地球科学进展 ›› 2019, Vol. 34 ›› Issue (1): 20 -33. doi: 10.11867/j.issn.1001-8166.2019.1.0020

上一篇    下一篇

脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展
黄咸雨 1, 2( ),张一鸣 1   
  1. 1. 中国地质大学(武汉)流域关键带演化湖北省重点实验室,湖北 武汉 430074
    2. 中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉 430074
  • 收稿日期:2018-11-27 修回日期:2018-12-29 出版日期:2019-01-10
  • 基金资助:
    国家自然科学基金项目“多种脂类碳同位素记录的泥炭地生态系统对百年尺度水位下降的生态响应”(编号:41877317);生物地质与环境地质国家重点实验室自主研究课题项目“大九湖泥炭地碳循环与气候变化的耦合关系”(编号:GBL11804)

An Overview of the Applications of Lipid Carbon Isotope Compositions in the Paleoenvironmental and Paleoecological Reconstructions in Lacustrine and Peat Deposits

Xianyu Huang 1, 2( ),Yiming Zhang 1   

  1. 1. HuBei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan 430074, China
    2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
  • Received:2018-11-27 Revised:2018-12-29 Online:2019-01-10 Published:2019-03-05
  • About author:Huang Xianyu(1981-), male,Yangxin County, Hubei Province, Professor. Research areas include peat lipids and global change. E-mail: xyhuang@cug.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Response of peatland ecosystems to water level drawdown on centennial timescale: Evidence from carbon isotope compositions of multi lipids”(No.41877317);The State Key Laboratory of Biogeology and Environmental Geology “Coupling relationship between carbon cycle and climate change in the Dajiuhu peatland”(No.GBL11804)

地质载体中保存的脂类来源于生物细胞膜、叶片蜡质层等,能够指示特定的生物分类学类群或微生物功能群,也能够记录生物生长或早期成岩过程中的生态环境信息,已经成为第四纪古环境和古生态研究的重要手段。除了化合物含量和分子组成,脂类的碳同位素组成也蕴含着重要的生态或环境信息。对于光能自养生物,这些信息来自光合作用和脂类的生物合成过程;对于异养生物,信息则来自摄食的底物和脂类的生物合成过程。总结了近些年来湖沼沉积中脂类单体碳同位素的研究进展,从长链正构烷烃、脂肪酸、陆源五环三萜等高等植物脂类和磷脂脂肪酸、藿类、四醚膜脂等微生物脂类等2个领域进行了系统阐述。在今后的发展中,需要重视实验技术,开发适合小样品量的分析方法,建立直接测试藿类和四醚类等分子量相对大的脂类碳同位素组成的新技术,加强单体放射性碳同位素的应用;可以考虑多种脂类碳同位素的联合、同一脂类单体碳同位素和单体氢同位素的联合;建议加强脂类单体碳同位素在生物地球化学过程,特别是微生物地球化学过程对过去全球变化的响应研究。

Lipids preserved in geological materials mainly originate from cell membrane and leaf waxes, and have the potential to infer biological sources, metabolic pathways, and environmental information. Thus,lipid-based proxies have been widely applied to reconstruct paleoenvironment and paleoecology in the Quaternary. Except the concentration and molecular composition, the carbon isotope compositions of lipids are also a type of important signal sources. For photoautotrophs, the carbon isotope compositions of lipids are mainly mediated by the carbon isotope discrimination during the photosynthesis and lipid biosynthesis processes. In contrast, the carbon isotope compositions of heterotroph derived lipids are controlled by substrates and the carbon isotope fractionation during biosynthesis. In this review, we overview the advances of applications of lipid carbon isotope ratios in lacustrine and peat deposits. In the near future, more attention is suggested to pay to instrumental techniques, such as reduce the sample amount, direct analysis the carbon isotope compositions of molecules with relatively large molecular weight (e.g. BHPs, GDGTs), and widely application of compound-specific radiocarbon isotope analysis. In addition, combination of carbon isotope ratios from multi lipids, or the application of dual carbon and hydrogen isotope ratios of lipids, will shed more information on the response of ecological processes to climate changes. Furthermore, more works are worthy to investigate the relation between biogeochemical processes and paleoclimate changes in the Quaternary.

