[1]Wacey D, Kilburn M R, Mcloughlin N, et al. Use of NanoSIMS in the search for early life on Earth: Ambient inclusion trails in a c. 3 400 Ma sandstone[J].Journal of the Geological Society, 2008, 165(1): 43-53.
[2]Wacey D, McLoughlin N, Whitehouse M J, et al. Two coexisting sulfur metabolisms in a ca. 3 400 Ma sandstone[J].Geology, 2010, 38(12): 1 115-1 118.
[3]Wacey D. Stromatolites in the ~3400 Ma Strelley Pool Formation, Western Australia: Examining biogenicity from the macro-to the nano-scale[J].Astrobiology, 2010, 10(4): 381-395.
[4]Rasmussen B, Fletcher I R, Brocks J J, et al. Reassessing the first appearance of eukaryotes and cyanobacteria[J].Nature, 2008, 455(7 216): 1 101-1 104.
[5]Nishizawa M, Maruyama S, Urabe T, et al. Micro-scale (1.5 μm) sulphur isotope analysis of contemporary and early Archean pyrite[J].Rapid Communications in Mass Spectrometry, 2010, 24(10): 1 397-1 404.
[6]Wacey D, Kilburn M R, Saunders M, et al. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia[J].Nature Geoscience, 2011, 4(10): 698-702.
[7]Rasmussen B, Blake T S, Fletcher I R, et al. Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments[J].Geology, 2009, 37(5): 423-426.
[8]McLoughlin N, Wacey D, Kruber C, et al. A combined TEM and NanoSIMS study of endolithic microfossils in altered seafloor basalt[J].Chemical Geology, 2011, 289(1): 154-162.
[9]McLoughlin N, Wilson L, Brasier M. Growth of synthetic stromatolites and wrinkle structures in the absence of microbes—Implications for the early fossil record[J].Geobiology, 2008, 6(2): 95-105.
[10]Kung C C, Hayatsu R, Studier M H, et al. Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction[J].Earth and Planetary Science Letters, 1979, 46(1): 141-146.
[11]Hayatsu R, Studier M H, Matsuoka S, et al. Origin of organic matter in early solar system-VI. Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments[J].Geochimica et Cosmochimica Acta, 1972, 36(5): 555-571.
[12]Kasting J F, Howard M T. Atmospheric composition and climate on the early Earth[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 474): 1 733-1 742.
[13]Robert F, Selo S, Hillion F, et al. NanoSIMS images of Precambrian fossil cells[C]∥36th Annual Lunar and Planetary Science Conference. Texas:League City, 2005.
[14]Kilburn M R, Wacey D. Elemental and isotopic analysis by NanoSIMS: Insights for the study of stromatolites and early life on Earth[M]∥Stromatolites: Interaction of Microbes with Sediments. Netherlands:Springer,2011,118: 463-493.
[15]Shen Y, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era[J].Nature, 2001, 410(6 824): 77-81.
[16]Shen Y, Farquhar J, Masterson A, et al. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics[J].Earth and Planetary Science Letters, 2009, 279(3): 383-391.
[17]Ueno Y, Ono S, Rumble D, et al. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean[J].Geochimica et Cosmochimica Acta, 2008, 72(23): 5 675-5 691.
[18]Philippot P, Van Zuilen M, Lepot K, et al. Early Archaean microorganisms preferred elemental sulfur, not sulfate[J].Science, 2007, 317(5 844): 1 534-1 537.
[19]Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J].Nature, 1996, 382(6 587): 127.
[20]Habicht K S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J].Geochimica et Cosmochimica Acta, 1997, 61(24): 5 351-5 361.
[21]Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J].Science, 1994, 266: 1 973.
[22]Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept[J].Precambrian Research, 2001, 106(1): 117-134.
[23]Farquhar J, Bao H, Thiemens M. Atmospheric influence of Earth’s earliest sulfur cycle[J].Science, 2000, 289(5 480): 756.
[24]Farquhar J, Savarino J, Airieau S, et al. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere[J].Journal of Geophysical Research, 2001, 106(E12): 32 829-32 839.
[25]Pavlov A A, Kasting J F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere[J].Astrobiology, 2002, 2(1): 27-41.
[26]Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the Mesoproterozoic[J].Science, 2005, 310(5 753): 1 477-1 479.
[JP2][27]Wacey D, Saunders M, Brasier M D, et al. Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments[J].Earth and Planetary Science Letters,2011,301(1):393-402.[ZK)][JP]
[28]Brocks J J, Logan G A, Buick R, et al. Archean molecular fossils and the early rise of eukaryotes[J].Science, 1999, 285(5 430): 1 033-1 036.
[29]Brocks J J, Buick R, Summons R E, et al. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia[J].Geochimica et Cosmochimica Acta, 2003, 67(22): 4 321-4 335.
[30]Hofmann H. Precambrian microflora, Belcher Islands, Canada: Significance and systematics[J].Journal of Paleontology, 1976: 1 040-1 073.
[31]Javaux E J, Knoll A H, Walter M R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans[J].Geobiology, 2004, 2(3): 121-132.
[32]Schopf J W. Fossil evidence of Archaean life[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 470): 869-885.
[33]Horodyski R J, Knauth L P. Life on land in the precambrian[J].Science, 1994, 263(5 146): 494.
[34]Tyler S A, Barghoorn E S. Ambient pyrite grains in Precambrian cherts[J].American Journal of Science, 1963, 261(5): 424-432.
[35]Knoll A H, Barghoorn E S. Ambient pyrite in Precambrian chert: New evidence and a theory[J].Proceedings of the National Academy of Sciences, 1974, 71(6): 2 329-2 331.
[36]Kilburn M R, Wacey D. NanoSIMS analysis of Archean fossils and biomarkers[J].Applied Surface Science, 2008, 255(4): 1 465-1 467. |