Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (2): 151-159    DOI: 10.11867/j.issn.1001-8166.2017.02.0151
综述与评述     
植硅体圈闭碳地球化学研究进展
许子娟1, 左昕昕2, 范百龄3, 丁新泉4, 张晓东1, 李子川1, 闫翠香5, 宋照亮1, *
1.天津大学 表层地球系统科学研究院, 天津 300072;
2.中国科学院地质与地球物理研究所, 新生代地质与环境重点实验室, 北京 100029;
3.贵州民族大学 化学与环境科学学院, 贵州 贵阳 550025;
4.铜仁学院 生物与农林工程学院, 梵净山特色动植物资源重点实验室, 贵州 铜仁 554300;
5.浙江农林大学 暨阳学院, 浙江 诸暨 311800
Advances in Geochemical Study of Phytolith Occluded Carbon
Xu Zijuan1, Zuo Xinxin2, Fan Bailing3, Ding Xinquan4, Zhang Xiaodong1, Li Zichuan1, Yan Cuixiang5, Song Zhaoliang1, *
1.Institute of the Surface-Earth System Science Research, Tianjin University, Tianjin 300072, China;
2.Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3.College of Chemistry and Environmental Science, Guizhou Minzu University, Guiyang 550025, China;
4.College of Biology and Agro-forestry Engineering, Tongren University, Key Laboratory of Special Wildlife Resources in Fanjing Mountain, Tongren Guizhou 554300,China;
5.Jiyang College, Zhejiang A & F University, Zhuji Zhejiang 311800,China
 全文: PDF(1036 KB)   HTML
摘要:

植硅体是一种地球化学稳定性非常高的植源性非晶质二氧化硅颗粒物,在其形成过程中会圈闭一定量的有机碳。目前,植硅体圈闭碳(简称植硅体碳)被认为是一种稳定的碳汇机制,对调节全球气候变化具有重要意义,同时,植硅体碳同位素的研究对于古环境、古气候重建等研究领域具有重要的价值,因此,植硅体圈闭碳的地球化学研究受到许多学者的关注。基于国内外学者对植硅体、植硅体圈闭碳及其相关领域的研究成果,综述了植硅体的形成过程、化学元素组成、地球化学稳定性、植硅体碳汇以及植硅体碳同位素在古环境研究中的应用5个方面的研究进展,同时总结了当前植硅体及其圈闭碳在地球化学过程研究中所面临的主要问题,对于未来继续开展植硅体地球化学研究工作具有重要意义。

关键词: 植硅体地球化学稳定性古环境应用植硅体碳汇圈闭碳    
Abstract:

Phytoliths, also called amorphous silica particles, have a great geochemical stability and could occlude a certain amount of organic carbon during the forming process. At present, phytolith-occluded carbon (PhytOC) is recognized as one of long-term stable carbon sequestration mechanisms and has significant influence on regulating global climate change. At the same time, PhytOC isotope research has great value for paleo-environment, paleo-climate reconstruction and other fields. Therefore, more scholars pay attention to the PhytOC geochemical research. Based on the current research status, we summarized the current state of understading about phytolith forming process, elemental composition, geochemical stability, PhytOC sink and PhytOC isotope application for paleo-environment reconstruction. We also summarized the main problems of geochemical research on phytolith and PhytOC, which will make great contribution to further research on phytolith geochemical research.

Key words: Phytolith    Geochemical stability    Paleo-environment application.    PhytOC    Carbon sequestration
收稿日期: 2016-09-10 出版日期: 2017-02-20
ZTFLH:  P593  
基金资助:

国家自然科学基金优秀青年科学基金项目“陆地硅—碳耦合生物地球化学循环”(编号:41522207)资助

通讯作者: 宋照亮(1978-),男,浙江义乌人,教授,主要从事生物地球化学研究.E-mail:songzhaoliang78@163.com   
作者简介: 许子娟(1992-),女,河北沧州人,硕士研究生,主要从事植硅体碳同位素研究.E-mail:xuzijuan0221@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李子川
范百龄
闫翠香
许子娟
左昕昕
丁新泉
张晓东
宋照亮

引用本文:

许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.