中图分类号: 

图1 神农架大九湖ZK-5泥炭柱记录的C29 长链正构烷烃δ13C值对中全新世干旱的响应
Fig. 1 Response of the δ13C values of n-C29 alkane to the mid-Holocene drought in the ZK-5 peat core, Shennongjia
图2 泥炭沉积中生物体、糖类和脂类δ13C分布示意图(据参考文献[ 88 ]修改)
Fig. 2 Schematic diagram showing the relationship between organic carbon constituents of plants and heterotrophic bacteria in peat deposits (modified after reference[ 88 ])
图3 神农架大九湖ZK-5泥炭柱中藿烷和C29 正构烷烃δ13C序列对比[ 62 ]
Fig. 3 Comparisons of δ13C records in the ZK-5 peat core retrieved from the Dajiuhu peatland, Shennongjia [ 62 ]
1 Killops S , Killops V . Introduction to Organic Geochemistry (second edition)[M]. Malden, MA: Blackwell Science, 2005.
2 Brocks J , Pearson A . Building the biomarker tree of life[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1): 233-258.
3 Xie Shucheng , Yang Huan , Luo Genming , et al . Geomicrobial functional groups: A window on the interaction between life and environments[J]. Chinese Science Bulletin, 2012, 57(1): 2-19.
谢树成, 杨欢, 罗根明, 等 . 地质微生物功能群:生命与环境相互作用的重要突破口[J]. 科学通报, 2012, 57(1): 2-19.
4 Zhang Jie , Jia Guodong . Application of plant derived n-alkanes and their compound specific hydrogen isotopic composition in paleoenvironment research[J]. Advances in Earth Science, 2009, 24(8): 874-881.
张杰, 贾国东 .植物正构烷烃及其单体氢同位素在古环境研究中的应用[J].地球科学进展, 2009, 24(8): 874-881.
5 Xie Shucheng , Huang Xianyu , Yang Huan , et al . An overview on microbial proxies for the reconstruction of past global environmental change[J]. Quaternary Sciences, 2013, 33(1): 1-18.
谢树成, 黄咸雨, 杨欢, 等 .示踪全球环境变化的微生物代用指标[J]. 第四纪研究, 2013, 33(1): 1-18.
6 Luo G , Yang H , Algeo T J , et al . Lipid biomarkers for the reconstruction of deep-time environmental conditions[J]. Earth-Science Reviews, 2019. DOI:10.1016/j.earscirev.2018.03.005.
doi: 10.1016/j.earscirev.2018.03.005.    
7 Matthews D E , Hayes J M . Isotope-ratio-monitoring gas chromatography-mass spectrometry[J].Analytical Chemistry,1978, 50(11): 1 465-1 473.
8 Sessions A L . Isotope-ratio detection for gas chromatography[J]. Journal of Separation Science, 2006, 29(12): 1 946-1 961.
9 Blessing M , Jochmann M A , Schmidt T C . Pitfalls in compound-specific isotope analysis of environmental samples[J]. Analytical and Bioanalytical Chemistry, 2008, 390(2): 591-603.
10 Elsner M , Jochmann M A , Hofstetter T B , et al . Current challenges in compound-specific stable isotope analysis of environmental organic contaminants[J]. Analytical and Bioanalytical Chemistry, 2012, 403(9): 2 471-2 491.
11 Cranwell P A . Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 1973, 3(3): 259-265.
12 Du Li , Li Liwu , Meng Qianxiang , et al . Comparison of carbon isotopic composition of the saturated hydrocarbons before and after complexation 5? molecular sieve[J]. Acta Sedimentologica Sinica, 2005, 23(4): 747-752.
杜丽, 李立武, 孟仟祥, 等 . 饱和烃经5 ?分子筛络合前后单体烃碳同位素分析对比研究[J].沉积学报, 2005, 23(4): 747-752.
13 Grice K , de Mesmay R , Glucina A , et al . An improved and rapid 5A molecular sieve method for gas chromatography isotope ratio mass spectrometry of n-alkanes (C8-C30+)[J]. Organic Geochemistry, 2008, 39(3): 284-288.
14 Smittenberg R H , Sachs J P . Purification of dinosterol for hydrogen isotopic analysis using high-performance liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2007, 1 169(1/2): 70-76.
15 Atwood A R , Sachs J P . Purification of dinosterol from complex mixtures of sedimentary lipids for hydrogen isotope analysis[J]. Organic Geochemistry, 2012, 48: 37-46.
16 Rieley G . Derivatization of organic compounds prior to gas chromatographic-combustion-isotope ratio mass spectrometric analysis: Identification of isotope fractionation processes[J]. Analyst, 1994, 119(5): 915-919.
