地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 588 -596. doi: 10.11867/j.issn.1001-8166.2013.05.0588

综述与评述 上一篇    下一篇

纳米离子探针分析在地球早期生命研究中的应用
陈雅丽 1,2,储雪蕾 1*,张兴亮 3,翟明国 1,3   
  1. 1. 中国科学院地质与地球物理研究所,岩石圈演化国家重点实验室,北京 100029;2. 中国科学院大学,北京 100049;3. 西北大学,大陆动力学国家重点实验室,陕西 西安 710069
  • 收稿日期:2012-12-11 修回日期:2013-02-05 出版日期:2013-05-10
  • 通讯作者: 储雪蕾(1946-),男,河南邓州人,研究员,主要从事地球化学研究.E-mail:xlchu@mail.iggcas.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“若干重大地质环境突变的地球生物学过程”(编号:2011CB808805);国家自然科学基金项目“华南埃迪卡拉纪时期海洋的氧化还原与化石记录”(编号:41172029)资助.

Application of Nano Ion Microprobe Insitu Analysis in the Evolution of Earth’s Early Life

Chen Yali 1,2, Chu Xuelei 1, Zhang Xingliang 3, Zhai Mingguo 1,3   

  1. 1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2.University of Chinese Academy of Sciences, Beijing 100049, China;
    3.State Key Laboratory for the Continental Dynamics, Northwest University, Xi’an 710069, China
  • Received:2012-12-11 Revised:2013-02-05 Online:2013-05-10 Published:2013-05-10

地球早期生命的个体极其微小,又因遭受了漫长地质年代中各种地质作用的破坏,现今保存下来的生命记录往往不完整,很难用常规分析手段对其进行原位分析。而纳米离子探针(NanoSIMS)具有极高的空间分辨率,在使用Cs+一次离子源来获得非金属元素或同位素信息的条件下,其空间分辨率可达到50 nm,能有效地解决在地球早期生命研究中所面临的难题。基于选取的5个实例,介绍了NanoSIMS在寻找地球早期生命中发挥的重要作用。通过NanoSIMS获得的生命元素(C,N,S等)分布图像能够直观地观察到生命元素在待研究区域内的分布情况,在排除了无机成因的前提下,C,N,S等生命元素所呈现出的紧密联系可以用来指示生物成因;而获得的微区原位的C,S等同位素信息能够进一步帮助判断所谓的“生物体”或“生物遗迹构造”等是否是真正的生物或由生物活动造成的。

When life arose on Earth is an unresolved scientific issue, Therefore, it is of great significance to explore the origin of life on Earth and search for possible extraterrestrial life by identifying  early life. Morphological or chemical features of  life are the most compelling evidence for biogenic in origin. However, morphology is not sufficient to prove biogenicity, as many inorganic processes can result in similar features. In addition, the earliest life on Earth were extremely small and  poorly preserved because they went through various geological destructive processes in the long geological time, so it is very difficult to use conventional analytical methods to study those early life in situ. Fortunately, NanoSIMS has very high spatial resolution. And with Cs+ primary ion source that is used to gain nonmetal elements or isotope information, its spatial resolution can promote to 50 nm, which can effectively solve the problems of early life on Earth we are facing. In this paper, five study examples related to early life are presented, which show the great important role NanoSIMS plays in searching for early life.
By using the liferelated element (like C, N, S) distribution images obtained by NanoSIMS, we can directly observe the distribution of the life-related elements (like C, N, S) in the study area. And after excluding the biogenic processes, the close relationship among C, N, S and other elements indicates a biological origin;
at the mean time, C and S isotope data of the obtained micro in situ area can further help to determine whether the socalled “organism” is a true organism or “biological trails” is truly caused by biological activities.

中图分类号: 

[1]Wacey D, Kilburn M R, Mcloughlin N, et al. Use of NanoSIMS in the search for early life on Earth: Ambient inclusion trails in a c. 3 400 Ma sandstone[J].Journal of the Geological Society, 2008, 165(1): 43-53.

[2]Wacey D, McLoughlin N, Whitehouse M J, et al. Two coexisting sulfur metabolisms in a ca. 3 400 Ma sandstone[J].Geology, 2010, 38(12): 1 115-1 118.

[3]Wacey D. Stromatolites in the ~3400 Ma Strelley Pool Formation, Western Australia: Examining biogenicity from the macro-to the nano-scale[J].Astrobiology, 2010, 10(4): 381-395.

[4]Rasmussen B, Fletcher I R, Brocks J J, et al. Reassessing the first appearance of eukaryotes and cyanobacteria[J].Nature, 2008, 455(7 216): 1 101-1 104.

[5]Nishizawa M, Maruyama S, Urabe T, et al. Micro-scale (1.5 μm) sulphur isotope analysis of contemporary and early Archean pyrite[J].Rapid Communications in Mass Spectrometry, 2010, 24(10): 1 397-1 404.

[6]Wacey D, Kilburn M R, Saunders M, et al. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia[J].Nature Geoscience, 2011, 4(10): 698-702.

[7]Rasmussen B, Blake T S, Fletcher I R, et al. Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments[J].Geology, 2009, 37(5): 423-426.

