Please wait a minute...
img img
高级检索
地球科学进展  2012, Vol. 27 Issue (7): 725-732    DOI: 10.11867/j.issn.1001-8166.2012.07.0725
综述与评述     
陆地硅的生物地球化学循环研究进展
陶贞1,2,张超1,高全洲1,李元1
1.中山大学地理科学与规划学院,广东省城市化与地理环境空间模拟重点实验室,广东广州510275;
2.华南地区水循环与水安全广东省普通高校重点实验室,广东广州510275
A Review of the Biogeochemical Cycle of Silicon in Terrestrial Ecosystems
Tao Zhen1,2, Zhang Chao1, Gao Quanzhou1, Li Yuan1
1. Geography and Planning School of Sun Yat-Sen University,  Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou510275, China;
2. Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou510275, China
 全文: PDF(1063 KB)  
摘要:

地球表层硅 (Si) 的生物地球化学循环与大气CO2浓度变化、大洋生物泵作用以及海岸带富营养化等过程密切相关,因此成为全球环境变化研究的核心问题之一。在地质时间尺度上,硅酸盐矿物的化学风化是地球表层所有次生Si的来源。陆地生态系统各次生Si库具有不同的形成机制和驱动因子,这导致各Si库的贮存量和循环周期存在明显差异。土壤Si库中的黏土矿物Si、溶解硅(DSi)和淀积在其他矿物表面的无定形Si都源自硅酸盐矿物的化学风化过程;植物生长过程中吸收土壤中的DSi形成生物Si,然后经微生物分解过程返还给土壤;地表径流将流域陆源Si以悬移质Si和DSi的形式输入河流、海洋。迄今,陆地不同形态Si库的大小及其对全球Si循环的贡献仍不确定。因此,在研究陆地Si的生物地球化学循环过程中,综合考虑各种地表过程及其耦合作用是非常必要的。

关键词: 化学风化生物硅生物地球化学循环同位素硅    
Abstract:

The biogeochemical cycle of silicon on the Earth’s surface has become a crucial subject of studying  global environmental change because of its interconnetion with those processes of the changes of atmospheric CO2 concentration, the oceanic biological pump and the coastal eutrophication. On geological time scales, the chemical weathering of silicate minerals is considered to be the source of overall secondary Si on the Earth′s surface. There are different formation mechanisms and the driving factors for different secondary Si pools in the terrestrial biogeosystems, which leads to the difference in the reservoir and turnover time for those Si pools. Secondary silicates in the soils, dissolved Si (DSi) and amorphous silica precipited on surfaces of other minerals are all sourced from the chemical weathering of silicates; phytogenic Si (BSi) is formed in the growth process of the plants in which the DSi was uptake from the soil. Then, the BSi is subsequently returned to soils; terrestrial Si was also transported to the river and ocean by surface runoff in particulate and dissolved forms. Up to date, there are still a great number of uncertainties in understanding  the terrestrial Si cycle concerning the size of various Si pools and their contribution to the global silicon cycle. Hence, it is necessary to consider comprehensively various land surface processes and their coupling effect in the study  of the silicon biogeochemical cycles in the terrestrial ecosystems.

Key words: Chemical weathering    BSi    Biogeochemical cycle    Isotope    Silicon
收稿日期: 2012-03-26 出版日期: 2012-07-10
:  P593  
基金资助:

国家自然科学基金项目“青藏高原高寒草甸土壤碳循环同位素示踪研究”(编号:40871143)和“人类活动干预下的流域地表过程在河流碳循环中的响应”(编号:41071054);中国地质调查局地调项目“中国岩溶碳汇动态评价”(编号:岩[2011]地调010123)资助. 

通讯作者: 陶贞(1965-), 女,河南沁阳人,副教授, 主要从事全球变化及其区域响应研究.      E-mail: taozhen@mail.sysu.edu.cn
作者简介: 陶贞(1965-), 女,河南沁阳人,副教授, 主要从事全球变化及其区域响应研究. E-mail:taozhen@mail.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陶贞
张超
高全洲
李元

引用本文:

陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.