17 Schimmelmann A , Qi H , Coplen T B , et al . Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: Caffeines, n-alkanes, fatty acid, methyl esters, glycines, L-valines, polyethylenes, and oils[J]. Analytical Chemistry, 2016, 88(8): 4 294-4 302.
18 Innes H E , Bishop A N , Head I M , et al . Preservation and diagenesis of hopanoids in recent lacustrine sediments of Priest Pot, England[J]. Organic Geochemistry, 1997, 26(9/10): 565-576.
19 Van Winden J F , Kip N , Reichart G J , et al . Lipids of symbiotic methane-oxidizing bacteria in peat moss studied using stable carbon isotopic labelling[J]. Organic Geochemistry, 2010, 41(9): 1 040-1 044.
20 Pancost R D , van Geel B , Baas M , et al . δ13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits[J]. Geology, 2000, 28(7): 663-666.
21 Weijers J W H , Wiesenberg G L B , Bol R , et al . Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic lifestyle of their source organism(s)[J]. Biogeosciences, 2010, 7(9): 2 959-2 973.
22 Lu H , Liu W , Sheng W . Carbon isotopic composition of branched tetraether membrane lipids in a loess-paleosol sequence and its geochemical significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 150-155.
23 Pearson A , Hurley S J , Walter S R S , et al . Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 181: 18-35.
24 Colcord D E , Pearson A , Brassell S C . Carbon isotopic composition of intact branched GDGT core lipids in Greenland Lake sediments and soils[J]. Organic Geochemistry, 2017, 110: 25-32.
25 Hemingway J , Kusch S , Shah Walter S R , et al . A novel method to measure the 13C composition of intact bacteriohopanepolyols[J]. Organic Geochemistry, 2018, 123: 144-147.
26 Eglinton G , Hamilton R J . Leaf epicuticular waxes[J]. Science, 1967, 156(3 780): 1 322-1 335.
27 Jetter R , Kunst L , Samuels A L . Composition of plant cuticular waxes[M]//Riederer M, Müller C, eds. Biology of the Plant Cuticle. Oxford: Blackwell, 2006: 145-181.
28 Zeisler-Diehl V , Barthlott W , Schreiber L . Plant cuticular Waxes: Composition, function, and interactions with microorganisms[M]//Wilkes H, ed. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Srritzerland: Springer, 2018: 1-16.
29 Huang X , Meyers P A , Wu W , et al . Significance of long chain iso and anteiso monomethyl alkanes in the Lamiaceae (mint family)[J]. Organic Geochemistry, 2011, 42(2): 156-165.
30 Gamarra B , Kahmen A . Concentrations and δ2H values of cuticular n-alkanes vary significantly among plant organs,species and habitats in grasses from an alpine and a temperate European grassland[J]. Oecologia, 2015, 178(4): 981-998.
31 Diefendorf A F , Freeman K H , Wing S L . Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance[J]. Geochimica et Cosmochimica Acta, 2012, 85(2): 342-356.
32 Bush R T , McInerney F A . Leaf wax n-alkane distributions in and across modern plants:Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta, 2013, 117: 161-179.
33 Diefendorf A F , Freimuth E J . Extracting the most from terrestrial plantderived n-alkyl lipids and their carbon isotopes from the sedimentary record:A review[J]. Organic Geochemistry,2017, 103:1-21.
34 Chikaraishi Y . 13C/12C signatures in plants and algae[M]//Holland H D,Turekian K K,eds. Treatise on Geochemistry(Second Edition). Oxford: Elseiver, 2014.
35 Jia G , Bai Y , Yang X , et al . Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China[J]. Quaternary Science Reviews, 2015, 111: 51-61.
36 Cui L , Hu J , Wang X . Spatiotemporal evolution of C3/C4 vegetation and its controlling factors in southern China since the last glacial maximum[J]. Science in China (Serise D), 2018,61: 1-13.
37 Freeman K H , Pancost R D . Biomarkers for terrestrial plants and climate[M]//Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Oxford: Elseiver, 2014.
38 Tipple B J , Pagani M . The early origins of terrestrial C4 photosynthesis[J]. Annual Review of Earth and Planetary Sciences,2007, 35(1): 435-461.
39 Tipple B J , Pagani M . A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record:Implications for C4 grasslands and hydrologic cycle dynamics[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 250-262.