Xu Zijuan, Zuo Xinxin, Fan Bailing, Ding Xinquan, Zhang Xiaodong, Li Zichuan, Yan Cuixiang, Song Zhaoliang. Advances in Geochemical Study of Phytolith Occluded Carbon. Advances in Earth Science, 2017, 32(2): 151-159.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.02.0151        http://www.adearth.ac.cn/CN/Y2017/V32/I2/151

[1] Hodson M J. The development of phytoliths in plants and its influence on their chemistry and isotopic composition: Implications for palaeoecology and archaeology[J]. Journal of Archaeological Science, 2016, 68: 62-69,doi:10.1016/j.jas.2015.09.002.
[2] Blecker S W, McCulley R L, Chadwick O A, et al. Biologic cycling of silica across a grassland bioclimosequence[J]. Global Biogeochemical Cycles, 2006, 20(3):4 253-4 274, doi:10.1029/2006 GB002690.
[3] Song Z L, McGrouther K, Wang H L. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems[J]. Earth-Science Reviews, 2016, 158: 19-30,doi:10.1016/j.earscirirev.2016.04.007.
[4] Alexandre A, Crespin J, Sylvestre F, et al. The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): Validation of a new paleoenvironmental tool[J]. Climate of the Past, 2012, 8(1): 307-324.
[5] Strömberg C A E. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207(3): 239-275.
[6] Prasad V, Strömberg C A E, Alimohammadian H, et al. Dinosaur coprolites and the early evolution of grasses and grazers[J]. Science, 2005, 310(5 751): 1 177-1 180.
[7] Xu Deke, Li Quan, Lü Houyuan. Morphological analysis of phytoliths in palmae and its environmental significance[J]. Quaternary Sciences, 2005, 25(6): 785-792.
[徐德克, 李泉, 吕厚远. 棕榈科植硅体形态分析及其环境意义[J]. 第四纪研究, 2005, 25(6): 785-792.]
[8] Li Rencheng, Fan Jun, Gao Chonghui. Advances in modern Phytolith research[J]. Advances in Earth Science, 2013, 28(12): 1 287-1 295.
[李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12): 1 287-1 295.]
[9] Cabanes D, Mallol C, Expósito I, et al. Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain)[J]. Journal of Archaeological Science, 2010, 37(11): 2 947-2 957.
[10] Wadley L, Sievers C, Bamford M, et al. Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa[J]. Science, 2011, 334(6 061): 1 388-1 391.
[11] Shillito L, Ryan P. Surfaces and streets: Phytoliths, micromorphology and changing use of space at neolithic Çatalhöyük (Turkey)[J].Antiquity, 2013, 87(337): 684-700.
[12] Twiss P, Rapp J, Mulholland S. Phytolith Systematics: Emerging Issues[M]. New York: Springer, 1992.
[13] Meng Cifu, Jiang Peikun, Xu Qiufang, et al. PhytOC in plant ecological system and its important roles in the global soil carbon sink[J]. Journal of Zhejiang A & F University, 2013, 30(6): 921-929.
[孟赐福, 姜培坤, 徐秋芳, 等. 植物生态系统中的植硅体闭蓄有机碳及其在全球土壤碳汇中的重要作用[J]. 浙江农林大学学报, 2013, 30(6): 921-929.]
[14] Conley D. Terrestrial ecosystems and the global biogeochemical silica cycle[J].Global Biogeochemical Cycles, 2002, 16(4), doi: 10.1029/2002GB001894.
[15] Falkowski P G, Scholes R J, Boyle E, et al. Integrated understanding of the global carbon cycle: A test of our knowledge[J].Science, 2000, 290(5 490): 291-296.
[16] Kosten S, Roland F, Da Motta Marques D M L, et al. Climate-dependent CO2 emissions from lakes[J]. Global Biogeochemical Cycles, 2010, 24(2), doi: 10.1029/2009GB003618.
[17] Ma J F, Takahashi E. Soil, Fertilizer, and Plant silicon Research in Japan[M].Arnsterdam, Netherlands: Elsevier, 2002.
[18] Epstein E. Silicon[J]. Annual Review of Plant Biology,1999, 50(1): 641-664.
[19] Richmond K E, Sussman M. Got silicon? The non-essential beneficial plant nutrient[J]. Current Opinion in Plant Biology,2003, 6(3): 268-272.
[20] Piperno D R. Phytolyth Analysis: An Archaeological and Geological Perspective[M].Netherlands: Elsevier, 2014.
[21] Gallagher K L, Alfonso-Garcia A, Sanchez J, et al. Plant growth conditions alter phytolith carbon[J]. Frontiers in Plant Science, 2015, 6, doi:10.3389/fpls.2015.00753.
