地球科学进展 ›› 2017, Vol. 32 ›› Issue (9): 949 -958. doi: 10.11867/j.issn.1001-8166.2017.09.0973

综述与评述 上一篇    下一篇

底栖有孔虫体内储存硝酸盐和反硝化研究进展
徐昭萌 1, 刘素美 1, 2, *   
  1. 1.中国海洋大学海洋化学理论与工程技术教育部重点实验室, 山东 青岛 266100;
    2.青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室,山东 青岛 266100
  • 收稿日期:2017-01-16 修回日期:2017-06-30 出版日期:2017-09-20
  • 通讯作者: 刘素美(1967-),女,辽宁抚顺人,教授,主要从事海洋生物地球化学研究.E-mail:sumeiliu@ouc.edu.cn
  • 基金资助:

    国家自然科学基金项目“南海北部沉积物中氮循环的关键过程研究”(编号:41376086); 泰山学者工程专项经费资助

Advance in Studies on Intracellular Nitrate Storage and Denitrification of Benthic Foraminifera

Xu Zhaomeng 1, Liu Sumei 1, 2, *   

  1. 1.Key Laboratory of Ministry of Education for Marine Chemistry Theory and Technology, Ocean University of China/ Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China;
    2.Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
  • Received:2017-01-16 Revised:2017-06-30 Online:2017-09-20 Published:2017-09-20
  • Contact: Liu Sumei (1967- ), female, Fushun City, Liaoning Province, Professor. Research areas include oceanography and biogeochemistry.E-mail:sumeiliu@ouc.edu.cn
  • About author:Xu Zhaomeng (1989- ), male, Ji’nan City, Shandong Province, Ph.D student. Research areas include oceanography and biogeochemistry.E-mail:xuzhaomengsky@126.com
  • Supported by:

    Project supported by the National Natural Science Foundation of China “Nitrogen loss and transformations in the Northern South China Sea” (No.41376086); Special Funds for Taishan Scholars Project

底栖有孔虫是第一种被发现能够进行反硝化的真核生物,这突破了人们对真核生物代谢方式的认识。大量研究证明底栖有孔虫对于沉积物的反硝化贡献甚至远超过原核生物,有孔虫细胞内储存大量的硝酸盐,其储量远超过间隙水中的硝酸盐,这些发现为沉积物氮循环的传统认识提出了新的挑战。有孔虫体内储存硝酸盐和反硝化的研究,对于认识真核生物在无氧环境下生存代谢的机理以及更精确地量化海洋氮收支有非常重要的意义。介绍了底栖有孔虫细胞内储存硝酸盐和反硝化的发现过程,并且对不同海区有孔虫体内储存硝酸盐和整体反硝化速率进行对比讨论,同时还总结了目前有孔虫体内储存硝酸盐和反硝化机理的最新研究进展,最后探讨了该研究领域还存在的一些问题以及需要进一步开展的工作。

Benthic foraminifera is the first kind of eukaryotes reported to carry on denitrification, which breaks the understanding of the eukaryotic metabolic way. Numerous studies have demonstrated that the contribution of benthic foraminifera to sedimentary denitrification exceeds the prokaryotes. Furthermore, benthic foraminifera stores large amount of nitrate intracellularly, which far exceeds the amount of nitrate in pore water. These findings challenge our understanding of the nitrogen cycle in sediments. The study of foraminiferal intracellular nitrate storage and denitrification is significant to figure out the metabolic way of eukaryote in anoxic environment and to quantify the balance of nitrogen in marine environment. The history of foraminiferal intracellular nitrate storage and denitrification study was discussed. In addition, the distribution of foraminiferal intracellular nitrate and denitrification rates in marine environment was also discussed. The latest research progresses about the related mechanism were also summarized. Finally, the problems and challenges in present and future studies were discussed.

中图分类号: 