40 Sun Q , Xie M , Shi L , et al . Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, Northeast China[J]. Journal of Paleolimnology, 2013, 50(3): 331-344.
41 Sun Q , Xie M , Lin Y , et al . An n-alkane and carbon isotope record during the last deglaciation from annually laminated sediment in Lake Xiaolongwan, northeastern China[J]. Journal of Paleolimnology, 2016, 56(2/3): 189-203.
42 Diefendorf A F , Mueller K E , Wing S L , et al . Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the USA, 2010, 107(13): 5 738-5 743.
43 Arnold T E , Diefendorf A F , Brenner M , et al . Climate response of the Florida Peninsula to Heinrich events in the North Atlantic[J]. Quaternary Science Reviews, 2018, 194: 1-11.
44 Wang J , Xu Y , Zhou L , et al . Disentangling temperature effects on leaf wax n-alkane traits and carbon isotopic composition from phylogeny and precipitation[J]. Organic Geochemistry, 2018, 126: 13-22.
45 Nguyen Tu T , Egasse C , Zeller B , et al . Early degradation of plant alkanes in soils: A litterbag experiment using 13C-labelled leaves[J]. Soil Biology and Biochemistry, 2011, 43(11): 2 222-2 228.
46 Li G , Li L , Tarozo R , et al . Microbial production of long-chain n-alkanes: Implication for interpreting sedimentary leaf wax signals[J]. Organic Geochemistry, 2018, 115: 24-31.
47 Wang G , Zheng L , Zhang X , et al . Chemical and carbon isotopic dynamics of grass organic matter during litter decompositions: A litterbag experiment[J]. Organic Geochemistry, 2014, 69: 106-113.
48 Nelson D B , Knohl A , Sachse D , et al . Sources and abundances of leaf waxes in aerosols in central Europe[J]. Geochimica et Cosmochimica Acta, 2017, 198: 299-314.
49 Nelson D B , Ladd S N , Schubert C J , et al . Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes[J]. Geochimica et Cosmochimica Acta, 2018, 222: 599-617.
50 Liu W , Yang H , Wang H , et al . Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau[J]. Organic Geochemistry, 2015, 83/84: 190-201.
51 Nott C J , Xie S , Avsejs L A , et al . n-Alkane distribution in ombrotrophic mires as indicators of vegetation change related to climatic variation[J]. Organic Geochemistry, 2000, 31(2/3): 231-235.
52 Nichols J E , Booth R K , Jackson S T , et al . Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat[J]. Organic Geochemistry, 2006, 37(11): 1 505-1 513.
53 Raghoebarsing A A , Smolders A J P , Schmid M C , et al . Methanotrophic symbionts provide carbon for photosynthesis in peat bogs[J]. Nature, 2005, 436(7 054): 1 153-1 156.
54 Nichols J E , Walcott M , Bradley R , et al . Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland[J]. Quaternary Research, 2009, 72(3): 443-451.
55 Nichols J E , Isles P D F , Peteet D M . A novel framework for quantifying past methane recycling by Sphagnum-methanotroph symbiosis using carbon and hydrogen isotope ratios of leaf wax biomarkers[J]. Geochemistry,Geophysics,Geosystems, 2014, 15(5): 1 827-1 836.
56 Huang X , Xue J , Zhang J ,et al . Effect of different wetness conditions on Sphagnum lipid composition in the Erxianyan peatland,central China[J]. Organic Geochemistry, 2012, 44: 1-7.
57 Huang X , Xue J , Meyers P A ,et al . Hydrologic influence on the δ13C variation in long chain n-alkanes in the Dajiuhu peatland,central China[J]. Organic Geochemistry, 2014, 69: 114-119.
58 Kip N , van Winden J F , Pan Y ,et al . Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems[J]. Nature Geoscience, 2010, 3: 617-621.
59 Turetsky M R , Wieder R K . Boreal bog Sphagnum refixes soil-produced and respired 14CO2 [J]. Ecoscience,1999,6(4):587-591.
60 Smolders A J P , Tomassen H B M , Pijnappel H W ,et al . Substrate-derived CO2 is important in the development of Sphagnum spp[J]. New Phytologist, 2001, 152: 325-332.
61 Xie S , Evershed R P , Huang X ,et al . Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830.
62 Huang X , Pancost R D , Xue J ,et al . Response of carbon cycle to drier conditions in the Mid-Holocene in central China[J]. Nature Communications, 2018, 9: 1 936.
