地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 577 -587. doi: 10.11867/j.issn.1001-8166.2013.05.0577

综述与评述 上一篇    下一篇

地表过程与人类活动对硅产出影响的研究进展
冉祥滨 1,于志刚 2,臧家业 1,刘大海 3,车 宏 1,郑莉莉 4   
  1. 1.国家海洋局第一海洋研究所海洋生态研究中心,山东 青岛 266061;
    2.中国海洋大学海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100;
    3.国家海洋局第一海洋研究所海洋地质室,山东 青岛 266061;
    4.成都理工大学环境与土木工程学院,四川 成都 610059
  • 收稿日期:2012-11-13 修回日期:2013-03-13 出版日期:2013-05-10
  • 基金资助:

    国家自然科学基金项目“植硅体在河流硅输送中的作用”(编号:41106072);山东省自然科学基金项目“植硅体在黄河口湿地硅循环中的作用”(编号:ZR2010DM006)资助.

Advances in the Influence of Earth Surface Process and Human Activity on Silicon Output

Ran Xiangbin 1, Yu Zhigang 2, Zang Jiaye 1, Liu Dahai 3, Che Hong 1, Zheng Lili 4   

  1. 1.Research Center for Marine Ecology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China; 2. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; 3. Department of Marine Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China; 4. College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
  • Received:2012-11-13 Revised:2013-03-13 Online:2013-05-10 Published:2013-05-10

硅元素是地球第二大组成元素,深刻影响着地表物质循环,是陆海相互作用研究、全球碳循环研究的关键元素之一。从自然风化、生物过程和人类活动3个方面综述了国内外有关地表过程对硅产出影响的研究进展,重点分析了生物过程和人类活动在硅生物地球化学循环过程中的作用。综合分析指出,应着重开展生物参与下原生/次生硅酸盐矿物风化速率的研究,重视高等植物在区域硅循环中的作用;富营养化与筑坝对于河流硅的滞留都十分重要,因筑坝产生的水库清水下泄在中下游河道产生的潜在效应很可能对河口硅输入产生重要的影响。应采用地球化学示踪技术,加强这方面的定量研究、模型研究、过程研究以及系统的综合性研究,特别是对流域地表过程的改变以及与筑坝、富营养化过程的联合作用,应进行深入的多学科交叉综合研究。

The research progress of earth surface process and silicon output was reviewed. It is the key problems of studies of landocean interaction, material cycling in the world. The advances and future outlook in research on silicon biogeochemical process in the land was analyzed and summarized with highlighting the phytolith in the land. Reservoir process and eutrophication change  the riverine biogeochemistry process, which result in a serial of impacts on downstream and estuary. Comprehensive studies considering natural, human and biological processes as well as their interactions at the scale of drain basin are necessary to make up the silica balance and to couple terrestrial processes with silicon cycle of fluvial or marine biogeosystems.

中图分类号: 

[1]Epstein E. Silicon[J]. Annual Review of Plant Physiology, 1999, 50:641-664.

[2]Smetacek V. Diatoms and the ocean carbon cycle[J]. Protist, 1999, 150: 25-32.

[3]Conley D J. Terrestrial ecosystems and the global biogeochemical silica cycle[J]. Global Biogeochem Cycles, 2002, 16(4):1 121.

[4]Conley D J. The biogeochemical silica cycle: Elemental to global scales[J]. Oceanis, 2002, 28: 353-368.

[5]Derry L A, Kurtz A C, Ziegler K, et al. Biological control of terrestrial silica cycling and export fluxes to watersheds[J]. Nature, 2005, 433: 728-731.

[6]Xia Bangdong. Physical Geology[M]. Beijing: Geology Press, 1995:134-148.[夏邦栋.普通地质学[M]. 北京:地质出版社, 1995:134-148.]

[7]Alexandre A, Meunier J D, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes[J]. Geochimica et Cosmochimica Acta, 1997, 61: 677-682.

[8]Kelly E F, Chadwich O A, Hilinski T E. The effect of plants on mineral weathering[J]. Biogeochemistry, 1998, 42: 21-53.

[9]Humborg C, Ittekkot V, Cociasu A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature,1997, 386: 385-388.

