地球科学进展 ›› 2020, Vol. 35 ›› Issue (2): 167 -179. doi: 10.11867/j.issn.1001-8166.2020.012

综述与评述 上一篇    下一篇

海洋氮循环中稳定氮同位素变化与地质记录研究进展
朱艳宸( ),李丽( ),王鹏,贺娟,贾国东   
  1. 海洋地质国家重点实验室 海洋与地球科学学院 同济大学,上海 200092
  • 收稿日期:2019-09-23 修回日期:2020-01-10 出版日期:2020-02-10
  • 通讯作者: 李丽 E-mail:1731659@tongji.edu.cn;lilitju@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目“南海沉积物中支链四醚膜脂的组成和碳同位素特征及其对古气候研究的启示”(41673042);“珠江口深古菌(Bathyarchaeota┫碳源利用特征研究”┣41776134)

Progress in the Study of Marine Stable Nitrogen Isotopic Changes and Its Geological Records

Yanchen Zhu( ),Li Li( ),Peng Wang,Juan He,Guodong Jia   

  1. State Key Laboratory of Marine Geology, School of Ocean and Earth Sciences, Tongji University,Shanghai 200092,China
  • Received:2019-09-23 Revised:2020-01-10 Online:2020-02-10 Published:2020-03-24
  • Contact: Li Li E-mail:1731659@tongji.edu.cn;lilitju@tongji.edu.cn
  • About author:Zhu Yanchen (1994-), female, Yangzhou City, Jiangsu Province, Master student. Research areas include marine biogeochemistry and paleoclimate. E-mail: 1731659@tongji.edu.cn
  • Supported by:
    the National?Natural?Science?Foundation?of?China “Composition and carbon isotopic characteristics of branched tetraethers in the sediments of the South China Sea and its implications for the study of paleo-climate”(41673042);“The study of carbon sources of Bathyarchaeota in the Pearl River Estuary”(41776134)

海洋氮稳定同位素信号包含了关键的生物地球化学信息,是辨识海洋氮来源、了解海洋氮循环过程的重要途径和手段,该信号通过海洋沉降传递可保存在海洋沉积物中,用以追溯地质历史时期海洋系统中的生物地球化学循环和海洋环境演变。近几十年的研究表明,固氮作用和反硝化作用在海洋氮循环中发挥着关键作用,但海洋环境的时空多变、海洋氮循环过程和物质来源复杂,未来需要结合现代观测、地质记录,综合海洋、生物、地质多个学科,考虑水文环境、地质过程和气候演变等多种因素,才能深刻理解海洋氮循环和气候、环境变化的耦合关系。

Marine stable nitrogen isotope containing much key biogeochemical information, is an important way in identifying marine nitrogen sources and understanding the marine nitrogen cycles. These isotopic signals can be preserved in marine sediments and used to trace the marine biogeochemical cycles and environment changes during geological history. Studies in recent decades have illustrated the key role of nitrogen fixation and denitrification. Because of the spatiotemporal variability and the complexity of ocean processes and nitrogen sources in the marine environment, we need to combine the modern observations with geological records, integrate oceanography, biology, and geology, and consider the hydrological environment, geological processes and climate changes, to understand the coupling between the ocean nitrogen cycle, climate and environmental changes.