63 Zhu Z , Feinberg J M , Xie S ,et al . Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences of the USA, 2017, 114(5): 852-857.
64 Freimuth E J , Diefendorf A F , Lowell T V . Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords[J]. Geochimica et Cosmochimica Acta, 2017, 206: 166-183.
65 Duan Y , Wen Q B , Luo B J . Isotopic composition and probable origin of individual fatty acids in modern sediments from Ruoergai Marsh and Nansha Sea,China[J]. Organic Geochemistry,1997, 27(7/8): 583-589.
66 Duan Yi , Zhang Hui , Zheng Chaoyang ,et al . Carbon isotopic studies of individual lipids in organisms from the Nansha sea area,China[J]. Science in China (Series D), 2004, 47(7): 593-598.
段毅, 张辉,郑朝阳,等 . 沼泽沉积环境中植物和沉积脂类单体碳同位素组成特征及其成因关系研究[J]. 中国科学:D辑, 2004, 34(12): 1 151-1 156.
67 Hayes J M , Freeman K H , Popp B ,et al . Compound-specific isotopic analyses:anovel tool for reconstruction of ancient biogeochemical processes[J].Organic Geochemistry, 1990, 16(4/6):1 115-1 128.
68 van Dongen B E , Schouten S , Sinninghe Damsté J S . Carbon isotopic variability in monosaccharides and lipids of aquatic algae and terrestrial plants[J]. Marine Ecology Progress Series, 2002, 232: 83-92.
69 Zhao Jiangtao , Liu Weiguo , An Zhisheng . The disparity of chain length distribution patterns and carbon isotopic compositions between different fatty acid purification procedures[J]. Rock and Mineral Analysis, 2013, 32(1): 101-107.
赵江涛,刘卫国,安芷生 . 两种纯化方法获得脂肪酸的链长及碳同位素分布特征对比[J]. 岩矿测试, 2013, 32(1): 101-107.
70 Shi W , Sun M Y , Molina M , et al . Variability in the distribution of lipid biomarkers and their molecular isotopic composition in Altamaha estuarine sediments: Implications for the relative contribution of organic matter from various sources[J]. Organic Geochemistry, 2001, 32(4): 453-467.
71 Wang Lifang , Xiong Yongqiang , Wu Fengchang , et al . Sedimentary records of the process of eutrophication in Chaohu Lake:Evidence from bound fatty acid and stable special carbon isotope data[J]. Earth and Environment, 2010, 38(4):393-401.
王丽芳,熊永强,吴丰昌,等 . 巢湖富营养化的沉积记录:结合态脂肪酸及其单体碳同位素特征[J]. 地球与环境,2010,38(4):393-401.
72 Tao Shuqin , Zhao Meixun , Eglinton T I ,et al . The abundance and 13C characteristics of lipid biomarkers in surface suspended particulates from the Yellow River and their source implication[J]. Periodical of Ocean University of China, 2015, 45(7):73-79.
陶舒琴,赵美训, Eglinton T I ,等 . 黄河悬浮颗粒物中类脂生物标志物的组成和稳定碳同位素分布特征及来源研究[J]. 中国海洋大学学报,2015,45(7):73-79.
73 Hughen K A , Eglinton T I , Xu L , et al . Abrupt tropical vegetation response to rapid climate changes[J]. Science,2004,304(5 679):1 955-1 959.
74 Yamamoto S , Uchiyama T , Miyairi Y ,et al . Volcanic and environmental influences of Mt. Fuji on the δ13C of terrestrially-derived n-alkanoic acids in sediment from Lake Yamanaka,central Japan[J]. Organic Geochemistry, 2018, 119: 50-58.
75 Otto A , Wilde V . Sesqui-,di-,and triterpenoids as chemosystematic markers in Extant conifers—A review[J]. The Botanical Review, 2001, 67(2): 141-238.
76 Langenheim J H . Higher plant terpenoids: A phytocentric overview of their ecological roles[J]. Journal of Chemical Ecology,1994, 20(6): 1 223-1 280.
77 Diefendorf A F , Leslie A B , Wing S L . A phylogenetic analysis of conifer diterpenoids and their carbon isotopes for chemotaxonomic applications[J]. Organic Geochemistry,2019,127: 50-58.
78 Jacob J , Disnar J R , Boussafir M ,et al . Contrasted distributions of triterpene derivatives in the sediments of Lake Ca?ó reflect paleoenvironmental changes during the last 20,000yrs in NE Brazil[J]. Organic Geochemistry, 2007, 38(2): 180-197.