[1] Gruber N. The Dynamics of the Marine Nitrogen Cycle and Its Influence on Atmospheric CO 2 Variations[M]. Netherlands: Springer, 2004:97-148.
[2] Arrigo K R. Marine microorganisms and global nutrient cycles[J]. Nature , 2005, 437(7 057): 349-355.
[3] Song Guodong, Liu Sumei. Advances in studies of anaerobic ammonium oxidation in the marine environment[J]. Advances in Earth Science , 2012, 27(5):529-538.
[宋国栋, 刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.]
[4] Devol A H. Denitrification, anammox, and N 2 production in marine sediments[J]. Annual Review of Marine Science , 2015, 7(1): 403-423.
[5] Tielens A G M, Rotte C, van Hellemond J J, et al . Mitochondria as we don’t know them[J]. Trends in Biochemical Sciences , 2002, 27(11): 564-572.
[6] Shapleigh J P. The Denitrifying Prokaryotes[M]. New York: Springer, 2006:769-792.
[7] Risgaard-Petersen N, Langezaal A M, Ingvardsen S, et al . Evidence for complete denitrification in a benthic foraminifer[J]. Nature , 2006, 443(7 107): 93-96.
[8] Piña-Ochoa E, Hogslund S, Geslin E, et al . Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida [J]. PNAS , 2010, 107(3): 1 148-1 153.
[9] Høgslund S, Revsbech N P, Cedhagen T, et al . Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile[J]. Journal of Experimental Marine Biology and Ecology , 2008, 359(2): 85-91.
[10] Bernhard J M, Casciotti K L, McIlvin M R, et al . Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration[J]. Journal of Geophysical Research : Biogeosciences , 2012, 117(G3):1 851-1 853.
[11] Glud R N, Thamdrup B, Stahl H, et al . Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan)[J]. Limnology and Oceanography , 2009, 54(3): 723-734.
[12] Kamp A, Hogslund S, Risgaard-Petersen N, et al . Nitrate storage and dissimilatory nitrate reduction by Eukaryotic Microbes[J]. Frontiers in Microbiology , 2015, 6: 1 492.
[13] Bernhard J M, Buck K R, Farmer M A, et al . The Santa Barbara Basin is a symbiosis oasis[J]. Nature , 2000, 403(6 765): 77-80.
[14] Gooday A J, Bernhard J M, Levin L A, et al . Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: Taxonomic composition, diversity, and relation to metazoan faunas[J]. Deep-Sea Research Part I : Topical Studies in Oceanography , 2000, 47(1/2): 25-54.
[15] Bernhard J M, SenGupta B K, Borne P F. Benthic foraminiferal proxy to estimate dysoxic bottom-water oxygen concentrations: Santa Barbara Basin, US Pacific continental margin[J]. Journal of Foraminiferal Research , 1997, 27(4): 301-310.
[16] Moodley L, Middelburg J J, Boschker H T S, et al . Bacteria and Foraminifera: Key players in a short-term deep-sea benthic response to phytodetritus[J]. Marine Ecology Progress , 2002, 236(1): 23-29.
[17] Nomaki H, Heinz P, Nakatsuka T, et al . Species-specific ingestion of organic carbon by deep-sea benthic foraminifera and meiobenthos: In situ tracer experiments[J]. Limnology and Oceanography , 2005, 50(1): 134-146.
[18] Koho K A, Piña-Ochoa E. Benthic foraminifera: Inhabitants of low-oxygen environments[M]∥Cellular Drigin, Life in Extreme Habitats and Astrobiology.Dordrecht: Spronger,2012: 249-285.
[19] Prokopenko M G, Sigman D M, Berelson W M, et al . Denitrification in anoxic sediments supported by biological nitrate transport[J]. Geochimica et Cosmochimica Acta , 2011, 75(22): 7 180-7 199.
[20] Xu Z, Liu S, Xiang R, et al . Live benthic foraminifera in the Yellow Sea and the East China Sea: Vertical distribution, nitrate storage, and potential denitrification[J]. Marine Ecology Progress Series , 2017, 571: 65-81.
[21] Fossing H, Gallardo V A, Jorgensen B B, et al . Concentration and transport of nitrate by the mat-forming sulfur bacterium thioploca[J]. Nature , 1995, 374(6 524): 713-715.
[22] Dortch Q, Clayton J R, Thoresen S S, et al . Species differences in accumulation of nitrogen pools in phytoplankton[J]. Marine Biology , 1984, 81(3): 237-250.
[23] Kamp A, de Beer D, Nitsch J L, et al . Diatoms respire nitrate to survive dark and anoxic conditions[J]. PNAS , 2011, 108(14): 5 649-5 654.
[24] Lomas M W, Glibert P M. Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates[J]. Journal of Phycology , 2000, 36(5): 903-913.
[25] Fenchel T, King G M, Blackburn T H. Bacterial Biogeochemistry (Third Edition)[M]. New York: Springer, 2013.
[26] Nomaki H, Chikaraishi Y, Tsuchiya M, et al . Variation in the nitrogen isotopic composition of amino acids in benthic foraminifera: Implications for their adaptation to oxygen-depleted environments[J]. Limnology and Oceanography , 2015, 60(6): 1 906-1 916.
[27] Geslin E, Barras C, Langlet D, et al . Survival, Reproduction and Calcification of Three Benthic Foraminiferal Species in Response to Experimentally Induced Hypoxia[M]. Japan: Springer, 2014:163-193.
[28] Koho K A, Piña-Ochoa E, Geslin E, et al . Vertical migration, nitrate uptake and denitrification: Survival mechanisms of foraminifers ( Globobulimina turgida ) under low oxygen conditions[J]. Fems Microbiology Ecology , 2011, 75(2): 273-283.
[29] Piña-Ochoa E, Koho K A, Geslin E, et al . Survival and life strategy of the foraminiferan Globobulimina turgida through nitrate storage and denitrification[J]. Marine Ecology Progress Series , 2010, 417: 39-49.
[30] Bernhard J M, Edgcomb V P, Casciotti K L, et al . Denitrification likely catalyzed by endobionts in an allogromiid foraminifer[J]. Journal of Microbial Ecology , 2012, 6(5): 951-960.
[31] Nomaki H, Chikaraishi Y, Tsuchiya M, et al . Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic conditions[J]. Limnology and Oceanography , 2014, 59(6): 1 879-1 888.
[32] Lomstein E, Jensen M H, Sørensen J. Intracellular NH 4 and NO 5 pools associated with deposited phytoplankton in a marine sediment (Aarhus Bight, Denmark)[J]. Marine Ecology Progress Series , 1990, 61(1/2): 97-105.
[33] Sayama M. Presence of nitrate-accumulating sulfur bacteria and their influence on nitrogen cycling in a shallow coastal marine sediment[J]. Applied & Environmental Microbiology , 2001, 67(8): 3 481-3 487.