中图分类号: 

图1 海洋环境中的典型稳定氮同位素变化(据参考文献[ 2 , 3 , 4 , 5 , 6 ]修改)
Fig. 1 Typical stable nitrogen isotope changes in the marine environment (modified after references [2~6])
图2 不同海域垂向硝酸盐含量(空心圆圈)、硝酸盐(实心圆圈)及颗粒物(蓝色实心三角)稳定氮同位素变化模式(据参考文献[ 15 , 16 , 17 , 18 ]修改)
Fig. 2 Vertical variability of nitrate content (hollow circle) and stable nitrogen isotope of nitrate (solid circle) and sinking particles (blue solid triangle) in different sea areas (modified after references [15~18])
图3 全球不同大洋沉降颗粒(矩形)或硝酸盐(圆形)与表层沉积物的稳定氮同位素对比(据参考文献[ 49 ]修改)
Fig. 3 Stable nitrogen isotope comparison of sinking particles (rectangular) or nitrate (circular) with surface sediments from global oceans in different sites (modified after reference [ 49 ])
图4 不同类型海域末次冰期以来海洋沉积物δ15Nbulk记录对比
据参考文献[ 69 ]修改:智利海盆(黑) [ 70 ],阿拉伯海(蓝) [ 71 ];卡里亚科海盆(红) [ 69 ]
Fig. 4 Comparison of δ15Nbulk records of sediments since the last glaciation in different seas
Modified after reference [ 69 ]: Chile basin (Black) [ 70 ], Arabian Sea (Blue) [ 71 ]; Cariaco Basin (Red) [ 69 ]
图5 不同类型海域50 ka沉积物稳定氮同位素记录对比(据参考文献[ 69 , 88 ]修改)
卡里亚科海盆(蓝色)沉积物 δ 15N bulk [ 79 ];阿拉伯海(棕红)沉积物 δ 15N bulk [ 19 ];南海沉积物 δ 15N bulk (黑色) [ 86 ]和FB- δ 15N(绿色) [ 89 ];阴影部分为间冰期,数字为海洋同位素阶段
Fig. 5 Comparison of stable nitrogen isotope records for 50 ka sediments in different types of seas (modified after references [69,88])
Cariaco basin (blue) sediments δ 15N bulk [ 79 ]; Arabian sea (brown red) sediments δ 15N bulk [ 19 ] The South China Sea sediments δ 15N bulk (black) [ 86 ] and FB- δ 15N (green) [ 89 ]. The shaded part is the interglacial period, and the figure is the Marine Isotope Stage(MIS)
1 Canfield D E, Glazer A N, Falkowshi P G. The evolution and future of Earth’s nitrogen cycle[J]. Science, 2010, 330(6 001): 192-196.
2 Montoya J P. Chapter29: Nitrogen stable isotopes in marine environments[M]// Nitrogen in the Marine Environment, 2008: 1 277-1 302.
3 Casciotti K L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2 061-2 076.
4 Brunner B, Contreras S, Lehmann M F, et al. Nitrogen isotope effects induced by anammox bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(47): 18 994-18 999.
5 Granger J, Sigman D M, Rohde M M, et al. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures[J]. Geochimica et Cosmochimica Acta, 2010, 74(3):1 030-1 040.
6 Gaye B, Nagel B, D?hnke K, et al. Amino acid composition and δ15N of suspended matter in the Arabian Sea: Implications for organic matter sources and degradation[J]. Biogeosciences, 2013, 10(11): 7 689-7 702.
7 Berman T, Bronk D A. Dissolved organic nitrogen: A dynamic participant in aquatic ecosystems[J]. Aquatic Microbial Ecology, 2003, 31: 279-305.
8 Hong Yiguo. Marine nitrogen cycle recorded by nitrogen and oxygen isotope fractionation of nitrate[J]. Advances in Earth Science, 2013, 28(7): 751-764.
洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
9 Altabet M A. Isotopic tracers of the marine nitrogen cycle: Present and past[M]// Marine Organic Matter: Biomarkers, Isotopes and DNA. Past. The Handbook of Environmental Chemistry, 2007: 251-293.
10 Eugster O, Gruber N, Deutsch C, et al. The dynamics of the marine nitrogen cycle across the last deglaciation[J]. Paleoceanography, 2013, 28(1): 116-129.
11 Galbraith E D, Kienast M. The acceleration of oceanic denitrification during deglacial warming[J]. Nature Geoscience, 2013, 6(7): 579-584.
12 Ma Hongbo, Song Jinming. Nitrogen cycling in maine sediments[J]. Studia Marine Sinica, 2001,43:96-107.
马红波, 宋金明. 海洋沉积物中的氮循环[J]. 海洋科学集刊, 2001,43:96-107.
13 Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7 176): 293-296.
14 Mosier A R, Doran J W, Freney J R. Managing soil denitrification[J]. Journal of Soil & Water Conservation, 2002, 57(6): 505-512.