79 Huang X , Xie S , Zhang C L ,et al . Distribution of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit,Southern China[J]. Organic Geochemistry, 2008, 39(12): 1 765-1 771.
80 Huang X , Xue J , Wang X ,et al . Paleoclimate influence on early diagenesis of plant triterpenes in the Dajiuhu peatland,central China[J]. Geochimica et Cosmochimica Acta,2013,123:106-119.
81 van Bree L G J , Rijpstra W I C , Al-Dhabi N A , et al . Des-A-lupane in an East African lake sedimentaryrecord as a new proxy for the stable carbon isotopic composition of C3 plants[J]. Organic Geochemistry, 2016, 101: 132-139.
82 Hayes J M . Fractionation of carbon and hydrogen isotopes in biosynthetic processes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 225-277.
83 Schouten S , Woltering M , Rijpstra W I C , et al . The Paleocene-Eocene carbon isotope excursion in higher plant organic matter:Differential fractionation of angiosperms and conifers in the Arctic[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 581-592.
84 Diefendorf A F , Freeman K H , Wing S L ,et al . Paleogene plants fractionated carbon isotopes similar to modern plants[J]. Earth and Planetary Science Letters, 2015, 429: 33-44.
85 Xie Shucheng , Lai Xulong , Huang Xianyu , et al . Principles,methodology and application of molecular stratigraphy[J]. Journal of Stratigraphy, 2007, 31(3): 209-221.
谢树成,赖旭龙,黄咸雨,等 . 分子地层学的原理、方法及应用实例[J]. 地层学杂志,2007,31(3):209-221.
86 Casta?eda I S , Schouten S . A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews,2011,30(21/22):2 851-2 891.
87 Schouten S , Hopmans E C , Sinninghe Damsté J S . The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:A review[J]. Organic Geochemistry, 2013, 54: 19-61.
88 Pancost R D , Sinninghe Damsté J S . Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chemical Geology, 2003, 195(1/4): 29-58.
89 Frostegard A , Baath E . The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology and Fertility of Soils, 1996, 22(1/2): 59-65.
90 Vestal J R , White D C . Lipid analysis in microbial ecology[J]. BioScience, 1989, 39(8): 535-541.
91 Hill GT , Mitkowski NA, Aldrich-Wolfe L ,et al . Methods for assessing the composition and diversity of soil microbial communities[J]. Applied Soil Ecology, 2000, 15(1): 25-36.
92 Baath E , Anderson T H . Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biology Biochemistry, 2003, 35(7): 955-963.
93 Mills C T , Amano Y , Slater G F , et al . Microbial carbon cycling in oligotrophic regional aquifers near the Tono Uranium Mine,Japan as inferred from δ13C and Δ14C values of in situ phospholipid fatty acids and carbon sources[J]. Geochimica et Cosmochimica Acta, 2010, 74(13): 3 785-3 805.
94 Song Douyan , Bai Zhen , He Hongbo ,et al . Stable isotope techniques of PLFAs and its application in soil microbiology[J]. Chinese Journal of Soil Science, 2008, 39(6): 1 476-1 479.
宋斗妍,白震,何红波,等 . PLFAs稳定同位素技术及其在土壤微生物学中的应用[J]. 土壤通报,2008,39(6):1 476-1 479.
95 Li Zengqiang , Zhao Bingzi , Zhang Jiabao . Application of 13C-labeled PLFA analysis in soil microbial ecology studies[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 470-478.
李增强,赵炳梓,张佳宝 . 13C标记磷脂脂肪酸分析在土壤微生物生态研究中的应用[J]. 中国生态农业学报,2016,24(4):470-478.
96 Watzinger A . Microbial phospholipid biomarkers and stable isotope methods help reveal soil functions[J]. Soil Biology and Biochemistry, 2015, 86: 98-107.
97 Cowie B R , Slater G F , Bernier L ,et al . Carbon isotope fractionation in phospholipid fatty acid biomarkers of bacteria and fungi native to an acid mine drainage lake[J]. Organic Geochemistry, 2009, 40(9): 956-962.
98 Brady A L , Laval B , Lim D S ,et al . Autotrophic and heterotrophic associated biosignatures in modern freshwater microbialites over seasonal and spatial gradients[J]. Organic Geochemistry, 2014, 67: 8-18.