[34] Glock N, Schönfeld J, Eisenhauer A, et al . The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone[J]. Biogeosciences Discussions , 2012, 9(12): 17 775-17 817.
[35] Larsen M, Thamdrup B, Shimmield T, et al . Benthic mineralization and solute exchange on a Celtic Sea sand-bank (Jones Bank)[J]. Progress in Oceanography , 2013, 117: 64-75.
[36] Glock N, Schonfeld J, Eisenhauer A, et al . The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone[J]. Biogeosciences , 2013, 10(7): 4 767-4 783.
[37] Risgaard-Petersen N, Nielsen L P, Rysgaard S, et al . Application of the isotope pairing technique in sediments where anammox and denitrification coexist[J]. Limnology and Oceanography-Methods , 2003,(1): 63-73.
[38] Corliss B H, Emerson S. Distribution of rose-bengal stained deep-sea benthic foraminifera from the Nova Scotian Continental-Margin and Gulf of maine[J]. Deep-Sea Research Part I : Oceanographic Research Papers , 1990, 37(3): 381-400.
[39] Rathburn A E, Corliss B H. The ecology of living (Stained) deep-sea benthic foraminifera from the Sulu Sea[J]. Paleoceanography , 1994, 9(1): 87-150.
[40] Jorissen F J, Wittling I, Peypouquet J P, et al . Live benthic foraminiferal faunas off Cape Blanc, NW-Africa: Community structure and microhabitats[J]. Deep-Sea Research Part I : Oceanographic Research Papers , 1998, 45(12): 2 157-2 188.
[41] Schonfeld J. Benthic foraminifera and pore-water oxygen profiles: A re-assessment of species boundary conditions at the western Iberian Margin[J]. Journal of Foraminiferal Research , 2001, 31(2): 86-107.
[42] Fontanier C, Jorissen F J, Licari L, et al . Live benthic foraminiferal faunas from the Bay of Biscay: Faunal density, composition, and microhabitats[J]. Deep-Sea Research Part I : Oceanographic Research Papers , 2002, 49(4): 751-785.
[43] Fontanier C, Jorissen F J, Chaillou G, et al . Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay[J]. Deep-Sea Research Part I : Oceanographic Research Papers , 2003, 50(4): 457-494.
[44] Fontanier C, Jorissen F J, Chaillou G, et al . Live foraminiferal faunas from a 2800 m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter[J]. Deep-Sea Research Part I : Oceanographic Research Papers , 2005, 52(7): 1 189-1 227.
[45] Koho K A, Kouwenhoven J, de Stigter H C, et al . Benthic foraminifera in the Nazare Canyon, Portuguese continental margin: Sedimentary environments and disturbance[J]. Marine Micropaleontology , 2007, 66(1): 27-51.
[46] Koho K A, García R, de Stigter H C, et al . Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: A case study from Lisbon-Setúbal Canyon (southern Portugal)[J]. Progress in Oceanography , 2008, 79(1): 55-82.
[47] Schulz H N, Brinkhoff T, Ferdelman T G, et al . Dense populations of a giant sulfur bacterium in Namibian shelf sediments[J]. Science , 1999, 284(5 413): 493-495.
[48] Hogslund S, Nielsen J L, Nielsen L P. Distribution, ecology and molecular identification of Thioploca from Danish brackish water sediments[J]. FEMS Microbiology Ecology , 2010, 73(1): 110-120.
[49] Groffman P M, Altabet M A, Bohlke J K, et al . Methods for measuring denitrification: Diverse approaches to a difficult problem[J]. Ecological Applications , 2006, 16(6): 2 091-2 122.
[50] Strohm T O, Griffin B, Zumft W G, et al . Growth yields in bacterial denitrification and nitrate ammonification[J]. Applied and Environmental Microbiology , 2007, 73(5): 1 420-1 424.
[51] Koho K A, Kouwenhoven T J, de Stigter H C, et al . Benthic foraminifera in the Nazaré Canyon, Portuguese continental margin: Sedimentary environments and disturbance[J]. Marine Micropaleontology , 2007, 66(1): 27-51.
[52] Dale A W, Sommer S, Lomnitz U, et al . Biological nitrate transport in sediments on the Peruvian margin mitigates benthic sulfide emissions and drives pelagic N loss during stagnation events[J]. Deep-Sea Research Part I : Oceanographic Research Papers , 2016, 112: 123-136.
[53] Bernhard J M. Potential symbionts in bathyal foraminifera[J]. Science , 2003, 299(5 608): 861.
[54] Bernhard J M, Goldstein S T, Bowser S S. An ectobiont-bearing foraminiferan, Bolivina pacifica, that inhabits microxic pore waters: Cell-biological and paleoceanographic insights[J]. Environmental Microbiology , 2010, 12(8): 2 107-2 119.
[55] Tsuchiya M, Toyofuku T, Uematsu K, et al . Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of Virgulinella fragilis (Foraminifera)[J]. Journal of Eukaryotic Microbiology , 2015, 62(4): 454-469.
[56] Bernhard J M, Bowser S S. Peroxisome proliferation in foraminifera inhabiting the chemocline: An adaptation to reactive oxygen species exposure?[J]. Journal of Eukaryotic Microbiology , 2008, 55(3): 135-144.
[57] Leutenegger S, Hansen H J. Ultrastructural and radiotracer studies of pore function in foraminifera[J]. Marine Biology , 1979, 54(1): 11-16.
[58] Corliss B H. Microhabitats of benthic foraminifera within deep-sea sediments[J]. Nature , 1985, 314(6 010): 435-438.
[59] Tielens A G M, Rotte C, Hellemond J J V, et al . Mitochondria as we don’t know them[J]. Trends in Biochemical Sciences , 2002, 27(11): 564-572.
[60] Joe G, Schofield O M, Falkowski P G, et al . The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr[J]. Limnology & Oceanography , 2002, 47(6): 1 569-1 580.
[61] Kuhnt T, Friedrich O, Schmiedl G, et al . Relationship between pore density in benthic foraminifera and bottom-water oxygen content[J]. Deep-Sea Research Part I : Oceanographic Research Papers , 2013, 76: 85-95.
[62] Glock N, Eisenhauer A, Milker Y, et al . Environmental influences on the pore density of Bolivina Spissa (Cushman)[J]. Journal of Foraminiferal Research , 2011, 41(1): 22-32.
[63] Nomaki H, Bernhard J M, Ishida A, et al . Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments: Results of nitrate and sulfate labeling experiments[J]. Frontiers in Microbiology , 2016, 7: 163.
[64] Zhao Feng, Xu Kuidong. Advances in the diversity of microbial eukaryotes in deep sea[J]. Advances in Earth Science , 2014, 29(5):551-558.
[赵峰, 徐奎栋. 深海真核微生物多样性研究进展[J]. 地球科学进展, 2014, 29(5): 551-558.]