[10]Li M T, Xu K X, Watanabe M, et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem[J].Estuarine, Coastal and Shelf Science,2007, 71: 3-12.

[11]Goto N, Iwata T, Akatsuka T, et al. Environmental factors which influence the sink of silica in the limnetic system of the large monomictic Lake Biwa and its watershed in Japan[J].Biogeochemistry, 2007, 84(3): 285-295.

[12]Sferratore A, Billen G, Garnier J, et al. Modelling nutrient fluxes from sub-arctic basins: Comparison of pristine vs. dammed rivers[J]. Journal of Marine Systems,2008, 73(3/4): 236-249.

[13]Triplett L D, Engstrom D R, Conley D J, et al. Silica fluxes and trapping in two contrasting natural impoundments of the upper Mississippi River[J]. Biogeochemistry, 2008, 87:217-230.

[14]Dürr H H, Meybeck M, Hartmann J, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone[J].Biogeosciences Discuss, 2009, 6:1 345-1 401, doi:10.5194/bgd-6-1345-2009.

[15]Laruelle G G, Roubeix V, Sferratore A, et al. Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition[J]. Global Biogeochemical Cycles, 2009, 23, doi:10.1029/ 2008GB003267.

[16]Perran L, Cook M, Aldridge K T, et al. Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system[J]. Biogeochemistry, 2010, 99(1/3):49-63.

[17]Dai Z J, Du J Z, Zhang X L, et al. Variation of rievrine material loads and environmental consequences on the Changjiang Estuary in recent decades (1955-2008)[J]. Environmental Science & Technology, 2011, 45: 223-227.

[18]Ran X B, Yu Z G, Yao Q Z, et al. Silica retention in the Three Gorges Reservoir[J].Biogeochemistry, 2013, 112:209-228.

[19]Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159: 1-4.

[20]Tréguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate[J]. Science, 1995, 268: 375-379.

[21]Dugdale R, Wilkerson F. Silicate regulation of new production in the equatorial Pacific upwelling[J]. Nature, 1998, 391(15): 270-273.

[22]Yool A, Tyrrell T. Role of diatoms in regulating the ocean’s silicon cycle[J]. Global Biogeochemical Cycles, 2003, 17(4): 1 103, doi:10.1029/2002 GB002018.

[23]Golterman H L, Sly P G, Thoms R L. Study of the Relationship between Water Quality and Sediment Transport: A Guide for the Collection and Interpretation of Sediment Quality Data[M]. Paris: UNESCO, 1983.

[24]Meunier J D, Guntzer F, Kirman S, et al. Terrestrial plant-Si and environmental changes[J]. Mineralogical Magazine, 2008, 72(1): 263-267.

[25]Berner R A, Lassaga A C, Garrels R M. The carbonate silicate geochemical cycle and its effects on atmospheric carbon dioxide over the past 100 million years[J].American Journal of Science, 1983, 284: 1 183-1 192.

[26]Bluth G J S, Kump L R. Lithological and climatological controls of river chemistry[J].Geochimica et Cosmochimica Acta, 1994, 58: 2 341-2 359.

[27]White A F, Blum A E. Effects of climate on chemical weathering in watersheds[J]. Geochimica et Cosmochimica Acta, 1995, 59: 1 729-1 747.

[28]Millot R, Gaillardet J, Dupré B, et al. The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield[J]. Earth and Planetary Science Letters, 2002, 196: 83-98.

[29]Chen Jingsheng.  Theory of River Water Quality and Water Quality of River in China[M]. Beijing: Science Press,2006:34-36.[陈静生. 河流水质原理及中国河流水质[M]. 北京:科学出版社,2006:34-36.]

[30]Huh Y, Edmond J M. The fluvial geochemistry of the rivers of Eastern Siberia: III. Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal Highlands[J]. Geochimica et Cosmochimica Acta, 1999, 63: 967-987.

[31]White A F, Blum A E, Bullen T D, et al. The effect of temperature on experimental and natural chemical weathering rates of Granitoid rocks[J]. Geochimica et Cosmochimica Acta, 1999, 63: 3 277-3 291.