99 Huguet A , Meador T B , Laggoun-Defarge F , et al . Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103-116.
100 Veuger B , van Oevelen D , Middelburg J . Fate of microbial nitrogen,carbon,hydrolysable amino acids,monosaccharides,and fatty acids in sediment[J]. Geochimica et Cosmochimica Acta,2012, 83: 217-233.
101 Rohmer M . Hopanoids[M]//Timmis K N,ed. Handbook of Hydrocarbon and Lipid Microbiology. Berlin and Heidelberg:Springer,2010.
102 Welander P V , Hunter R C , Zhang L ,et al . Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1[J]. Journal of Bacteriology,2009, 191(19): 6 145-6 156.
103 Tushar L , Sasikala C , Ramana C V . Draft genome sequence of Rhodomicrobium udaipurense JA643T with special reference to hopanoid biosynthesis[J]. DNA Research:An International Journal for Rapid Publication of Reports on Genes and Genomes, 2014, 21(6): 639-647.
104 Doughty D M , Hunter R C , Summons R E ,et al . 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme:Geobiological implications[J]. Geobiology,2009,7(5): 524-532.
105 Ricci J N , Michel A J , Newman D K . Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria[J]. Geobiology, 2015, 13(13): 267-277.
106 Talbot H M , Farrimond P . Bacterial populations recorded in diverse sedimentary biohopanoid distributions[J]. Organic Geochemistry, 2007, 38(8): 1 212-1 225.
107 Kharbush J J , Thompson L R , Haroon M F , et al . Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers[J]. FEMS Microbiology Ecology, 2018, 94(6):fiy063.
108 Pearson A , Flood Page S R , Jorgenson T L ,et al . Novel hopanoid cyclases from the environment[J]. Environmental Microbiology, 2007, 9(9): 2 175-2 188.
109 Belin B J , Busset N , Giraud E ,et al . Hopanoid lipids:From membranes to plant-bacteria interactions[J]. Nature Reviews Microbiology, 2018, 16(5): 304-315.
110 Huang X , Meyers P A , Xue J ,et al . Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits,central China[J]. Geochimica et Cosmochimica Acta, 2015, 154: 212-228.
111 Gong L , Wang H , Xiang X ,et al . pH shaping the composition of sqhC-containing bacterial communities[J]. Geomicrobiology Journal, 2015, 32(5): 433-444.
112 Xie S , Nott C J , Avsejs L A , et al . Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2 849-2 862.
113 Pancost R D , Steart D S , Handley L ,et al . Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum[J]. Nature, 2007, 449(7 160): 332-335.
114 Zheng Y , Singarayer J S , Peng C ,et al . Holocene variations in peatland methane cycling associated with the Asian summer monsoon system[J]. Nature Communications, 2014, 5: 4 631.
115 Prahl F G , Hayes J M , Xie T-M . Diploptene:An indicator of terrigenous organic carbon in Washington coastal sediments[J]. Limnology and Oceanography, 1992, 37(6): 1 290-1 300.
116 Spooner N , Rieley G , Collister J W ,et al . Stable carbon isotopic correlation of individual biolipids in aquatic organisms and a lake bottom sediment[J]. Organic Geochemistry,1994,21(6/7):823-827.
117 Huang Y , Lockheart M J , Collister J W ,et al . Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation: Hydrocarbons and alcohols[J]. Organic Geochemistry, 1995, 23(9): 785-801.
118 Uemura H , Ishiwatari R . Identification of unusual 17 β (H)-moret-22(29)-ene in lake sediments[J]. Organic Geochemistry, 1995, 23(7): 675-680.
119 Neunlist S , Rodier C , Llopiz P . Isotopic biogeochemistry of the lipids in recent sediments of Lake Bled (Slovenia) and Baldeggersee (Switzerland)[J].Organic Geochemistry,2002,33(10):1 183-1 195.
120 Kristen I , Wilkes H , Vieth A ,et al . Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing:evidence for deglacial wetness and early Holocene drought from South Africa[J]. Journal of Paleolimnology,2010,44(1): 143-160.
121 Davies K L , Pancost R D , Edwards M E ,et al . Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation[J]. Biogeosciences, 2016, 13: 2 611-2 621.
122 Aichner B , Wilkes H , Herzschuh U ,et al . Biomarker and compound-specific δ13C evidence for changing environmental conditions and carbon limitation at Lake Koucha,eastern Tibetan Plateau[J]. Journal of Paleolimnology, 2010, 43(4): 873-899.