Tao Zhen, Zhang Chao, Gao Quanzhou, Li Yuan. A Review of the Biogeochemical Cycle of Silicon in Terrestrial Ecosystems. Advances in Earth Science, 2012, 27(7): 725-732.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.07.0725        http://www.adearth.ac.cn/CN/Y2012/V27/I7/725



[1]Wedepohl K H. The composition of the continental crust

[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1 217-1 232.



[2]Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers

[J]. Chemical Geology, 1999, 159(1/4): 3-30.



[3]Ragueneau O, Treguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy

[J]. Global and Planetary Change, 2000, 26(4): 317-365.



[4]Alexandre A, Meunier J D, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes

[J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 677-682.



[5]Moulton K L, West J, Berner R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering

[J]. American Journal of Science, 2000, 300(7): 539-570.



[6]Ittekot V, Unger D, Humborg C, et al. The Silicon Cycle

[M]. Washington DC: Island Press, 2006.



[7]Street-Perrott F A, Barker P A. Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon

[J]. Earth Surface Processes and Landforms, 2008, 33(9): 1 436-1 457.



[8]Struyf E, Conley D J. Silica: An essential nutrient in wetland biogeochemistry

[J]. Frontiers in Ecology and the Environment, 2009, 7(2): 88-94.



[9]Ding T P, Gao J F, Tian S H, et al. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle

[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6 672-6 689.



[10]Meunier J D, Colin F, Alarcon C. Biogenic silica storage in soils

[J]. Geology, 1999, 27(9): 835-838.



[11]Clarke J. The occurrence and significance of biogenic opal in the regolith

[J]. Earth Science Reviews, 2003, 60(3/4): 175-194.



[12]Sommer M, Kaczorek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils and landscapes—A review

[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4): 310-329.



[13]Conley D J. Terrestrial ecosystems and the global biogeochemical silica cycle

[J]. Global Biogeochemical Cycles, 2002, 16(4): 1 121-1 129.



[14]Derry L A, Kurtz A C, Ziegler K, et al. Biological control of terrestrial silica cycling and export fluxes to watersheds

[J]. Nature,2005, 433(7 027): 728-731.



[15]Meunier J D, Kirman S, Strasberg D, et al. The output and bio-cycling of Si in a tropical rain forest developed on young basalt flows (La Reunion Island)

[J]. Geoderma, 2010, 159(3/4): 431-439.



[16]Urey H C. The Planets, Their Origin and Development

[M]. New Haven: Yale University Press, 1952.



[17]Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate

[J]. Science, 1995, 268(5 209): 375-379.



[18]Meybeck M. How to establish and use world budgets of riverine materials

[C]Lerman A, Meybeck M, eds. Physical and Chemical Weathering in Geochemical Cycles. Dordrecht: Kluwer Academic Publisher, 1988: 247-272.



[19]Murname R J, Stallard R F. Germanium and silicon in rivers of the Orinoco Drainage Basin

[J]. Nature, 1990, 344(6 268): 749-752.



[20]Gao Q Z, Tao Z, Huang X K, et al. Chemical weathering and CO2 consumption in the Xijiang River Basin, South China

[J]. Geomorphology, 2009, 106(3/4): 324-332.



[21]Gao Q Z, Tao Z. Chemical weathering and chemical runoff in the seashore granite hills in South China

[J]. Science in China (Series D),2010, 53(8): 1 195-1 204.



[22]Tao Z, Gao Q Z, Wang Z G, et al. Estimation of carbon sinks in chemical weathering in a humid subtropical mountainous basin

[J]. Chinese Science Bulletin, 2011, 56(35): 3 774-3 782.



[23]Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads

[J]. American Journal of Science, 1987, 287(5): 401-428.



[24]Hren M T, Chamberlain C P, Hilley G E, et al. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra River: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya

[J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 2 907-2 935.