[32]Mcdowell W H, Asbury C E. Export of carbon, nitrogen, and major ions from three tropical montane watersheds[J]. Limnology and Oceanography, 1994, 39: 111-125.

[33]Vegas-Vilarrubia T, Maass M, Rull V, et al. Small catchment studies in the tropical zone[M]∥Moldan B, Cerny J, eds. Biogeochemistry of Small Catchment: A Tool for Environmental Research. New York: SCOPE, 1994:343-360.

[34]Viers J, Dupr B, Deberdt S, et al. Major and traces elements abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): Constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments[J]. Chemical Geology, 2000, 169: 211-241.

[35]Dessert C, Dupr B, Francis  L M, et al. Erosion of deccan traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater[J]. Earth and Planetary Science Letters, 2001, 188: 459-474.

[36]Vandevivere P,Welch S A, Ullman W J, et al. Enhanced dissolution of silicate minerals by bacteria at near-neutral pH[J]. Microbial Ecology, 1994, 27:241-251.

[37]Bennett P C, Rogers J R, Choi W J. Silicates, silicate weathering, and microbial ecology[J]. Geomicrobiology Journal, 2001, 18: 3-19.

[38]Drever J I. The effect of land plants on weathering rates of silicate minerals[J]. Geochimica et Cosmochimica Acta, 1994, 58(10): 2 325-2 332.

[39]Gérarda F, Ranger J, Ménétrier C, et al. Silicate weathering mechanisms determined using soil solutions held at high metric potential[J].Chemical Geology, 2003, 202: 443-460.

[40]Gérarda F, Mayerb K U, Hodsonc M J, et al. Modelling the biogeochemical cycle of silicon in soils: Application to a temperate forest ecosystem[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 741-758.

[41]Henriet C, De Jaeger N, Dorel M, et al. The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils[J]. Biogeochemistry, 2008, 90: 209-223.

[42]Opfergelt S, Delvaux B, Andre L, et al. Plant silicon isotopic signature might reflect soil weathering degree[J]. Biogeochemistry, 2008, 91: 163-175.

[43]Moulton K L, Berner R A. Quantification of the effect of plants on weathering: Studies in Iceland[J]. Geology, 1998, 26(10):895-898.

[44]Moulton K L, West J, Berner R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science, 2000, 300: 539-570.

[45]Cornelis J T, Delvaux B, Georg R B, et al. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards river: A review[J]. Biogeosciences Discussions, 2010, 7: 5 873-5 930.

[46]Struyf E, Conley D J. Emerging understanding of the ecosystem silica filter[J]. Biogeochemistry, 2012, 107: 9-18.

[47]Meybeck M. Global occurrence of major elements in rivers[M]∥Derver J J, ed. Surface Ground Water, Weathering, and Soils. Vol. 5. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 2003: 207-223.

[48]Chapman D. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environment Monitoring[M]. London: Chapman & Hall, 1992: 586.

[49]Jennerjahn T C, Knoppers B A,de Souza W F L, et al. Factors controlling dissolved silica in tropical rivers[M]∥Ittekkat V, Vnger D, Humborg C,eds. The Silicon Cycle.  Washington DC: Island Press, 2006: 29-51.

[50]Conley D J. Riverine contribution of biogenic silica to the oceanic silica budget[J]. Limnology and Oceanography, 1997, 42: 774-777.

[51]Subramanian V, Ittekkot V, Unger D, et al. Silicate weathering in south Asian tropical river basins[M]∥Ittekkot V, Unger D, Humborg C, eds. The Silicon Cycle.  Washington DC: Island Press, 2006:3-12.

[52]Saccone L, Conley D J, Likens G E, et al. Factors that control the range and variability of amorphous silica in soils in the Hubbard Brook experimental forest[J]. Soil Science Society Journal of America, 2008, 72(6): 1 637-1 644.

[53]Zakharova E A, Pokrovsky O S, Dupré B, et al. Chemical weathering of silicate rocks in Karelia region and Kola peninsula, NW Russia: Assessing the effect of rock composition, wetlands and vegetation[J]. Chemical Geology, 2007, 242: 255-277.