15 Altabet M A. Nitrogen isotopic evidence for micronutrient control of fractional NO3-, utilization in the equatorial Pacific[J]. Limnology and Oceanography, 2001, 46(2): 368-380.
16 Sigman D M, Casciotti K L, Andreani M, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater[J]. Analytical Chemistry, 2001, 73(17): 4 145-4 153.
17 Yang J Y T, Shuh-Ji Kao, Dai Minhan. et al. Examining N cycling in the northern South China Sea from N isotopic signals in nitrate and particulate phases[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(8): 2 118-2 136.
18 Logan J M, Lutcavage M E. Stable isotope dynamics in elasmobranch fishes[J]. Hydrobiologia, 2010, 644(1): 231-244.
19 Altabet M A, Pilskaln C, Thunell R, et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46(4): 655-679.
20 Voss M, Dippner J W, Montoya J P. Nitrogen isotope patterns in the oxygen-deficient waters of the Eastern Tropical North Pacific Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48(8): 1 905-1 921.
21 Lehmann M F, Sigman D M, Mccorkle D C, et al. The distribution of nitrate 15N/14N in marine sediments and the impact of benthic nitrogen loss on the isotopic composition of oceanic nitrate[J]. Geochimica et Cosmochimica Acta, 2007, 71(22): 5 384-5 404.
22 Gaye B, Nagel B, D?hnke K, et al. Amino acid composition and δ15N of suspended matter in the Arabian Sea: Implications for organic matter sources and degradation[J]. Biogeosciences, 2013, 10(11):7 689-7 702.
23 Sigman D M, Difiore P J, Hain M P, et al. Sinking organic matter spreads the nitrogen isotope signal of pelagic denitrification in the North Pacific[J]. Geophysical Research Letters, 2009, 36(8): 262-275.
24 Sigman D M, Altabet M A, Mccorkle D C, et al. The δ15N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior[J]. Journal of Geophysical Research: Oceans, 2000, 105(8): 19 599-19 614.
25 Thunell R C, Sigman D M, Frank M K, et al. Nitrogen isotope dynamics of the Cariaco Basin, Venezuela[J]. Global Biogeochemical Cycles, 2004, 18(3): 57-67.
26 Naqvi S W A, Voss M, Montoya J P. Recent advances in the biogeochemistry of nitrogen in the ocean[J]. Biogeosciences Discussions, 2008, 5(2): 1 119-1 137.
27 Thamdrup B, Dalsgaard T. Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(3): 1 312-1 318.
28 Morales L V, Granger J, Chang B X, al et, Elevated15N/14N in particulate organic matter, zooplankton, and diatom frustule-bound nitrogen in the ice-covered water column of the Bering Sea eastern shelf [J]. Deep-Sea Research II: Topical Studies in Oceanography,2014, 109: 100-111.
29 Gaye B, Wiesner M G, Lahajnar N. Nitrogen sources in the South China Sea, as discerned from stable nitrogen isotopic ratios in rivers, sinking particles, and sediments[J]. Marine Chemistry, 2009, 114(3/4): 72-85.
30 Horikawa K, Minagawa M, Kato Y, et al. N2 fixation variability in the oligotrophic Sulu Sea, western equatorial Pacific region over the past 83 kyr[J]. Journal of Oceanography, 2006, 62(4): 427-439.
31 Stüeken E E, Kipp M A, Koehler M C, et al. The evolution of Earth's biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220-239.
32 Moore J K, Lindsay K, Doney S C, et al. Marine ecosystem dynamics and biogeochemical cycling in the community Earth system model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios[J]. Journal of Climate, 2013, 26(23): 9 291-9 312.
33 Karl D M, Michaels A F, Bergman B, et al. Dinitrogen fixation in the World's oceans[J]. Biogeochemistry, 2002, 57/58(1): 47-98.
34 Knapp A N, Sigman D M, Lipschultz F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic time-series study site[J]. Global Biogeochemical Cycles, 2005, 19(1): 1 018-1 033.