[25]Wu W H, Xu S J, Yang J D, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau

[J]. Chemical Geology, 2008, 249(3/4): 307-320.



[26]McLennan S M. Weathering and global denudation

[J]. Journal of Geology, 1993, 101(2): 295-303.



[27]Summerfield M A, Hulton N J. Natural controls of fluvial denudation rates in major world drainage basins

[J]. Journal of Geophysical Research, 1994, 99(B7): 13 871-13 883.



[28]Milliman J D, Meade R H. World-wide delivery of sediment to the oceans

[J]. Journal of Geology, 1983, 91(1): 1-21.



[29]Monger H C, Kelly E F. Silica minerals

[C]Dixon J B, Schulze D G. Soil Mineralogy with Environmental Applications. Book Series SSSA No.7, Madison, 2002: 611-636.



[30]Gerard F, Francois M, Ranger J. Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhone, France)

[J]. Geoderma, 2002, 107(3/4): 197-226.



[31]Farmer V C, Lumsdon D G. An assessment of complex formation between aluminum and silicic acid in acidic solutions

[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3 331-3 334.



[32]Dove P M. Kinetic and thermodynamic controls on silica reactivity in weathering environments

[C]White A F, Brantley S L, eds. Chemical Weathering Rates of Silicate Minerals: Reviews in Mineralogy. 1995,31(1): 235-290.



[33]Dietzel M. Interaction of polysilicic and monosilicic acid with mineral surfaces

[C]Stober I, Bucher K, eds. Water-Rock Interaction. Netherlands: Kluwer, 2002: 207-235.



[34]Dietzel M. Dissolution of silicates and the stability of polysilicic acid

[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3 275-3 281.



[35]Richards P L, Kump L R. Soil pore-water distribution and the temperature feedback of weathering in soils

[J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3 803-3 815.



[36]Komor S C. Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA

[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3 353-3 367.



[37]Bennet P C, Siegel D I, Hill B M, et al. Fate of silicate minerals in a peat bog

[J]. Geology, 1991, 19(4): 328-331.



[38]Jones L H P, Handreck K A. Silica in soils, plants, and animals

[J]. Advances in Agronomy, 1967, 19: 107-149.



[39]Conley D J. Riverine contribution of biogenic silica to the oceanic silica budget

[J]. Limnology and Oceanography, 1997, 42(4): 774-777.



[40]Ding Tiping.Silicon Istope Geochemistry

[M].Beijing: Geological Publishing House,1994:17-63.

[丁悌平. 硅同位素地球化学

[M]. 北京: 地质出版社, 1994:17-63.]



[41]Van Cappellen P. Biomineralization and global biogeochemical cycles

[J]. Reviews in Mineralogy & Geochemistry, 2003, 54: 357-381.



[42]Lü Houyuan, Liu Tungsheng, Wu Naiqin, et al. Phytolith record of vegetation succession in the southern loess plateau science Late Pleistocene

[J]. Quaternary Sciences, 1991, 19(4): 336-349.

[吕厚远,刘东生,吴乃琴, 等,末次间冰期以来黄土高原南部植被演替的植物硅酸体记录

[J]. 第四纪研究, 1999, 19(4): 336-349.]



[43]Van Hees P A W, Jones D L, Jentschke G, et al. Mobilization of aluminum, iron and silicon by Picea abies and ectomycorrhizas in a forest soil

[J]. European Journal of Soil Science, 2004, 55(1): 101-111.



[44]Smits M M, Hoffland E, Jongmans A G, et al. Contribution of mineral tunneling to total feldspar weathering

[J]. Geoderma, 2005, 125(1/2): 59-69.



[45]He Yue, Zhang Ganlin. Biogenic silicon in basalt-derived soils in Hainan Island and its implications in Pedogensis

[J].Acta Pedologica Sinica, 2010, 47(3): 385-392.