[54]Raymond P A, Cole J J. Increase in the export of alkalinity from North America’s largest river[J]. Science, 2003, 302: 88-91.

[55]Chetelat B, Liu C Q, Zhao Z Q, et al. Geochemistry of the dissolved load of the Changjiang  Basin  rivers: Anthropogenic impacts and chemical weathering[J]. Geochimca et Cosmochimca Acta, 2008, 72: 4 254-4 277.

[56]Chen J S, Wang F, Xia X, et al. Major element chemistry of the Changjiang (Yangtze River)[J]. Chemical Geology, 2002, 187: 231-255.

[57]Turner R E, Rabalais N N. Changes in the Mississippi River water quality this century implications for coastal food webs[J]. BioScience, 1991, 41: 140-147.

[58]Simpson T L, Volcani B E. Silicon and Siliceous Structures in Biological Systems[M]. New York: Springer-Verlag, 1981:587.

[59]Wang Yongji, Lü  Houyuan. Study and Application of Phytolith[M]. Beijing: Marine Press, 1993: 170-177.[王永吉, 吕厚远. 植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1993: 170-177.]

[60]Struyf E, Dausse A, Van Damme S, et al. Tidal marshes and biogenic silica recycling at the land-sea interface[J]. Limnology and Oceanography, 2006, 51: 838-846.

[61]Lu H, Saito Y, Liu B, et al. Rice domestication and climatic change: Phytolith evidence from East China[J]. Boreas, 2002, 31: 378-385.

[62]Ran X B, Yu Z G, Chen H T, et al. Silicon transport of Changjiang River: Could the Three Gorges Reservoir be a filter?[J]. Environmental Earth Sciences,2013:1-13,doi:10.1007/S12665-013-2275-5.

[63]Zhao Z, Piperno D R. Late Pleistocene/Holocene environments in the middle Yangtze River Valley, China and rice (Oryza sativa L.) domestication: The phytolith evidence[J]. Geoarchaeology, 1999, 15: 203-222.

[64]Cary L, Alexandre A, Meunier J D, et al. Contribution of phytoliths to the suspended load of biogenic silica in the Nyong Basin rivers (Cameroon)[J]. Biogeochemistry, 2005, 74: 101-114.

[65]Bootsma H A, Hecky R E, Johnson T C, et al. Inputs, outputs, and internal cycling of silica in a large, tropical lake[J]. Journal of Great Lakes Research, 2003, 29(Suppl. 2): 121-138.

[66]Kurtz A C, Derry L A. Tracing Silicate Weathering and Terrestrial Silica Cycling with Ge/Si Ratios[R]. The 11th International Symposium on Water-Rock Interaction. Taylor & Francis, Lisse, Netherlands, 2004: 833-840.

[67]Farmer V C, Delbos E, Miller J D. The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams[J]. Geoderma,2005, 127: 71-79.

[68]Cornelis J T, Ranger J, Iserentant A, et al. Tree species impact the terrestrial cycle of silicon through various uptakes[J]. Biogeochemistry, 2009, doi: 10.1007/s10533- 009-9369-x.

[69]Fulweiler R W, Nixon S. Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river[J]. Biogeochemistry, 2005, 74: 115-130.

[70]Struyf E, Mrth C M, Humborg C, et al. An enormous amorphous silica stock in boreal wetlands[J]. Journal of Geophysical Research, 2010, 115: G04008,doi:10.1029/2010JG001324.

[71]Olivié-Lauquet G, Allard T, Bertaux J, et al. Crystal chemistry of suspended matter in a tropical hydrosystem, Nyong Basin (Cameroon, Africa)[J]. Chemical Geology, 2000, 170:113-131.

[72]Street-Perrott F A, Barker P A. Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon[J]. Earth Surface Processes and Landforms, 2008, 33:1 436-1 457.

[73]Bormann B T, Wang D, Bormann F H, et al. Rapid, plant-induced weathering in an aggrading experimental ecosystem[J]. Biogeochemistry, 1998, 43: 129-155.

