistry and Physics, 2018,18(8):5 931-5 951.
58 Frish M B , Laderer M C , Wainner R T , et al . The next generation of TDLAS analyzers[C]// Next-Generation Spectroscopic Technologies. International Society for Optics and Photonics.2001. DOI: 10.1117/12.417375.
doi: 10.1117/12.417375    
59 Frish M B , White M A , Allen M G . Handheld laser-based sensor for remote detection of toxic and hazardous gases[C]// Proceedings SPIE 4199,Water, Ground, and Air Pollution Monitoring and Remediation. International Society for Optics and Photonics,2001.
60 Li Yan , Wang Junde , Huang Zhonghua , et al . Monitoring leaking gases by OP-FTIR remote sensing[J]. Journal of Environmental Science and Health(Part A), 2002,37(8):1 453-1 462.
[1] 孙和平, 孙文科, 申文斌, 申重阳, 祝意青, 付广裕, 吴书清, 崔小明, 陈晓东. 地球重力场及其地学应用研究进展——2020中国地球科学联合学术年会专题综述[J]. 地球科学进展, 2021, 36(5): 445-460.
[2] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[3] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[4] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[5] 刘增宏, 吴晓芬, 许建平, 李宏, 卢少磊, 孙朝辉, 曹敏杰. 中国Argo海洋观测十五年[J]. 地球科学进展, 2016, 31(5): 445-460.
[6] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[7] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[8] 王 浩,卢善龙,吴炳方,李晓松. 不透水面遥感提取及应用研究进展[J]. 地球科学进展, 2013, 28(3): 327-336.
[9] 王艳娜, 刘东艳. 海洋沉积硅藻研究方法与应用综述[J]. 地球科学进展, 2013, 28(12): 1296-1304.
[10] 程国栋,赵传燕,许仲林,彭守璋. 生物地理模型研究进展及在干旱半干旱区的应用[J]. 地球科学进展, 2013, 28(1): 17-23.
[11] 赵姝慧,秦鑫,李帅彬,董博. 新一代天气雷达常用产品在我国人工影响天气工作中的应用[J]. 地球科学进展, 2012, 27(6): 694-702.
[12] 焦若鸿,许长海,张向涛,阙晓铭. 锆石裂变径迹(ZFT)年代学:进展与应用[J]. 地球科学进展, 2011, 26(2): 171-182.
[13] 胡光印,董治宝,魏振海,逯军峰,颜长珍. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展, 2009, 24(8): 908-916.
[14] 邢雅娟,刘东生,王鹏新. 遥感信息与作物生长模型的耦合应用研究进展[J]. 地球科学进展, 2009, 24(4): 444-451.
[15] 周冠华,唐军武,田国良,李京,柳钦火. 内陆水质遥感不确定性:问题综述[J]. 地球科学进展, 2009, 24(2): 150-158.
阅读次数
全文


摘要