[22] He Shanqiong, Huang Zhangting, Wu Jiasen, et al. Evolution pattern of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics, China[J]. Journal of Applied Ecology, 2016, 27(3): 697-704.
[何珊琼, 黄张婷, 吴家森, 等. 热带, 亚热带典型森林—土壤系统植硅体碳演变规律[J]. 应用生态学报, 2016, 27(3): 697-704.]
[23] Li P, Du J, Du N, et al. Paleo-environmental evolution based on high-resolution phytolith since 26 ka BP. in Huanghe River Delta[J]. Acta Oceanologica Sinica, 2016, 35(1): 79-85.
[24] Liu L D, Jie D M, Liu H Y, et al. Response of phytoliths in Phragmites communis to humidity in NE China[J]. Quaternary International, 2013, 304(7): 193-199.
[25] Li Zimin, Song Zhaoliang, Jiang Peikun. The production and accumulation of phytoliths in rice ecosystems: A case study to Jiaxing paddy field[J]. Acta Ecologica Sinica, 2013, 33(22): 7 197-7 203.
[李自民, 宋照亮, 姜培坤. 稻田生态系统中植硅体的产生与积累——以嘉兴稻田为例[J]. 生态学报, 2013, 33(22): 7 197-7 203.]
[26] Jian F M, Yamaji N. Silicon uptake and accumulation in higher plants[J].Trends in Plant Science, 2006, 11(8): 392-397.
[27] Wu Y, Yang Y M, Wang H, et al. The effects of chemical composition and distribution on the preservation of phytolith morphology[J].Applied Physics A—Materials Science and Processing, 2013, 114(2): 503-507.
[28] Li Z M, Song Z L, Parr J F, et al. Occluded C in rice phytoliths: Implications to biogeochemical carbon sequestration[J]. Plant and Soil, 2013, 370(1/2): 615-623.
[29] Parr J F, Sullivan L A, Chen B H, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biology, 2010, 16(16): 2 661-2 667.
[30] Li Z M, Song Z L, Cornelis J T. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon[J].Frontiers in Plant Science, 2014, 5(529), doi: 10.3389/fpls.2014.00529.
[31] Hodson D. Economic Governance and the Dual Outcome in Euro area Fiscal Policy, 1999-2002[D].London: University of London, 2005.
[32] Parr J F, Sullivan L A. Soil carbon sequestration in phytoliths[J]. Soil Biology and Biochemistry, 2005, 37(1): 117-124.
[33] Song Z L, Liu H Y, Si Y, et al. The production of phytoliths in China’s grasslands: Implications to the biogeochemical sequestration of atmospheric CO2[J]. Global Change Biology, 2012, 18(12): 3 647-3 653.
[34] Li Rencheng, Nong Rizheng, He Weisong. Phytolith records of weathering origin of red soil derived from carbonate rock[J]. Technology Wind, 2012,(5): 188.
[李仁成, 农日正, 何伟松. 碳酸盐岩红土风化成因的植硅体记录[J]. 科技风, 2012(5): 188.]
[35] Yang Jie, Wu Jiasen, Jiang Peikun, et al. Study on phytolith-occluded organic carbon and silicon in a pleioblastus amarus forest[J]. Journal of Natural Resources, 2016,(2): 299-309.
[杨杰, 吴家森, 姜培坤, 等. 苦竹林植硅体碳与硅的研究[J]. 自然资源学报, 2016,(2): 299-309.]
[36] Bartoli F, Wilding L P. Dissolution of biogenic opal as a function of its physical and chemical properties[J]. Soil Science Society of America Journal, 1980, 44(4): 873-878.
[37] Anala R, Nambisan P. Study of morphology and chemical composition of phytoliths on the surface of paddy straw[J]. Paddy and Water Environment, 2015, 13(4): 521-527.
[38] Parr J F, Sullivan L A. Phytolith occluded carbon and silica variability in wheat cultivars[J]. Plant and Soil, 2011, 342(1/2): 165-171.
[39] Santos G M, Alexandre A, Southon J R, et al. Possible source of ancient carbon in phytolith concentrates from harvested grasses[J]. Biogeosciences, 2012, 9(5): 1 873-1 884.
[40] Kameník J, Mizera J, █(R┴˙ )anda Z. Chemical composition of plant silica phytoliths[J]. Environmental Chemistry Letters, 2013, 11(2): 189-195.
[41] Henriet C, Bodarwé L, Dorel M, et al. Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe[J]. Plant and Soil, 2008, 313(1/2): 71-82.
[42] Zhang X D, Song Z L, McGrouther K, et al. The impact of different forest types on phytolith-occluded carbon accumulation in subtropical forest soils[J]. Journal of Soils and Sediments, 2016, 16(2): 461-466.