[74]Fan Bin, Xu Shiyuan, Yu Lizhong, et al. Study on the climate changes recorded in the sediment of the Caohu Lake during the last 300 years[J]. Journal of East China Normal University(Natural Scicence), 2007,4: 71-76.[范斌, 许世远, 俞立中, 等. 近300年来植硅体记录的巢湖流域气候变化[J]. 华东师范大学学报:自然科学版, 2007,4: 71-76.]

[75]Chen Lingkang, Guo Jianqiu, Gu Yansheng. Characteristics of phytolith assemblages from sediments of Modern River Floodplain and first terraces in Lhasa River, Tibet[J]. Acta Sedimentologica Sinica, 2008, 26(3): 479-486.[陈陵康, 郭建秋, 顾延生. 西藏拉萨河现代河漫滩及一级阶地沉积物植硅体组合特征[J]. 沉积学报, 2008, 26(3): 479-486.]

[76]Sun Yanlei, Jie Dongmei, Liu Chaoyang, et al. Morphological characteristics of phytolith of woody plants from the vertical vegetation zones on the north slope in Changbai Mountain and its environmental significance[J]. Acta Micropalaeontologica Sinica, 2009, 26(3): 261-270.[孙艳磊, 介冬梅, 刘朝阳, 等. 长白山北坡垂直植被带木本植物的植硅体形态特征及其环境意义[J]. 微体古生物学报, 2009, 26(3): 261-270.]

[77]Tegen Ina, Kohfel D. Atmospheric transport of silicon[M]∥ Ittekkot V, Unger D, Humborg C, eds.The Silicon Cycle.  Washington DC: Island Press, 2006:53-69.

[78]Billen G, Lancelot C, Meybeck M. N, P and Si retention along the aquatic continuum from land to ocean[M]∥Mantoura R F C, Martin J M, Wollast R, eds. Ocean Margin Processes in Global Change. New York:Wiley & Sons, 1991:19-44.

[79]Bennekom V A J, Salomons W. Pathways of nutrients and organic matter from land to ocean through rivers[M]∥Martine J M, Burton J D, Eisma D, eds. River Inputs to Ocean Systems. Rome: UNEP/UNESCO, 1981:33-51.

[80]Dürr H H, Meybeck M, Hartmann J, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone[J]. Biogeosciences, 2011,8: 597-620.

[81]Vrsmarty C J, Keshav P, Sharma B M, et al. The storage and aging of continental runoff in large reservoir systems of the world[J]. Ambio, 1997, 26(4): 210-219.

[82]Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998, 26: 535-538.

[83]Beusen A H W, Bouwman A F, Dürr H H, et al. Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model[J]. Global Biogeochemical Cycles, 2009, 23, GB0A02,doi:10.1029/2008GB003281.

[84]Paul L. Nutrient elimination in pre-dams: Results of long term studies[J]. Hydrobiologia, 2003, 504: 289-295.

[85]Daniel F M, Serghei B, Cristian T, et al. Silica retention in the Iron Gate I Reservoir on the Danube River: The role of side bays as nutrient sinks[J]. River Research and Applications, 2006, 22: 441-456.

[86]Soballe D M, Kimmel B L. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments[J]. Ecology, 1987, 68:1 943-1 954.

[87]Kawara O, Yura E, Fujii S, et al. A study on the role of hydraulic retention time in eutrophication of the Asahi River Dam Reservior[J]. Hydrobiologia, 1998, 37: 245-252.

[88]Rueda F J, Moreno-Ostos E, Armengol J. The residence time of river water in reservoirs[J].Ecological Modelling,2006, 191: 260-274.

[89]Garnier J, Leporcq B, Sanchez N, et al. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France)[J]. Biogeochemistry, 1999, 47: 119-146.

[90]Whaby S D, Bishara N F. The effect of River Nile on Mediterranean water before and after the construction of the High Dam at Aswan[C]∥Martin J M, Burton J D, Eisma D, eds. River Inputs to Ocean Systems. UNEP, IOC, SCOR, United Nations, New York, 1980: 311-318.

[91]Dynesius M, Nilsson C. Fragmentation and flow regulation of river systems in the northern third of the World[J].Science,1994, 266(4): 753-762.