123 Zhou Zhekun , Zhou Zhonghe , Wang Yi . Coevolution between terrestrial ecosystem and Earth environment[J]. Advances in Earth Science, 2016, 31(7): 682-688.
周浙昆, 周忠和, 王怿 . 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
124 Weber Y , Sinninghe Damsté J S , Zopfi J ,et al . Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes[J]. Proceedings of the National Academy of Sciences of the USA,2018,115(43):10 926-10 931.
125 Pagani M . Biomarker-based inferences of past climate:The alkenone pCO2 Proxy[M]//Holland H D,Turekian K K,eds. Treatise on Geochemistry,Second Edition. Oxford:Elseiver,2014.
126 Schouten S , Rijpstra W I C , Kok M ,et al . Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake)[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1 629-1 640.
127 D’Andrea W J , Huang Y . Long-chain alkenones in Greenland lake sediments:Low δ13C values and exceptional abundance[J]. Organic Geochemistry, 2005, 36(9): 1 234-1 241.
128 Grossi V , de Mesmay R , Bardoux G , et al . Contrasting variations in the structure and stable carbon isotopic composition of botryococcenes through the last Glacial-Interglacial transition in Lake Masoko (southern Tanzania)[J]. Organic Geochemistry,2012, 43: 150-155.
129 Petri?i? M G , Heath E , Ogrinc N . Lipid biomarkers and their stable carbon isotopes in oxic and anoxic sediments of Lake Bled (NW Slovenia)[J]. Geomicrobiology Journal, 2017, 34(7):606-617.
130 Filley T R , Freeman K H , Bianchi T S , et al . An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida[J]. Organic Geochemistry, 2001, 32(9): 1 153-1 167.
131 Fang J , Wu F , Xiong Y , et al . Source characterization of sedimentary organic matter using molecular and stable isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China[J]. Science of the Total Environment, 2014, 473/474: 410-421.
132 Mollenhauer G , Kusch S , Eglinton T I ,et al . Compound-specific radiocarbon measurements[M] //Steele J , Thorpe S , Turekian K ,eds . Encyclopedia of Ocean Sciences(Third Edition). Oxford: Elsevier, 2018.
133 Zhang Hailong , Tao Shuqin , Yu Meng , et al . A review on techniques and applications of biomarker compound-specific radiocarbon analysis[J]. Advances in Earth Science, 2017, 32(11): 1 193-1 203.
张海龙, 陶舒琴, 于蒙, 等 .生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1 193-1 203.
134 Tao S , Eglinton T I , Montlu?on D B ,et al . Pre-aged soil organic carbon as a major component of the Yellow River suspended load:Regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414: 77-86.
135 Douglas P M J , Brenner M , Curtis J H . Methods and future directions for paleoclimatology in the Maya Lowlands[J]. Global and Planetary Change, 2016, 138: 3-24.
136 Schefuβ E , Eglinton T I , Spencer-Jones C L ,et al . Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin[J]. Nature Geoscience, 2016, 9(9): 687-690.
137 Feakins S J , Wu M S , Ponton C ,et al . Dual isotope evidence for sedimentary integration of plant wax biomarkers across an Andes-Amazon elevation transect[J]. Geochimica et Cosmochimica Acta, 2018, 242: 64-81.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[3] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[4] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[5] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[6] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[7] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[8] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[9] 马红梅,孙波,姜苏,安春雷,史贵涛,李院生. 极地冰下生物地球化学过程研究进展[J]. 地球科学进展, 2012, 27(2): 147-153.
[10] 单慧媚,马腾,刘存富,刘玲,杨杰. 有机溴化物的溴同位素测试技术及其生物地球化学指示意义[J]. 地球科学进展, 2011, 26(8): 811-821.
[11] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
[12] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
[13] 秦养民,谢树成,顾延生,王军霞,周修高. 第四纪环境重建的良好代用指标——有壳变形虫记录与古生态学研究进展[J]. 地球科学进展, 2008, 23(8): 803-812.
[14] 吴丰昌,郑建,潘响亮,黎文,邓秋静,莫昌琍,朱静,刘碧君,劭树勋,郭建阳. 锑的环境生物地球化学循环与效应研究展望[J]. 地球科学进展, 2008, 23(4): 350-356.
[15] 王世杰,李阳兵. 喀斯特石漠化研究存在的问题与发展趋势[J]. 地球科学进展, 2007, 22(6): 573-582.
阅读次数
全文


摘要