[43] Sommer M, Jochheim H, Höhn A, et al. Si cycling in a forest biogeosystem—The importance of transient state biogenic Si pools[J]. Biogeosciences, 2013, 10(7): 4 991-5 007.
[44] Gérard F, Mayer K U, Hodson M J, et al. Modelling the biogeochemical cycle of silicon in soils: Application to a temperate forest ecosystem[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 741-758.
[45] Borrelli N, Osterrieth M, Marcovecchio J. Interrelations of vegetal cover, silicophytolith content and pedogenesis of typical argiudolls of the pampean plain, Argentina[J]. Catena, 2008, 75(2): 146-153.
[46] Street-Perrott F A, Barker P A. Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon[J]. Earth Surface Processes and Landforms, 2008, 33(9): 1 436-1 457.
[47] Zhang X D, Song Z L, Zhao Z Q, et al. Impact of climate and lithology on soil phytolith-occluded carbon accumulation in eastern China[J]. Journal of Soils and Sediments, 2017, 17(2): 481-490.
[48] Alexandre A, Meunier J D, Lézine A M, et al. Phytoliths:Indicators of grassland dynamics during the late Holocene in intertropical Africa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 136(1/4): 213-229.
[49] Fraysse F, Pokrovsky O S, Schott J, et al. Surface properties, solubility and dissolution kinetics of bamboo phytoliths[J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 1 939-1 951.
[50] Fraysse F, Pokrovsky O S, Schott J, et al. Surface chemistry and reactivity of plant phytoliths in aqueous solutions[J]. Chemical Geology, 2009, 258(3): 197-206.
[51] Borrelli N L, Osterrieth M, Oyarbide F, et al. Calcium biominerals in typical Argiudolls from the Pampean Plain, Argentina: An approach to the understanding of their role within the calcium biogeochemical cycle[J]. Quaternary International, 2009, 193(1): 61-69.
[52] Cabanes D, Shahackgross R. Understanding fossil phytolith preservation: The role of partial dissolution in paleoecology and archaeology[J]. PloS One, 2015, 10(5), doi: 10.1371/journal.pone.0125532.
[53] Ngoc Nguyen M, Dultz S, Guggenberger G. Effects of pretreatment and solution chemistry on solubility of rice-straw phytoliths[J].Journal of Plant Nutrition and Soil Science, 2014, 177 (3): 349-359.
[54] Krull E S, Skjemstad J O, Graetz D, et al. 13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths[J]. Organic Geochemistry, 2003, 34(9): 1 337-1 352.
[55] Alexandre A, Basiledoelsch I, Delhaye T, et al. New highlights on phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results[J]. Biogeosciences, 2015, 12(3): 863-873.
[56] Reyerson P E, Alexandre A, Harutyunyan A, et al. Unambiguous evidence of old soil carbon in grass biosilica particles[J]. Biogeosciences, 2016, 13(4): 1 269-1 286.
[57] Prychid C J, Rudall P J, Gregory M. Systematics and biology of silica bodies in monocotyledons[J]. Botanical Review, 2003, 69(4): 377-440.
[58] Carter J A. Atmospheric carbon isotope signatures in phytolith-occluded carbon[J]. Quaternary International, 2009, 193(1): 20-29.
[59] Alexandre A, Balesdent J, Cazevieille P, et al. Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence[J]. Biogeosciences, 2016, 13(5): 1 693-1 703.
[60] Parr J F, Sullivan L A. Comparison of two methods for the isolation of phytolith occluded carbon from plant material[J]. Plant and Soil, 2014, 374(1/2): 45-53.
[61] Kelly E F, Amundson R G, Marino B D, et al. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change[J]. Quaternary Research, 1991, 35(2): 222-233.
[62] Smith F A, White J W C. Modern calibration of phytolith carbon isotope signatures for C3/C4 paleograssland reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207(3): 277-304.
[63] Ford C R. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi[J]. Tree Physiology, 2007, 27(3): 375-383.