35 Pantoja S, Repeta D J, Sachs J P, et al. Stable isotope constraints on the nitrogen cycle of the Mediterranean Sea water column[J]. Deep-Sea Research Part I:Oceanographic Research Papers, 2002, 49(9): 1 609-1 621.
36 Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature, 1997, 387(6 630): 272-275.
37 Houlton B Z, Wang Yingping, Vitousek P M, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 2008, 454(7 202): 327-330.
38 Luo Yawei, Lima I D, Karl D M, et al. Data-based assessment of environmental controls on global marine nitrogen fixation[J]. Biogeosciences Discussions, 2013, 10(4): 7 367-7 412.
39 Zhang Run, Chen Min, Yang Qing, et al. Physical-biological coupling of N2 fixation in the northwestern South China Sea coastal upwelling during summer[J]. Limnology and Oceanography, 2015, 60(4): 1 411-1 425.
40 Unger D, SchaFer P, Ittekkot V, et al. Nitrogen isotopic composition of sinking particles from the southern Bay of Bengal: Evidence for variable nitrogen sources[J]. Deep-Sea Research, Part I: Oceanographic Research Papers, 2006, 53(10): 1 658-1 676.
41 Kendall C. Tracing nitrogen sources and cycling in catchments[M]//Isotope Tracers in Catchment Hydrology. Elsevier, 1998: 519-576.
42 Montoya J P, Capone C D G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic north Atlantic[J]. Limnology and Oceanography, 2002, 47(6): 1 617-1 628.
43 Altabet M A, Deuser W G, Honjo S, et al. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic[J]. Nature, 1991, 354(6 349): 136-139.
44 Shuh-Ji Kao, Yang J Y T, Liu K K, et al. Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea[J]. Global Biogeochemical Cycles, 2012, 26(2): 2 033-2 048.
45 Yang J Y T, Shuh-Ji Kao, Dai Minhan. et al. Examining N cycling in the northern South China Sea from N isotopic signals in nitrate and particulate phases[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(8): 2 118-2 136.
46 Gaye-Haake B, Lahajnar N, Emeis K C, et al. Stable nitrogen isotopic ratios of sinking particles and sediments from the northern Indian Ocean[J]. Marine Chemistry, 2005, 96(3/4): 243-255.
47 Lourey M, Trull T, Sigman D. Sensitivity of δ15N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Southern Ocean[J]. Global Biogeochemical Cycles, 2003, 17(3): 1 973-1 980.
48 Nakanishi T, Minagawa M. Stable carbon and nitrogen isotopic compositions of sinking particles in the northeast Japan Sea[J]. Geochemistry Journal, 2003, 37(2): 261-275.
49 Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Paleoceanography, 2012, 27(4): 89-108.
50 Brandes J A, Devol A H. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling[J]. Global Biogeochemical Cycles, 2002, 16(4): 1-14.
51 Deutsch C, Sigman D M, Thunell R C, et al. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget[J]. Global Biogeochemical Cycles, 2004, 18(4): 12-34.
52 Robinson R S, Sigman D M. Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic[J]. Quaternary Science Reviews, 2008, 27(9/10): 1 076-1 090.
53 Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7 302): 47-55.
54 Prokopenko M G, Hammond D E, Berelson W M, et al. Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)-“riding on a glider”[J]. Earth & Planetary Science Letters, 2006, 242(1): 186-204.
55 Hebbeln D, Marchant M, Freudenthal T, et al. Surface sediment distribution along the Chilean continental slope related to upwelling and productivity[J]. Marine Geology, 2000, 164(3/4): 119-137.
56 Higginson M J, Maxwell J R, Altabet M A. Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial- and orbital-scale variability[J]. Marine Geology, 2003, 201(1): 223-250.
57 M?bius J, Lahajnar N, Emeis K C. Diagenetic control of nitrogen isotope ratios in Holocene sapropels and recent sediments from the Eastern Mediterranean Sea[J]. Biogeosciences, 2010, 7(11): 3 901-3 914.
58 Higgins M B, Robinson R S, Carter S J, et al. Evidence from chlorin nitrogen isotopes for alternating nutrient regimes in the Eastern Mediterranean Sea[J]. Earth and Planetary Science Letters, 2010, 290(1/2): 102-107.