[何跃, 张甘霖. 热带地区玄武岩发育土壤中的生物硅及其发生学意义

[J]. 土壤学报, 2010, 47(3): 385-392.]



[46]Bartoli F. The biogeochemical cycle of silicon in two temperate forest ecosystems

[J]. Environmental Biogeochemistry and Ecology Bulletin, 1983, 35(35): 469-476.



[47]Cary L,Alexandre A,Meunier J D,et al. Contribution of phytoliths to the suspended load of biogenic silica in the Nyong Basin rivers (Cameroon)

[J].Biogeochemistry, 2005,74(1):101-114.



[48]Lucas Y. The role of plants in controlling rates and products of weathering: Importance of biological pumping

[J]. Annual Review of Earth and Planetary Sciences, 2001, 29: 135-163.



[49]Douthitt C B. The geochemistry of the stable isotopes of silicon

[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1 449-1 458.



[50]Ding T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China

[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.



[51]Tu Guangzhi, Gao Zhenmin, Hu Ruizhong, et al. The Geochemistry and Depoist—Forming Mechanism of Disperse Element

[M]. Beijing: Geological Publishing House, 2004:10-117.

[涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及成矿机制

[M]. 北京: 地质出版社, 2004:10-117.]



[52]Evans M J, Derry L A. Quartz control of high germanium/silicon ratios in geothermal waters

[J]. Geology, 2003, 30(11): 1 019-1 022.



[53]Kurtz A C, Derry L A, Chadwick O A. Germanium-silicon fractionation in the weathering environment

[J]. Geochimica et Cosmochimica Acta, 2002, 66(9): 1 525-1 537.



[54]Bernstein L R. Germanium geochemistry and mineralogy

[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2 409-2 422.



[55]Pokrovski G S, Schott J. Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters

[J]. Geochimica et Cosmochimica Acta, 1998, 62(21/22): 3 413-3 428.



[56]Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental Geochemistry

[M]. Beijing: Science Press,1984.

[刘英俊, 曹励明, 李兆麟, 等. 元素地球化学

[M]. 北京: 科学出版社, 1984.]



[57]Olivier R, Galy A, Elderfield H. Germanium isotopic variations in igneous rocks and marine sediments

[J]. Geochimica et Cosmochimica Acta,2006, 70(13): 3 387-3 400.



[58]Christoph Humborg, Venugo palan Ittekkot, Adriana Cociasu, et al. Effect of Danube River Dam on Black Sea biogeochemistry and ecosystem structure

[J]. Nature, 1997, 386(27): 385-388.



[59]Li Maotian, Cheng Heqin. Changes of dissolved silicate flux from the Changjiang River into sea and its influence since late 50 years

[J]. China Environmental Science, 2001, 21(3): 193-197.

[李茂田, 程和琴. 近50年来长江入海溶解硅通量变化及其影响

[J]. 中国环境科学, 2001, 21(3): 193-197.]



[60]Conley D J, Humborg C, Smedberg E, et al. Past, present and future state of the biogeochemical Si cycle in the Baltic Sea

[J]. Journal of Marine Systems, 2008, 73(3/4): 338-346.



[60]Syvitski J P M, Vorosmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean

[J]. Science, 2005, 308(5 720): 376-380.



[61]Schelske C L, Stoermer E F, Conley D J, et al. Early eutrophication in the lower Great Lakes: New evidence from biogenic silica in sediments

[J]. Science, 1983, 222(4 621): 320-322.

[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[3] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[4] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[5] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[6] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[7] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[8] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[9] 张文慧, 王翠芝, 李晓敏, 刘文元. 闽西南基性岩脉中捕获锆石SIMS U-Pb年龄及Hf、O同位素特征[J]. 地球科学进展, 2016, 31(3): 320-334.
[10] 黄来明, 邵明安, 贾小旭, 张甘霖. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1021-1031.
[11] 药瑛, 孙樯. 应用于流体包裹体CO2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[12] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[13] 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646.
[14] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[15] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高δ13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.