[8]McLoughlin N, Wacey D, Kruber C, et al. A combined TEM and NanoSIMS study of endolithic microfossils in altered seafloor basalt[J].Chemical Geology, 2011, 289(1): 154-162.

[9]McLoughlin N, Wilson L, Brasier M. Growth of synthetic stromatolites and wrinkle structures in the absence of microbes—Implications for the early fossil record[J].Geobiology, 2008, 6(2): 95-105.

[10]Kung C C, Hayatsu R, Studier M H, et al. Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction[J].Earth and Planetary Science Letters, 1979, 46(1): 141-146.

[11]Hayatsu R, Studier M H, Matsuoka S, et al. Origin of organic matter in early solar system-VI. Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments[J].Geochimica et Cosmochimica Acta, 1972, 36(5): 555-571.

[12]Kasting J F, Howard M T. Atmospheric composition and climate on the early Earth[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 474): 1 733-1 742.

[13]Robert F, Selo S, Hillion F, et al. NanoSIMS images of Precambrian fossil cells[C]∥36th Annual Lunar and Planetary Science Conference. Texas:League City,  2005.

[14]Kilburn M R, Wacey D. Elemental and isotopic analysis by NanoSIMS: Insights for the study of stromatolites and early life on Earth[M]∥Stromatolites: Interaction of Microbes with Sediments. Netherlands:Springer,2011,118: 463-493.

[15]Shen Y, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era[J].Nature, 2001, 410(6 824): 77-81.

[16]Shen Y, Farquhar J, Masterson A, et al. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics[J].Earth and Planetary Science Letters, 2009, 279(3): 383-391.

[17]Ueno Y, Ono S, Rumble D, et al. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean[J].Geochimica et Cosmochimica Acta, 2008, 72(23): 5 675-5 691.

[18]Philippot P, Van Zuilen M, Lepot K, et al. Early Archaean microorganisms preferred elemental sulfur, not sulfate[J].Science, 2007, 317(5 844): 1 534-1 537.

[19]Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J].Nature, 1996, 382(6 587): 127.

[20]Habicht K S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J].Geochimica et Cosmochimica Acta, 1997, 61(24): 5 351-5 361.

[21]Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J].Science, 1994, 266: 1 973.

[22]Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept[J].Precambrian Research, 2001, 106(1): 117-134.

[23]Farquhar J, Bao H, Thiemens M. Atmospheric influence of Earth’s earliest sulfur cycle[J].Science, 2000, 289(5 480): 756.

[24]Farquhar J, Savarino J, Airieau S, et al. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere[J].Journal of Geophysical Research, 2001, 106(E12): 32 829-32 839.

[25]Pavlov A A, Kasting J F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere[J].Astrobiology, 2002, 2(1): 27-41.

[26]Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the Mesoproterozoic[J].Science, 2005, 310(5 753): 1 477-1 479.

[JP2][27]Wacey D, Saunders M, Brasier M D, et al. Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments[J].Earth and Planetary Science Letters,2011,301(1):393-402.[ZK)][JP]

[28]Brocks J J, Logan G A, Buick R, et al. Archean molecular fossils and the early rise of eukaryotes[J].Science, 1999, 285(5 430): 1 033-1 036.

[29]Brocks J J, Buick R, Summons R E, et al. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia[J].Geochimica et Cosmochimica Acta, 2003, 67(22): 4 321-4 335.

[30]Hofmann H. Precambrian microflora, Belcher Islands, Canada: Significance and systematics[J].Journal of Paleontology, 1976: 1 040-1 073.

[31]Javaux E J, Knoll A H, Walter M R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans[J].Geobiology, 2004, 2(3): 121-132.

[32]Schopf J W. Fossil evidence of Archaean life[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 470): 869-885.

[33]Horodyski R J, Knauth L P. Life on land in the precambrian[J].Science, 1994, 263(5 146): 494.

[34]Tyler S A, Barghoorn E S. Ambient pyrite grains in Precambrian cherts[J].American Journal of Science, 1963, 261(5): 424-432.

[35]Knoll A H, Barghoorn E S. Ambient pyrite in Precambrian chert: New evidence and a theory[J].Proceedings of the National Academy of Sciences, 1974, 71(6): 2 329-2 331.

[36]Kilburn M R, Wacey D. NanoSIMS analysis of Archean fossils and biomarkers[J].Applied Surface Science, 2008, 255(4): 1 465-1 467.

[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[3] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[4] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[5] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[6] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[7] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[8] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[9] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[10] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[11] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[12] 黄可可,黄思静,兰叶芳,胡作维. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展, 2013, 28(3): 357-365.
[13] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[14] 章伟艳,金海燕,张富元,赵国军,杨克红,李宏亮,白有成,高为利. 长江口—杭州湾及其邻近海域不同粒级沉积有机碳分布特征[J]. 地球科学进展, 2009, 24(11): 1202-1209.
[15] 郎赟超,刘丛强,Satake H.,WuJiahong,李思亮. 贵阳地表水—地下水的硫和氯同位素组成特征及其污染物示踪意义[J]. 地球科学进展, 2008, 23(2): 151-159.
阅读次数
全文


摘要