59 Ramaswamy V, Gaye B, Shirodkar P V, et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea[J]. Marine Chemistry, 2008, 111(3/4): 137-150.
60 Zhou Tao, Jiang Zhuang, Geng Lei. Atmospheric reactive nitrogen cycle and stable nitrogen isotope processes:Progresses and perspectives[J]. Advances in Earth Science, 2019, 34(9): 922-935.
周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程: 问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
61 Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: Past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226.
62 Freudenthal T, Wagner T, Wenzh?fer F, et al. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2001, 65(11): 1 795-1 808.
63 Schubert C J, Calvert S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: Implications for nutrient utilization and organic matter composition[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48(3): 789-810.
64 Shigemitsu M, Watanabe Y W, Narita H. Sedimentary inorganic nitrogen and its isotope ratio in the western subarctic Pacific over the last 145 kyr[J]. Journal of Oceanography, 2009, 65(4): 541-548.
65 Zheng Liwei, Hsiao S Y, Ding Xiaodong, et al. Isotopic composition and speciation of sedimentary nitrogen and carbon in the Okinawa Trough over the past 30 ka[J]. Paleoceanography, 2015, 30(10): 1 233-1 244.
66 Ganeshram R S, Pedersen T F, Calvert S, et al. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories[J]. Nature, 2002, 415(6 868): 156-159.
67 Altabet M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J]. Nature, 2002, 415(6 868): 159-162.
68 Ganeshram R S, Pedersen T F, Calvert S E, et al. Glacial-interglacial variability in denitrification in the world's oceans: Causes and consequences[J]. Paleoceanography, 2000, 15(4): 361-376.
69 Meckler A N, Haug G H, Sigman D M, et al. Detailed sedimentary N isotope records from Cariaco Basin for Terminations I and V: Local and global implications[J]. Global Biogeochemical Cycles, 2007, 21(4): 4 019-4 032.
70 De Pol-Holz R, Ulloa O, Dezileau L, et al. Melting of the Patagonian Ice Sheet and deglacial perturbations of the nitrogen cycle in the eastern South Pacific[J]. Geophysical Research Letters, 2006, 33(4): 4 704-4 708.
71 Ivanochko T S, Ganeshram R S, Brummer G J A, et al. Variations in tropical convection as an amplifier of global climate change at the millennial scale[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 302-314.
72 Emmer E, Thunell R C. Nitrogen isotope variations in Santa Barbara Basin sediments: Implications for denitrification in the eastern tropical North Pacific during the last 50,000 years[J]. Paleoceanography, 2000, 15(4): 377-387.
73 Hendy I L, Pedersen T F, Kennett J P, et al. Intermittent existence of a southern Californian upwelling cell during submillennial climate change of the last 60 kyr[J]. Paleoceanography, 2004, 19(3): 3 007-3 022.
74 Higginson M J, Altabet M A. Comment on sedimentary phosphorus record from the Oman margin: New evidence of high productivity during glacial periods by F. Tamburiniet al.[J]. Paleoceanography, 2004, 19(2): 2 024-2 029.
75 Robinson R S, Mix A, Martinez P. Southern Ocean control on the extent of denitrification in the southeast Pacific over the last 70 ka[J]. Quaternary Science Reviews, 2007, 26(1): 201-212.
76 Martinez P, Robinson R S. Increase in water column denitrification during the deglaciation controlled by oxygen demand in the eastern equatorial Pacific[J]. Biogeosciences, 2010, 7(1): 1-9.
77 Hendy I L, Pedersen T F. Oxygen minimum zone expansion in the eastern tropical North Pacific during deglaciation[J]. Geophysical Research Letters, 2006, 33(20): 20 602-20 607.
78 Galbraith E D, Kienast M, Jaccard S L, et al. Consistent relationship between global climate and surface nitrate utilization in the western subarctic Pacific throughout the last 500 ka[J]. Paleoceanography, 2008, 23(2): 2 212-2 223.
79 Haug G H, Pedersen T F, Sigman D M, et al. Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr[J]. Paleoceanography, 1998, 13(5): 427-432.