[64] Song Z L, McGrouther K, Wang H L. High potential of phytoliths in terrestrial carbon sequestration at a centennial-millennial scale: Reply to comments by Santos and Alexandre[J]. Earth-Science Reviews,2017,164:256,doi:10.1016/j.earscirev.2016.11.001.
[65] Wang Jianghai, Sun Xianxian, Xu Xiaoming, et al. Marine carbon sequestration: Current situation, problems and future[J]. Advances in Earth Science, 2015, 30(1): 17-25.
[王江海, 孙贤贤, 徐小明,等. 海洋碳封存技术:现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25.]
[66] Song Z L, Parr J F, Guo F S. Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization[J]. PLoS One, 2013, 8(9): e73747,doi:10.1371/journal.pone.0073747.
[67] Parr J F, Sullivan L A, Quirk R. Sugarcane phytoliths: Encapsulation and sequestration of a long-lived carbon fraction[J]. Sugar Tech, 2009, 11(1): 17-21.
[68] Zuo X X, Lü H Y. Carbon sequestration within millet phytoliths from dry-farming of crops in China[J]. Chinese Science Bulletin, 2011, 56(32): 3 451-3 456.
[69] Li Z J, Lin P, He J Y, et al. Silicon’s organic pool and biological cycle in moso bamboo community of Wuyishan Biosphere Reserve[J]. Journal of Zhejiang University Science B, 2006, 7(11): 849-857.
[70] Mecfel J, Hinke S, Goedel W A, et al. Effect of silicon fertilizers on silicon accumulation in wheat[J]. Journal of Plant Nutrition and Soil Science, 2007, 170(6): 769-772.
[71] Bowdery D. Phytolith analysis, sheep, diet and fecal material at Ambathala pastoral station (Queensland, Australia)[C]∥Plants, People and Places: Recent Studies in Phytolithic Analysis. Oxbow, Oxford, 2007.
[72] Liu Xianzhao, Zhang Yong, Su Qing, et al. Research progress in responses of modern terrestrial plant carbon isotope composition to climate change[J]. Advances in Earth Science, 2014, 29(12): 1 341-1 354.
[刘贤赵, 张勇, 宿庆, 等. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1 341-1 354.]
[73] McInerney F A, Strömberg C A E, White J W C. The Neogene transition from C3 to C4 grasslands in North America: Stable carbon isotope ratios of fossil phytoliths[J]. Paleobiology, 2011, 37(1):23-49.
[74] Zuo X X, Lü H Y, Zhang J P, et al. Radiocarbon dating of prehistoric phytoliths: A preliminary study of archaeological sites in China[J]. Scientific Reports, 2016, 6, doi:10.1038/srep26769.
[75] Arens N C, Jahren A H, Amundson R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?[J].Paleobiology, 2000, 26(1):137-164.
[76] Li Rencheng, Xie Shucheng, Gu Yansheng. Advances in the biogeochemical study of phytolity stable isotope[J].Advances in Earth Science, 2010, 25(8): 812-819.
[李仁成, 谢树成, 顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.]
[77] Wang Yongji, Lü Houyuan. AMS~14C dating and isotopic analysis of phytoliths[J]. Marine Science Bulletin, 1997,(3): 49-56.
[王永吉, 吕厚远. 植物硅酸体AMS~14C测年和同位素分析[J]. 海洋通报, 1997,(3): 49-56.]
[78] Cao Fang, Zhang Yanlin. Principle, method development and application of radiocarbon (14C)—Based source apportionment of carbonaceous aerosols: A review[J]. Advances in Earth Science, 2015, 30(4): 425-432.
[曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素(14C)源解析: 原理、方法和研究进展[J].地球科学进展, 2015, 30(4): 425-432.]
[79] Wilding L P, Brown R E, Holowaychuk N. Accessibility and properties of occluded carbon in biogenetic opal[J]. Soil Science, 1967, 103(1): 56-61.
[80] Piperno D R. Phytolith radiocarbon dating in archaeological and paleoecological research: A case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence[J]. Journal of Archaeological Science, 2016, 68: 54-61,doi:10.1016/j.jas.2015.06.002.

[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 冉祥滨,于志刚,臧家业,刘大海,车宏,郑莉莉. 地表过程与人类活动对硅产出影响的研究进展[J]. 地球科学进展, 2013, 28(5): 577-587.
[3] 李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12): 1287-1295.
[4] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.