[1] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[2] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[3] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[4] 宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.
[5] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[6] 张翠云,张俊霞,马琳娜,张胜,殷密英,李政红. 硝酸盐氮氧同位素反硝化细菌法测试研究[J]. 地球科学进展, 2010, 25(4): 360-364.
[7] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[8] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[9] 邓林,曹玉清,王文科. 地下水NO - 3氮与氧同位素研究进展[J]. 地球科学进展, 2007, 22(7): 716-724.
[10] 陈法锦,李学辉,贾国东. 氮氧同位素在河流硝酸盐研究中的应用[J]. 地球科学进展, 2007, 22(12): 1251-1257.
[11] 詹力扬,陈立奇. 海洋N 2O的研究进展[J]. 地球科学进展, 2006, 21(03): 269-277.
[12] 侯立军;刘敏;许世远;欧冬妮;刘巧梅;刘华林;蒋海燕. 潮滩生态系统中生源要素氮的生物地球化学过程研究综述[J]. 地球科学进展, 2004, 19(5): 774-781.
[13] 张江勇;汪品先. 深海研究中的底栖有孔虫:回顾与展望[J]. 地球科学进展, 2004, 19(4): 545-551.
[14] 张翠云;张胜;李政红;刘少玉. 利用氮同位素技术识别石家庄市地下水硝酸盐污染源[J]. 地球科学进展, 2004, 19(2): 183-191.
[15] 王根绪,程国栋,钱鞠,常娟. 中国干旱内陆流域水体 N、P负荷特征与动态变化——以黑河流域为例[J]. 地球科学进展, 2003, 18(3): 338-344.
阅读次数
全文


摘要