80 Meckler A N, Ren Haojia, Sigman D M, et al. Deglacial nitrogen isotope changes in the Gulf of Mexico: Evidence from bulk sedimentary and foraminifera-bound nitrogen in Orca Basin sediments[J]. Paleoceanography, 2011, 26(4): 2 156-2 169.
81 Straub M, Tremblay M M, Sigman D M, et al. Nutrient conditions in the subpolar North Atlantic during the last glacial period reconstructed from foraminifera-bound nitrogen isotopes[J]. Paleoceanography, 2013, 28(1): 79-90.
82 Struck U, Emeis K C, Vo? Maren, et al. Biological productivity during sapropel S5 formation in the Eastern Mediterranean Sea: Evidence from stable isotopes of nitrogen and carbon[J]. Geochimica et Cosmochimica Acta, 2001, 65(19): 3 249-3 266.
83 Kuypers M M M, Van Breugel Y, Schouten S, et al. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events[J]. Geology, 2004, 32(10): 8 533-8 556.
84 Huon S, Grousset F E, Burdloff D, et al. Sources of fine-sized organic matter in North Atlantic Heinrich Layers: δ13C and δ15N tracers[J]. Geochimica et Cosmochimica Acta, 2002, 66(2): 223-239.
85 Francis R, Altabet M A, Yu E F, et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period[J]. Nature, 1997, 389(6 654): 929-935.
86 Kienast M. Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: Global implications[J]. Paleoceanography, 2000, 15(2): 244-253.
87 Tamburini F, Adatte T, F?llmi K, et al. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0-140,000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology, 2003, 201(1): 147-168.
88 Ren Haojia, Sigman D M, Martínez-García A, et al. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): 6 759-6 766.
89 Bianchi D, Dunne J P, Sarmiento J L, et al. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2[J]. Global Biogeochemical Cycles, 2012, 26(2): 2 009-2 022.
90 Kienast M, Higginson M J, Mollenhauer G, et al. On the sedimentological origin of down-core variations of bulk sedimentary nitrogen isotope ratios[J]. Paleoceanography & Paleoclimatology, 2005, 20(2): 2 009-2 022.
91 Hanebuth T. Rapid flooding of the Sunda Shelf: A late glacial sea level record[J]. Science, 2000, 288(5 468): 1 033-1 035.
92 Galbraith E D, Sigman D M, Robinson R S, et al. Chapter34: Nitrogen in past marine environments[M]// Nitrogen in the Marine Environment, 2008: 1 497-1 535.
[1] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[2] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[3] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[4] 宋敏, 杨群慧, 王华, 季福武, 王虎, 潘安阳, 周怀阳. 完整极性脂质化合物对海洋微生物活动的指示及应用局限性[J]. 地球科学进展, 2015, 30(10): 1162-1171.
[5] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[6] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[7] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[8] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[9] 邓林,曹玉清,王文科. 地下水NO - 3氮与氧同位素研究进展[J]. 地球科学进展, 2007, 22(7): 716-724.
[10] 陈法锦,李学辉,贾国东. 氮氧同位素在河流硝酸盐研究中的应用[J]. 地球科学进展, 2007, 22(12): 1251-1257.
[11] 李涛,王鹏,汪品先. 南海西沙海槽沉积物细菌多样性初步研究[J]. 地球科学进展, 2006, 21(10): 1058-1062.
[12] 张翠云;张胜;李政红;刘少玉. 利用氮同位素技术识别石家庄市地下水硝酸盐污染源[J]. 地球科学进展, 2004, 19(2): 183-191.
[13] 王根绪,程国栋,钱鞠,常娟. 中国干旱内陆流域水体 N、P负荷特征与动态变化——以黑河流域为例[J]. 地球科学进展, 2003, 18(3): 338-344.
[14] 袁兴中,何文珊. 海洋沉积物中的动物多样性及其生态系统功能[J]. 地球科学进展, 1999, 14(5): 458-463.
[15] 陈建芳,郑连福. 古海洋、古气候研究的新工具——分子温度计[J]. 地球科学进展, 1996, 11(4): 404-408.
阅读次数
全文


摘要