[91]Mayer L M, Gloss S P. Buffering of silica and phosphorus in a turbid river[J]. Limnology and Oceanography, 1980, 25: 12-22.

[92]Wang B D, Brockman U. Potential impacts of Three Gorges Dam in China on the ecosystem of East China Sea[J]. Acta Oceanologica Sinica, 2008, 27(1): 67-76.

[93]Koszelnik P, Tomaszek J A. Dissolved silica retention and itsimpact on Eutrophication[J]. Water, Air & Soil Pollution, 2008, 189: 189-198.

[94]Kelly V J. Influence of reservoirs on solute transport: A regional-scale approach[J]. Hydrological Processes, 2001, 15(7):1 227-1 249.

[95]Schelske C L, Stoermer E F. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan[J]. Science, 1971, 173: 423-424.

[96]Officer C B, Ryther J H. The possible importance of silicon in marine eutrophication[J]. Marine Ecology Progress Series, 1980, 3: 383-391.

[97]Turner R E, Rabalais N N. Coastal eutrophication near the Mississippi River delta[J]. Nature, 1994, 368: 618-620.

[98]Cugiera P, Billenb G, Guillauda J F, et al. Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading[J]. Journal of Hydrology, 2005, 304: 381-396.

[99]Wang B D. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective[J]. Estuarine, Coastal and Shelf Science, 2006, 69: 471-477.

[100]Zhao J, Bianchi T S, Li X X, et al. Historical eutrophication in the Changjiang and Mississippi delta-front estuaries: Stable sedimentary chloropigments as biomarkers[J]. Continental Shelf Research, 2012, 47: 133-144.

[101]Humborg C, Smedberg E, Medina M R, et al. Changes in dissolved silicate loads to the Baltic Sea: The effects of lakes and reservoirs[J]. Journal of Marine Systems, 2008, 73(3/4): 223-235, doi:10.1016/j.jmarsys, 2007,10.014.

[102]Duan S W, Xu F, Wang L J. Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries[J]. Biogeochemistry, 2007, 85: 215-234.

[103]Longhurst A R, Sathyendenath S, Platt T, et al. An estimate of global primary production in the ocean from satellite radiometer data[J]. Journal of Plankton Research, 1995, 17: 1 245-1 271.

[104]Meade R H. River-sediment inputs to major deltas[M]∥Milliman J, Haq B, eds. Sea-Level Rise and Coastal Subsidence. Kluwer, London: Springer, 1996:63-85.

[105]Liu S M, Zhang J, Li R X. Ecological significance of biogenic silica in the East China Sea[J].  Marine Ecology Progress Series,  2005, 290: 15-26.

[106]Loucaides S, Van Cappellen P, Behrends T. Dissolution of biogenic silica from land to ocean: Role of salinity and pH[J]. Limnology and Oceanography, 2008, 53(4): 1 614-1 621.

[107]Ho K C, Hodgkiss I J. Characteristics of red tides caused by Alexandrium catenella (Whedon & Kofoid) balech in Hong Kong[C]∥Smayda T J, Shimizu Y. Toxic Phytoplankton Blooms in the Sea. Netherlands: Elsevier Science Publishers, 1993:263-268.

[108]Turner R E, Qureshi N, Rabalais N N, et al. Fluctuating silicate: Nitrate ratios and coastal plankton food webs[J]. Proceedings of the National Academy of Sciences, USA, 1998, 95: 13 048-13 051.

[109]Bodeanu N. Microbial blooms in the Romanian area of Black Sea and contemporary eutrophication conditions[M]∥Smayda T J, Shimizu Y,eds. Toxic Phytoplankton Blooms in the Sea. Amsterdam: Elsevier, 1993:203-209.

[110]Rabalais N N, Atilla N, Normandeau C, et al. Ecosystem history of Mississippi River influenced continental shelf revealed through preserved phytoplankton pigments[J]. Marine Pollution Bulletin, 2004, 49(728): 537-547.

[111]Justic D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of river dominated coastal waters: Stoichiometric nutrient balance and its consequences[J]. Estuarine, Coastal and Shelf Science, 1995, 40: 339-356.

[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[3] 李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12): 1287-1295.
[4] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
阅读次数
全文


摘要